

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g232f32-qfp64t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Supply Voltage Comparator
- Ultra efficient Power-on Reset and Brown-Out Detector
- 2-pin Serial Wire Debug Interface
 - 1-pin Serial Wire Viewer
- Pre-Programmed USB/UART Bootloader
- Temperature range -40 to 85 °C
- Single power supply 1.98 to 3.8 V
- Packages
 - BGA112
 - LQFP100
 - TQFP64
 - TQFP48
 - QFN64
 - QFN32

3.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM.

3.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32G.

3.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32G microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

3.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32G. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

3.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

3.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

3.1.10 External Bus Interface (EBI)

The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH, ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M3. This enables seamless access from software without manually manipulating the IO settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface the external devices. The timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices.

3.1.11 Inter-Integrated Circuit Interface (I2C)

The I²C module provides an interface between the MCU and a serial I²C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I²C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.

3.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 Smart-Cards, and IrDA devices.

3.1.13 Pre-Programmed USB/UART Bootloader

The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note.

3.2.10 EFM32G880

The features of the EFM32G880 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Module	Module	Module
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
EBI	Full configuration	EBI_ARDY, EBI_ALE, EBI_WEn, EBI_REn, EBI_CS[3:0], EBI_AD[15:0]
12C0	Full configuration	12C0_SDA, 12C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	Full configuration	US2_TX, US2_RX, US2_CLK, US2_CS
UART0	Full configuration	U0_TX, U0_RX
LEUART0	Full configuration	LEU0_TX, LEU0_RX
LEUART1	Full configuration	LEU1_TX, LEU1_RX
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]
ACMP0	Full configuration	ACMP0_CH[7:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0]
AES	Full configuration	NA
GPIO	86 pins	Available pins are shown in Table 4.3 (p. 57)

Table 3.10. EFM32G880 Configuration Summary

Figure 4.16. Typical Low-Level Output Current, 3V Supply Voltage

Figure 4.27. Integral Non-Linearity (INL)

Figure 4.28. Differential Non-Linearity (DNL)

4.11 Digital Analog Converter (DAC)

Table 4.15. DAC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
		VDD voltage reference, single- ended	0		V _{DD}	V
	V DACOUT	VDD voltage reference, differen- tial	-V _{DD}		V _{DD}	V
Output common mode voltage range	VDACCM		0	_	V _{DD}	V
		500 kSamples/s, 12 bit, internal 1.25 V reference, Continuous Mode		400 ¹	650 ¹	μA
Average active current	IDAC	100 kSamples/s, 12 bit, internal 1.25 V reference, Sample/Hold Mode	—	200 ¹	250 ¹	μA
		1 kSamples/s 12 bit, internal 1.25 V reference, Sample/Off Mode	_	17 ¹	25 ¹	μA
Sample rate	SR _{DAC}		_		500	ksamples/s
	f _{DAC}	Continuous Mode	—	_	1000	kHz
DAC clock frequency		Sample/Hold Mode	—	_	250	kHz
		Sample/Off Mode	—	_	250	kHz
Clock cycles per conversion	CYC _{DACCONV}			2		cycles
Conversion time	t _{DACCONV}		2	_	—	μs
Settling time	t _{DACSETTLE}			5	—	μs
		500 kSamples/s, 12 bit, single- ended, internal 1.25 V reference	—	58		dB
		500 kSamples/s, 12 bit, single- ended, internal 2.5 V reference	—	59		dB
Signal-to-Noise Ratio (SNR)	SNR _{DAC}	500 kSamples/s, 12 bit, differen- tial, internal 1.25 V reference	—	58		dB
		500 kSamples/s, 12 bit, differen- tial, internal 2.5 V reference		58		dB
		500 kSamples/s, 12 bit, differential, V_{DD} reference	_	59		dB

Figure 4.34. ACMP Characteristics, VDD = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1

Table 4.18. LCD

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frame rate	f _{LCDFR}		30	_	200	Hz
Number of segments supported	NUM _{SEG}		—	4×40	_	seg
LCD supply voltage range	V _{LCD}	Internal boost circuit enabled	2.0	_	3.8	V
		Display disconnected, static mode, framerate 32 Hz, all segments on.		250		nA
Steady state current consumption.	I _{LCD}	Display disconnected, quadruplex mode, framerate 32 Hz, all seg- ments on, bias mode to ONE- THIRD in LCD_DISPCTRL regis- ter.		550		nA
Steady state Current contribution		Internal voltage boost off	—	0	—	μA
of internal boost.	ILCDBOOST	Internal voltage boost on, boosting from 2.2 V to 3.0 V.	_	8.4	_	μA
		VBLEV of LCD_DISPCTRL regis- ter to LEVEL0	—	3.0	_	V
		VBLEV of LCD_DISPCTRL regis- ter to LEVEL1	_	3.08	_	V
		VBLEV of LCD_DISPCTRL regis- ter to LEVEL2	_	3.17	_	V
Report Voltage		VBLEV of LCD_DISPCTRL regis- ter to LEVEL3	_	3.26	_	V
Boost voltage	VBOOST	VBLEV of LCD_DISPCTRL regis- ter to LEVEL4	_	3.34	_	V
		VBLEV of LCD_DISPCTRL regis- ter to LEVEL5	_	3.43	_	V
		VBLEV of LCD_DISPCTRL regis- ter to LEVEL6	_	3.52		V
		VBLEV of LCD_DISPCTRL regis- ter to LEVEL7		3.6		V

The total LCD current is given by the following equation. $I_{LCDBOOST}$ is zero if internal boost is off.

 $I_{LCDTOTAL} = I_{LCD} + I_{LCDBOOST}$

LQFF and	P100 Pin# d Name	Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other		
6	PA5		EBI_AD14 #0	TIM0_CDTI2 #0	LEU1_TX #1			
7	PA6		EBI_AD15 #0		LEU1_RX #1			
8	IOVDD_0	Digital IO po	ower supply 0.					
9	PB0			TIM1_CC0 #2				
10	PB1			TIM1_CC1 #2				
11	PB2			TIM1_CC2 #2				
12	PB3			PCNT1_S0IN #1	US2_TX #1			
13	PB4			PCNT1_S1IN #1	US2_RX #1			
14	PB5				US2_CLK #1			
15	PB6				US2_CS #1			
16	VSS	Ground.						
17	IOVDD_1	Digital IO po	ower supply 1.					
18	PC0	ACMP0_C H0		PCNT0_S0IN #2	US1_TX #0			
19	PC1	ACMP0_C H1		PCNT0_S1IN #2	US1_RX #0			
20	PC2	ACMP0_C H2			US2_TX #0			
21	PC3	ACMP0_C H3			US2_RX #0			
22	PC4	ACMP0_C H4		LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0			
23	PC5	ACMP0_C H5		LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0			
24	PB7	LFXTAL_P			US1_CLK #0			
25	PB8	LFXTAL_N			US1_CS #0			
26	PA7							
27	PA8			TIM2_CC0 #0				
28	PA9			TIM2_CC1 #0				
29	PA10			TIM2_CC2 #0				
30	PA11							
31	IOVDD_2	Digital IO po	ower supply 2.	1	1			
32	VSS	Ground.						
33	PA12			TIM2_CC0 #1				
34	PA13			TIM2_CC1 #1				
35	PA14			TIM2_CC2 #1				
36	RESETn	Reset input, reset, and le	active low.To apply an e et the internal pull-up ensi	xternal reset source to this ure that reset is released.	s pin, it is required to only	drive this pin low during		

BGA11	2 Pin# and Name	d Pin Alternate Functionality / Description											
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other							
K5	PA11												
K6	RESETn	Reset input, reset, and le	Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.										
K7	AVSS_1	Analog grou	ind 1.										
K8	AVDD_2	Analog pow	er supply 2.										
K9	AVDD_1	Analog pow	er supply 1.										
K10	AVSS_0	Analog grou	ind 0.										
K11	PD1	ADC0_CH 1		TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1								
L1	PB8	LFXTAL_N			US1_CS #0								
L2	PC5	ACMP0_C H5		LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0								
L3	PA14			TIM2_CC2 #1									
L4	IOVDD_1	Digital IO po	ower supply 1.										
L5	PB11	DAC0_OU T0		LETIM0_OUT0 #1									
L6	PB12	DAC0_OU T1		LETIM0_OUT1 #1									
L7	AVSS_2	Analog grou	ind 2.										
L8	PB13	HFXTAL_ P		LEU0_TX #1									
L9	PB14	HFXTAL_ N	(TAL_ N LEU0_RX #1										
L10	AVDD_0	Analog pow	er supply 0.										
L11	PD0	ADC0_CH 0		PCNT2_S0IN #0	US1_TX #1								

Alternate					LOCATION
Functionality	0	1	2	3	Description
TIM2_CC0	PA8	PA12	PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9	PA13	PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10	PA14	PC10		Timer 2 Capture Compare input / output channel 2.
U0_RX	PF7	PE1	PA4	PC15	UART0 Receive input.
U0_TX	PF6	PE0	PA3	PC14	UART0 Transmit output. Also used as receive input in half duplex communication.
US0_CLK	PE12	PE5	PC9		USART0 clock input / output.
US0_CS	PE13	PE4	PC8		USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11	PE6	PC10		USART0 Synchronous mode Master Input / Slave Output (MI-SO).
		DEZ	DC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_1X	PEIO	PE7	PC11		USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX	PC1	PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).
					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX	PC0	PD0			USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
					USART2 Asynchronous Receive.
US2_RX	PC3	PB4			USART2 Synchronous mode Master Input / Slave Output (MI-SO).
US2_TX	PC2	PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.7.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.

Table 5.20. Alternate functionality overview

5.9.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Table 5.26. Alternate functionality overview

Alternate					LOCATION
Functionality	0	1	2	3	Description
LCD_SEG7	PE11				LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG8	PE12				LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG9	PE13				LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG10	PE14				LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG11	PE15				LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG12	PA15				LCD segment line 12. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG13	PA0				LCD segment line 13. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG14	PA1				LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG15	PA2				LCD segment line 15. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG16	PA3				LCD segment line 16. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG17	PA4				LCD segment line 17. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG18	PA5				LCD segment line 18. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG19	PA6				LCD segment line 19. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG20	PB3				LCD segment line 20. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG21	PB4				LCD segment line 21. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG22	PB5				LCD segment line 22. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG23	PB6				LCD segment line 23. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG24	PF6				LCD segment line 24. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG25	PF7				LCD segment line 25. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG26	PF8				LCD segment line 26. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG27	PF9				LCD segment line 27. Segments 24, 25, 26 and 27 are controlled by SEGEN6.
LCD_SEG28	PD9				LCD segment line 28. Segments 28, 29, 30 and 31 are controlled by SEGEN7.
LCD_SEG29	PD10				LCD segment line 29. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.

Alternate	LOCATION						
Functionality	0	1	2	3	Description		
LCD_SEG30	PD11				LCD segment line 30. Segments 28, 29, 30 and 31 are controlled by SEGEN7.		
LCD_SEG31	PD12				LCD segment line 31. Segments 28, 29, 30 and 31 are controlled by SEGEN7.		
LCD_SEG32	PB0				LCD segment line 32. Segments 32, 33, 34 and 35 are con- trolled by SEGEN8.		
LCD_SEG33	PB1				LCD segment line 33. Segments 32, 33, 34 and 35 are controlled by SEGEN8.		
LCD_SEG34	PB2				LCD segment line 34. Segments 32, 33, 34 and 35 are controlled by SEGEN8.		
LCD_SEG35	PA7				LCD segment line 35. Segments 32, 33, 34 and 35 are con- trolled by SEGEN8.		
LCD_SEG36	PA8				LCD segment line 36. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.		
LCD_SEG37	PA9				LCD segment line 37. Segments 36, 37, 38 and 39 are controlled by SEGEN9.		
LCD_SEG38	PA10				LCD segment line 38. Segments 36, 37, 38 and 39 are controlled by SEGEN9.		
LCD_SEG39	PA11				LCD segment line 39. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.		
LETIM0_OUT0	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.		
LETIM0_OUT1	PD7	PB12	PF1	PC5	Low Energy Timer LETIM0, output channel 1.		
LEU0_RX	PD5	PB14	PE15		LEUART0 Receive input.		
LEU0_TX	PD4	PB13	PE14		LEUART0 Transmit output. Also used as receive input in half duplex communication.		
LEU1_RX	PC7	PA6			LEUART1 Receive input.		
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.		
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.		
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.		
PCNT0_S0IN	PC13	PE0	PC0		Pulse Counter PCNT0 input number 0.		
PCNT0_S1IN	PC14	PE1	PC1		Pulse Counter PCNT0 input number 1.		
PCNT1_S0IN	PC4	PB3			Pulse Counter PCNT1 input number 0.		
PCNT1_S1IN	PC5	PB4			Pulse Counter PCNT1 input number 1.		
PCNT2_S0IN	PD0	PE8			Pulse Counter PCNT2 input number 0.		
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.		
TIM0_CC0	PA0	PA0	PF6	PD1	Timer 0 Capture Compare input / output channel 0.		
TIM0_CC1	PA1	PA1	PF7	PD2	Timer 0 Capture Compare input / output channel 1.		
TIM0_CC2	PA2	PA2	PF8	PD3	Timer 0 Capture Compare input / output channel 2.		
TIM0_CDTI0	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.		

7.2 LQFP100 PCB Layout

Figure 7.2. LQFP100 PCB Land Pattern

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	1.45	P1	1	P6	75
b	0.30	P2	25	P7	76
с	0.50	P3	26	P8	100
d	15.40	P4	50		
e	15.40	P5	51		

Figure 7.3. LQFP100 PCB Solder Mask

Table 7.3. LQFP100 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.57
b	0.42
C	0.50
d	15.40
e	15.40

8.2 TQFP64 PCB Layout

Figure 8.2. TQFP64 PCB Land Pattern

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	1.60	P1	1	P6	48
b	0.30	P2	16	P7	49
с	0.50	P3	17	P8	64
d	11.50	P4	32		
e	11.50	P5	33		

Figure 8.3. TQFP64 PCB Solder Mask

Table 8.3. TQFP64 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.72
b	0.42
C	0.50
d	11.50
e	11.50

8.3 TQFP64 Package Marking

In the illustration below package fields and position are shown.

Figure 8.5. Example Chip Marking (Top View)

13.5 Revision 1.71

November 21st, 2013 Updated figures. Updated errata-link. Updated chip marking. Added link to Environmental and Quality information. For devices with a DAC, re-added missing DAC-data.

13.6 Revision 1.70

September 30th, 2013 For devices with an I2C, added I2C characterization data. Corrected GPIO operating voltage from 1.8 V to 1.85 V. For devices with an ADC, corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit. For QFN64 devices, updated the Max V_{ESDCDM} value to 750 V. Updated Environmental information. Updated trademark, disclaimer and contact information. Other minor corrections.

13.7 Revision 1.60

June 28th, 2013

For BGA devices, updated PCB Land Pattern, PCB Solder Mask and PCB Stencil Design figures.

Updated power requirements in the Power Management section.

Removed minimum load capacitance figure and table. Added reference to application note.

Other minor corrections.

13.8 Revision 1.50

September 11th, 2012 Updated the HFRCO 1 MHz band typical value to 1.2 MHz. Updated the HFRCO 7 MHz band typical value to 6.6 MHz. For BGA devices, corrected BGA solder balls material from Sn96.5/Ag3/Cu0.5 to SAC105. Other minor corrections.

silabs.com | Building a more connected world.

13.9 Revision 1.40

February 27th, 2012

Updated Power Management section.

Corrected operating voltage from 1.8 V to 1.85 V.

Corrected TGRAD_{ADCTH} parameter.

Corrected package drawing.

Updated PCB land pattern, solder mask and stencil design.

For LQFP48 devices, corrected available Pulse Counters from 3 to 2.

For LQFP48 devices, corrected available LEUARTs from 2 to 1.

For LQFP64 devices, corrected ordering codes in the ordering information table.

13.10 Revision 1.30

May 20th, 2011

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Updated LFXO load capacitance section.