

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g232f128g-e-qfp64r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

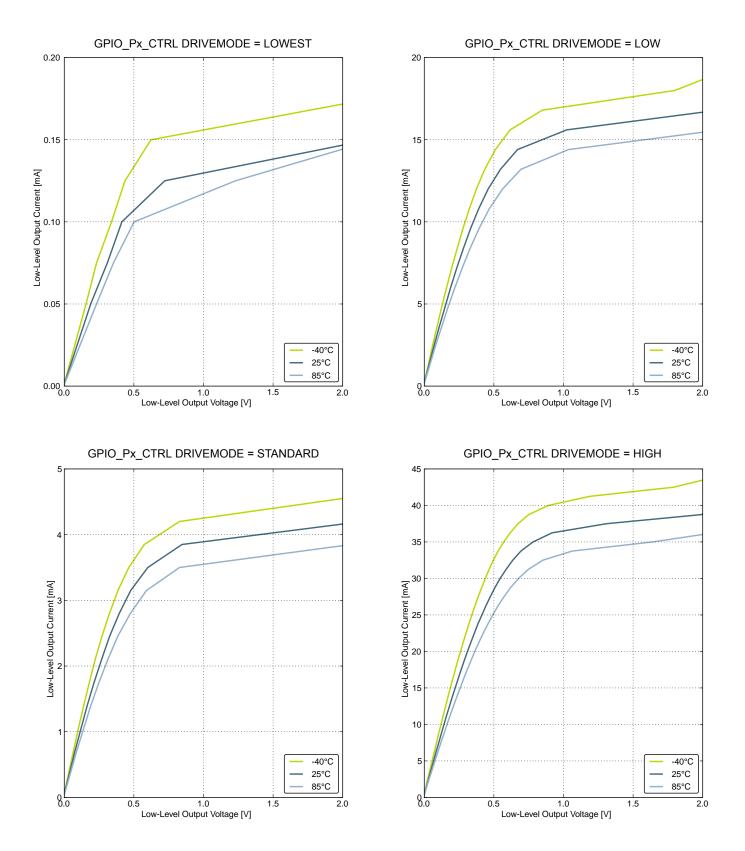


Figure 4.14. Typical Low-Level Output Current, 2V Supply Voltage

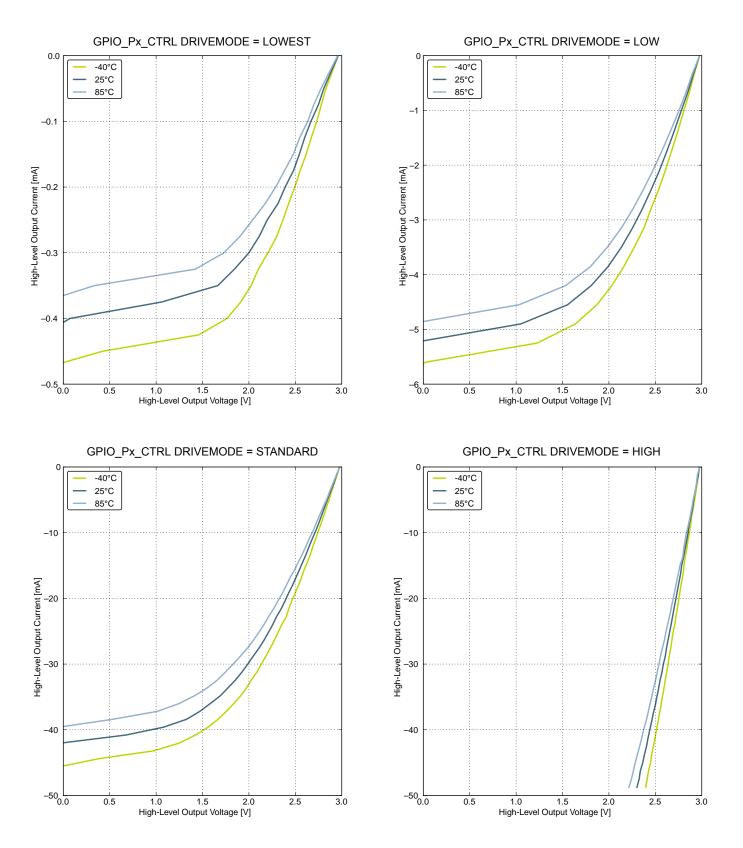


Figure 4.17. Typical High-Level Output Current, 3V Supply Voltage

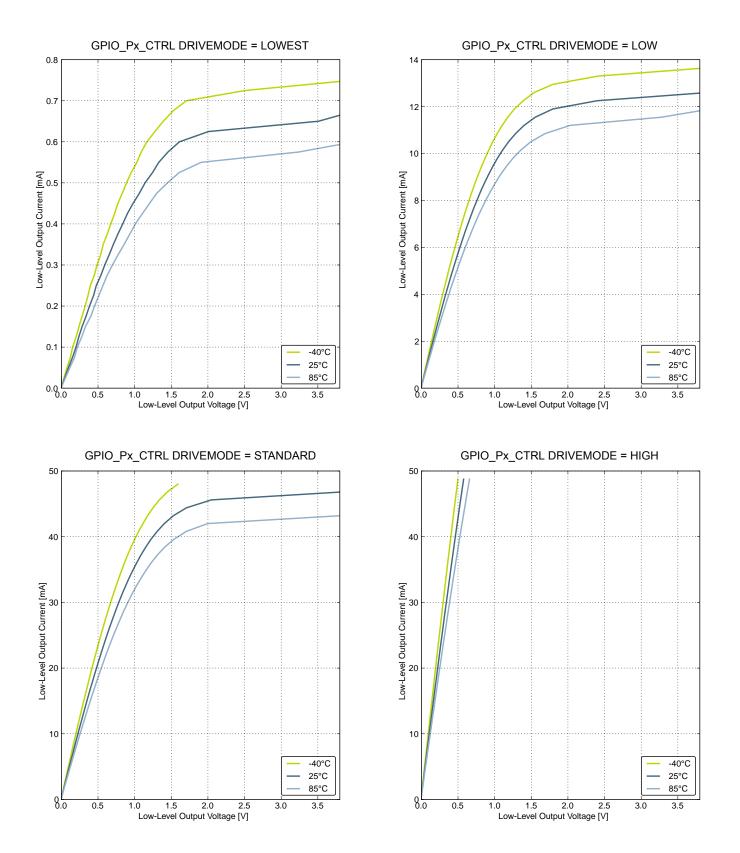


Figure 4.18. Typical Low-Level Output Current, 3.8V Supply Voltage

Table 4.9. HFXO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supported nominal crystal Fre- quency	f _{HFXO}		4	—	32	MHz
Supported crystal equivalent ser-	ESR _{HFXO}	Crystal frequency 32 MHz	_	30	60	Ω
ies resistance (ESR)	LOINHEXO	Crystal frequency 4 MHz	_	400	1500	Ω
The transconductance of the HFXO input transistor at crystal startup	9 _{mHFXO}	HFXOBOOST in CMU_CTRL equals 0b11	20		_	mS
Supported crystal external load range	C _{HFXOL}		5		25	pF
Current consumption for HFXO	1	4 MHz: ESR=400 Ω, C_L =20 pF, HFXOBOOST in CMU_CTRL equals 0b11	_	85	_	μA
after startup	IHFXO	32 MHz: ESR=30 Ω , C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11	_	165	_	μA
Startup time	t _{HFXO}	32 MHz: ESR=30 Ω, C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		400	_	μs
Pulse width removed by glitch de- tector			1		4	ns

4.9.5 AUXHFRCO

Table 4.12. AUXHFRCO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency, V _{DD} = 3.0 V, T _{AMB} =25 °C	fauxhfrco	14 MHz frequency band	13.580	14.0	14.420	MHz
Settling time after start-up	t _{AUXHFRCO_settling}	f _{AUXHFRCO} = 14 MHz	_	0.6	—	Cycles
Duty cycle	DC _{AUXHFRCO}	f _{AUXHFRCO} = 14 MHz	48.5	50	51	%
Frequency step for LSB change in TUNING value	TUNESTEPAUXHFRCO		_	0.3 ¹	_	%

Note:

1. The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value in the 14 MHz range across operating conditions.

4.9.6 ULFRCO

Table 4.13. ULFRCO

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Oscillation frequency	fulfrco	25 °C, 3 V	0.7	_	1.75	kHz
Temperature coefficient	TC _{ULFRCO}			0.05		%/°C
Supply voltage coefficient	VC _{ULFRCO}			-18.2	_	%/V

5.2 EFM32G222 (TQFP48)

5.2.1 Pinout

The EFM32G222 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

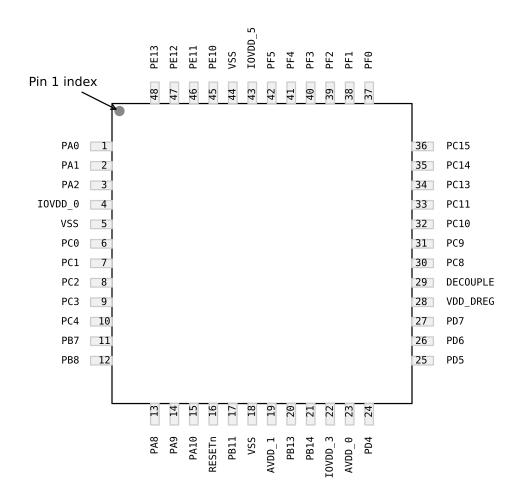


Figure 5.2. EFM32G222 Pinout (top view, not to scale)

Table 5.4. Device Pinout

	48 Pin# and Name	Pin Alternate Functionality / Description								
Pin #	Pin Name	Analog	Timers	Communication	Other					
1	PA0		TIM0_CC0 #0/1	I2C0_SDA #0						
2	PA1		TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0					
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0					
4	IOVDD_0	Digital IO powe	Digital IO power supply 0.							
5	VSS	Ground.								

	P100 Pin# d Name		Pi	n Alternate Functionalit	y / Description	
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
92	PE8		EBI_AD00 #0	PCNT2_S0IN #1		
93	PE9		EBI_AD01 #0	PCNT2_S1IN #1		
94	PE10		EBI_AD02 #0	TIM1_CC0 #1	US0_TX #0	BOOT_TX
95	PE11		EBI_AD03 #0 TIM1_CC1 #1 US0_RX #		US0_RX #0	BOOT_RX
96	PE12		EBI_AD04 #0	TIM1_CC2 #1	US0_CLK #0	
97	PE13		EBI_AD05 #0		US0_CS #0	ACMP0_O #0
98	PE14		EBI_AD06 #0		LEU0_TX #2	
99	PE15		EBI_AD07 #0		LEU0_RX #2	
100	PA15		EBI_AD08 #0			

Alternate					LOCATION		
Functionality	0	1	2	3	Description		
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.		
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.		
					Debug-interface Serial Wire clock input.		
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.		
					Debug-interface Serial Wire data input / output.		
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.		
					Debug-interface Serial Wire viewer Output.		
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.		
EBI_AD00	PE8				External Bus Interface (EBI) address and data input / output pin 00.		
EBI_AD01	PE9				External Bus Interface (EBI) address and data input / output pin 01.		
EBI_AD02	PE10				External Bus Interface (EBI) address and data input / output pin 02.		
EBI_AD03	PE11				External Bus Interface (EBI) address and data input / output pin 03.		
EBI_AD04	PE12				External Bus Interface (EBI) address and data input / output pin 04.		
EBI_AD05	PE13				External Bus Interface (EBI) address and data input / output pin 05.		
EBI_AD06	PE14				External Bus Interface (EBI) address and data input / output pin 06.		
EBI_AD07	PE15				External Bus Interface (EBI) address and data input / output pin 07.		
EBI_AD08	PA15				External Bus Interface (EBI) address and data input / output pin 08.		
EBI_AD09	PA0				External Bus Interface (EBI) address and data input / output pin 09.		
EBI_AD10	PA1				External Bus Interface (EBI) address and data input / output pin 10.		
EBI_AD11	PA2				External Bus Interface (EBI) address and data input / output pin 11.		
EBI_AD12	PA3				External Bus Interface (EBI) address and data input / output pin 12.		
EBI_AD13	PA4				External Bus Interface (EBI) address and data input / output pin 13.		
EBI_AD14	PA5				External Bus Interface (EBI) address and data input / output pin 14.		
EBI_AD15	PA6				External Bus Interface (EBI) address and data input / output pin 15.		
EBI_ALE	PF3				External Bus Interface (EBI) Address Latch Enable output.		

Alternate					LOCATION
Functionality	0	1	2	3	Description
TIM2_CC0	PA8	PA12	PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9	PA13	PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10	PA14	PC10		Timer 2 Capture Compare input / output channel 2.
U0_RX	PF7	PE1	PA4	PC15	UART0 Receive input.
U0_TX	PF6	PE0	PA3	PC14	UART0 Transmit output. Also used as receive input in half duplex communication.
US0_CLK	PE12	PE5	PC9		USART0 clock input / output.
US0_CS	PE13	PE4	PC8		USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11	PE6	PC10		USART0 Synchronous mode Master Input / Slave Output (MI-SO).
					USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX	PE10	PE7	PC11		USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX	PC1	PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).
	DOG				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX	PC0	PD0			USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
					USART2 Asynchronous Receive.
US2_RX	PC3	PB4			USART2 Synchronous mode Master Input / Slave Output (MI-SO).
	DC2				USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.
US2_TX	PC2	PB3			USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.7 EFM32G840 (QFN64)

5.7.1 Pinout

The EFM32G840 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

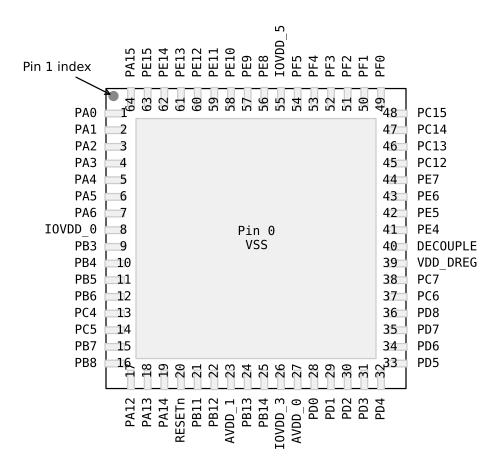


Figure 5.7. EFM32G840 Pinout (top view, not to scale)

Table 5.19. Device Pinout

QFN64 P	in# and Name		Pin Alternate	Functionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
0	VSS	Ground.			
1	PA0	LCD_SEG13	TIM0_CC0 #0/1	I2C0_SDA #0	
2	PA1	LCD_SEG14	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0
3	PA2	LCD_SEG15	TIM0_CC2 #0/1		CMU_CLK0 #0
4	PA3	LCD_SEG16	TIM0_CDTI0 #0		
5	PA4	LCD_SEG17	TIM0_CDTI1 #0		

	64 Pin# and Name		Pin Alternate	Functionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
6	PA5	LCD_SEG18	TIM0_CDTI2 #0	LEU1_TX #1	
7	IOVDD_0	Digital IO powe	er supply 0.		
8	VSS	Ground.			
9	PB3	LCD_SEG20	PCNT1_S0IN #1	US2_TX #1	
10	PB4	LCD_SEG21	PCNT1_S1IN #1	US2_RX #1	
11	PB5	LCD_SEG22		US2_CLK #1	
12	PB6	LCD_SEG23		US2_CS #1	
13	PC4	ACMP0_CH4	LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0	
14	PC5	ACMP0_CH5	LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0	
15	PB7	LFXTAL_P		US1_CLK #0	
16	PB8	LFXTAL_N		US1_CS #0	
17	PA12	LCD_BCAP_ P	TIM2_CC0 #1		
18	PA13	LCD_BCAP_ N	TIM2_CC1 #1		
19	PA14	LCD_BEXT	TIM2_CC2 #1		
20	RESETn		tive low.To apply an external re nd let the internal pull-up ensure	eset source to this pin, it is require that reset is released.	red to only drive this pin low
21	PB11	DAC0_OUT0	LETIM0_OUT0 #1		
22	VSS	Ground.			
23	AVDD_1	Analog power	supply 1.		
24	PB13	HFXTAL_P		LEU0_TX #1	
25	PB14	HFXTAL_N		LEU0_RX #1	
26	IOVDD_3	Digital IO powe	er supply 3.		
27	AVDD_0	Analog power	supply 0.		
28	PD0	ADC0_CH0	PCNT2_S0IN #0	US1_TX #1	
29	PD1	ADC0_CH1	TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1	
30	PD2	ADC0_CH2	TIM0_CC1 #3	US1_CLK #1	
31	PD3	ADC0_CH3	TIM0_CC2 #3	US1_CS #1	
32	PD4	ADC0_CH4		LEU0_TX #0	
33	PD5	ADC0_CH5		LEU0_RX #0	
34	PD6	ADC0_CH6	LETIM0_OUT0 #0	I2C0_SDA #1	
35	PD7	ADC0_CH7	LETIM0_OUT1 #0	I2C0_SCL #1	
36	PD8				CMU_CLK1 #1
37	PC6	ACMP0_CH6		LEU1_TX #0 I2C0_SDA #2	

	l2 Pin# and Name		Pi	n Alternate Functionalit	y / Description					
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other				
H9	PD5	ADC0_CH 5			LEU0_RX #0					
H10	PD6	ADC0_CH 6		LETIM0_OUT0 #0	I2C0_SDA #1					
H11	PD7	ADC0_CH 7		LETIM0_OUT1 #0	I2C0_SCL #1					
J1	PC1	ACMP0_C H1		PCNT0_S1IN #2	US1_RX #0					
J2	PC3	ACMP0_C H3			US2_RX #0					
J3	PD15				I2C0_SCL #3					
J4	PA12	LCD_BCA P_P		TIM2_CC0 #1						
J5	PA9	LCD_SEG 37		TIM2_CC1 #0						
J6	PA10	LCD_SEG 38		TIM2_CC2 #0						
J7	PB9									
J8	PB10									
J9	PD2	ADC0_CH 2		TIM0_CC1 #3	US1_CLK #1					
J10	PD3	ADC0_CH 3		TIM0_CC2 #3	US1_CS #1					
J11	PD4	ADC0_CH 4			LEU0_TX #0					
K1	PB7	LFXTAL_P			US1_CLK #0					
К2	PC4	ACMP0_C H4		LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0					
К3	PA13	LCD_BCA P_N		TIM2_CC1 #1						
K4	VSS	Ground.								
K5	PA11	LCD_SEG 39								
K6	RESETn			external reset source to the ure that reset is released.	is pin, it is required to only	/ drive this pin low during				
K7	AVSS_1	Analog grou	Analog ground 1.							
K8	AVDD_2	Analog pow	Analog power supply 2.							
K9	AVDD_1	Analog pow	er supply 1.							
K10	AVSS_0	Analog grou	nalog ground 0.							
K11	PD1	ADC0_CH 1		TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1					
L1	PB8	LFXTAL_N			US1_CS #0					

5.10.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Table 5.29. Alternate functionality overview

Alternate					LOCATION
Functionality	0	1	2	3	Description
LCD_SEG30	PD11				LCD segment line 30. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.
LCD_SEG31	PD12				LCD segment line 31. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.
LCD_SEG32	PB0				LCD segment line 32. Segments 32, 33, 34 and 35 are con- trolled by SEGEN8.
LCD_SEG33	PB1				LCD segment line 33. Segments 32, 33, 34 and 35 are controlled by SEGEN8.
LCD_SEG34	PB2				LCD segment line 34. Segments 32, 33, 34 and 35 are controlled by SEGEN8.
LCD_SEG35	PA7				LCD segment line 35. Segments 32, 33, 34 and 35 are controlled by SEGEN8.
LCD_SEG36	PA8				LCD segment line 36. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.
LCD_SEG37	PA9				LCD segment line 37. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.
LCD_SEG38	PA10				LCD segment line 38. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.
LCD_SEG39	PA11				LCD segment line 39. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.
LETIM0_OUT0	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7	PB12	PF1	PC5	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15		LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14		LEUART0 Transmit output. Also used as receive input in half duplex communication.
LEU1_RX	PC7	PA6			LEUART1 Receive input.
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13	PE0	PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14	PE1	PC1		Pulse Counter PCNT0 input number 1.
PCNT1_S0IN	PC4	PB3			Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5	PB4			Pulse Counter PCNT1 input number 1.
PCNT2_S0IN	PD0	PE8			Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.
TIM0_CC0	PA0	PA0	PF6	PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1	PF7	PD2	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2	PF8	PD3	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.

6.3 BGA112 Package Marking

In the illustration below package fields and position are shown.

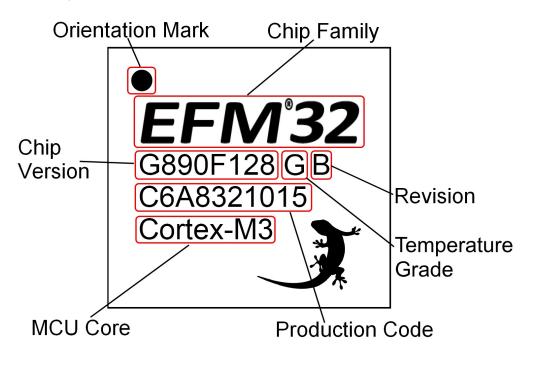


Figure 6.5. Example Chip Marking (Top View)

8. TQFP64 Package Specifications

8.1 TQFP64 Package Dimensions

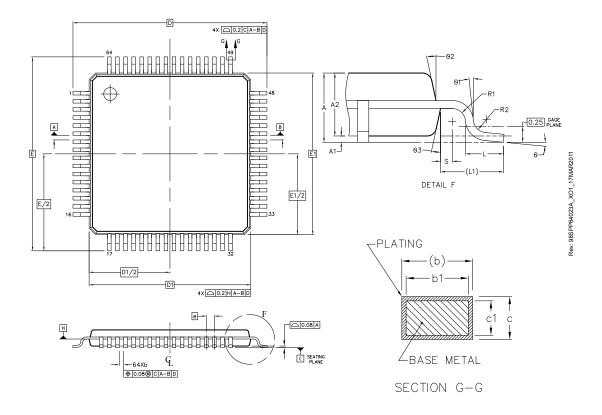


Figure 8.1. TQFP64

Note:

- 1. All dimensions & tolerancing confirm to ASME Y14.5M-1994.
- 2. The top package body size may be smaller than the bottom package body size.
- 3. Datum 'A,B', and 'B' to be determined at datum plane 'H'.
- 4. To be determined at seating place 'C'.
- 5. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25mm per side.'D1' and 'E1' are maximum plastic body size dimension including mold mismatch. Dimension 'D1' and'E1' shall be determined at datum plane 'H'.
- 6. Detail of Pin 1 indicatifier are option all but must be located within the zone indicated.
- 7. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause thelead width to exceed the maximum 'b' dimension by more than 0.08 mm. Dambar can not be locatedon the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm.
- 8. Exact shape of each corner is optional.
- 9. These dimension apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 10. All dimensions are in millimeters.

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX
A	_	1.10	1.20	L1		—	
A1	0.05	—	0.15	R1	0.08	—	—
A2	0.95	1.00	1.05	R2	0.08	_	0.20

Table 8.1. QFP64 (Dimensions in mm)

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX
D	0.170	—	0.270	S1	_	4.500 BSC	—
E	0.950	—	1.050	V		9.000 BSC	—
F	0.170	—	0.230	V1	_	4.5000 BSC	—
G	—	0.500 BSC		W	_	0.200 BSC	—
Н	0.050	_	0.150	AA	_	1.000BSC	—
J	0.090	—	0.200				
К	0.500	_	0.700				
L	0DE G	_	7DEG				

The TQFP48 Package is 7 by 7 mm in size and has a 0.5 mm pin pitch.

The TQFP48 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

11. QFN32 Package Specifications

11.1 QFN32 Package Dimensions

Figure 11.1. QFN32

Note:

- 1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.
- 3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm isacceptable.
- 4. Coplanarity applies to the exposed heat slug as well as the terminal.
- 5. Radius on terminal is optional.

Symbol	А	A1	A3	b	D	E	D2	E2	е	L	L1	aaa	bbb	ссс	ddd	eee
Min	0.80	0.00		0.25			4.30	4.30		0.30	0.00					
Nom	0.85	_	0.203 REF	0.30	6.00 BSC	6.00 BSC	4.40	4.40	0.65 BSC	0.35		0.10	0.10	0.10	0.05	0.08
Max	0.90	0.05		0.35			4.50	4.50		0.40	0.10					

Table 11.1.	QFN32	(Dimensions	in mm)
-------------	-------	-------------	--------

The QFN32 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

Corrected pin number for symbol P3 in Table 11.2 QFN32 PCB Land Pattern Dimensions (Dimensions in mm) on page 191.

Updated package marking figures to include temperature grade.

13.3 Revision 1.90

May 22nd, 2015

For devices with an ADC, Added clarification on conditions for INL_{ADC} and DNL_{ADC} parameters.

Corrected EM2 current consumption condition in Electrical Characteristics section.

Added AUXHFRCO to block diagram and Electrical Characteristics.

Updated HFRCO table in the Electrical Characteristics section.

Updated EM0, EM2, EM3, and EM4 maximum current specifications in the Electrical Characteristics section.

Updated the Output Low Voltage maximum for sinking 20 mA with VDD = 3.0 V in the Electrical Characteristics section.

Updated the Input Leakage Current maximum in the Electrical Characteristics section.

Updated the minimum and maximum frequency specifications for the LFRCO, HFRCO, and AUXHFRCO in the Electrical Characteristics section.

Updated the maximum current consumption of the HFRCO in the Electrical Characteristics section.

Updated the maximum current consumption of the HFRCO in the Electrical Characteristics section.

Added some minimum ADC SNR, SNDR, and SFDR specifications in the Electrical Characteristics section.

Added some minimum and maximum ADC offset voltage, DNL, and INL specifications in the Electrical Characteristics section.

Added maximum DAC current specifications in the Electrical Characteristics section.

Added maximum ACMP current and maximum and minimum offset voltage specifications in the Electrical Characteristics section.

Added maximum VCMP current and updated typical VCMP current specifications in the Electrical Characteristics section.

Updated references to energyAware Designer to Configurator.

13.4 Revision 1.80

July 2nd, 2014 Corrected single power supply voltage minimum value from 1.85V to 1.98V. Updated current consumption. Updated transition between energy modes. Updated power management data. Updated GPIO data. Updated LFXO, HFXO, HFRCO and ULFRCO data. Updated LFRCO and HFRCO plots.

For devices with an ACMP, updated ACMP data.

13.13 Revision 1.10

September 13th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

For LQFP100 devices, corrected number of GPIO pins.

Added typical values for $\mathsf{R}_{\mathsf{ADCFILT}}$ and $\mathsf{C}_{\mathsf{ADCFILT}}.$

Added two conditions for DAC clock frequency; one for sample/hold and one for sample/off.

Added RoHS information and specified leadframe/solderballs material.

Added Serial Bootloader to feature list and system summary.

Updated ADC characterization data.

Updated DAC characterization data.

Updated RCO characterization data.

Updated ACMP characterization data.

Updated VCMP characterization data.

13.14 Revision 1.00

April 23rd, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880EFM32G890

ADC VCM line removed.

Added pinout illustration and additional pinout table.

Changed "Errata" chapter. Errata description moved to separate document.

Document changed status from "Preliminary".

Updated "Electrical Characteristics" chapter.

For EFM32G222

May 20th, 2011

Updated LFXO load capacitance section.