E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	86
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g280f128-qfp100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Supply Voltage Comparator
- Ultra efficient Power-on Reset and Brown-Out Detector
- 2-pin Serial Wire Debug Interface
 - 1-pin Serial Wire Viewer
- Pre-Programmed USB/UART Bootloader
- Temperature range -40 to 85 °C
- Single power supply 1.98 to 3.8 V
- Packages
 - BGA112
 - LQFP100
 - TQFP64
 - TQFP48
 - QFN64
 - QFN32

3.2.3 EFM32G222

The features of the EFM32G222 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	12C0_SDA, 12C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
ACMP0	Full configuration	ACMP0_CH[4:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:4]
DAC0	Full configuration	DAC0_OUT[1]
AES	Full configuration	NA
GPIO	37 pins	Available pins are shown in Table 4.3 (p. 57)

Table 3.3. EFM32G222 Configuration Summary

EFM32G Data Sheet System Overview

0×400-0400			0xffffffe
0x400e0400	AES		
0x400cc400			0xe0100000
0x400cc400	PRS	í 🔪 🗖 🗖	0xe00fffff
0x400cc000		, , , , , , , , , , , , , , , , , , ,	CM3 Peripherals
0x400ca400	RMU		0×e0000000
0x400ca000			0xdffffff
0x400c8400	CMU		
0x400c6000			0×90000000
0x400c6400	EMU		0x8fffffff
0x400c6000			EBI Region 3
0x400c4000	DMA		0×8c00000
0x400c2000			0x8bffffff
0x400c0400	MSC		EBI Region 2
0x40000000			0×88000000
0x4008a400	LCD		0x87ffffff
0x40088000			EBI Region 1
0×40088000	WDOG		0×84000000
0x40086000			0x83ffffff
0x40086800	PCNT2		EBI Region 0
0×40086400	PCNT1		0×8000000
0x40080400	PCNT0		0x7ffffff
0x40080000			
0x40084800	LEUART1		0×44000000
0×40084000	LEUART0		0x43ffffff
0x40082400			Peripherals (bit-band)
0x40082000	LETIMERO		0×42000000
0x40080400			0x41fffff
0x40080000	RTC		0.41000000
0x40010c00			0×4100000
0x40010800	TIMER2		0x40fffff
0x40010400			Peripherals
0x40010000	TIMERU		0240000000
0x4000e400			0x3tttttt
0x4000e000	UARTU		0×22200000
0x4000cc00			022166666
0x4000c800			UX221TTTTT
0x4000c400			
0x4000c000	USARIU		0x2166666
0x4000a400	1200		0X2111111
0x4000a000	1200		0×20004000
0x40008400	EBI		0x20001000
0x40008000	EBI		SRAM (16 kB)
0x40007000	GPIO		$(data space) 0 \times 20000000$
0x40006000	6110	r // F	0v1ffffff
0x40004400	DACO		0.1111111
0x40004000	Drico		
0x40002400	ADC0		
0x40002000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Code
0x40001800	ACMP1		
Ux40001400	ACMPO	1	
Ux40001000			
Ux40000400	VCMP	7	0×00000000
Ux40000000		· L	

Figure 3.3. System Address Space with Peripheral Listing

4.8 General Purpose Input Output

Table 4.7. GPIO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input low voltage	V _{IOIL}		_	_	0.30×V _{DD} ¹	V
Input high voltage	V _{IOIH}		0.70×V _{DD} ¹	_	_	V
		Sourcing 0.1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST	_	0.80×V _{DD}		V
		Sourcing 0.1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST	_	0.90×V _{DD}		V
	Vюон	Sourcing 1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW	_	0.85×V _{DD}		V
Output high voltage (Production		Sourcing 1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW	_	0.90×V _{DD}		V
test condition = 3.0 V, DRIVE- MODE = STANDARD)		Sourcing 6 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD	0.75×V _{DD}	_		V
		Sourcing 6 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD	0.85×V _{DD}	_		V
		Sourcing 20 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH	0.60×V _{DD}		_	V
		Sourcing 20 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH	0.80×V _{DD}			V

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit				
Signal-to-Noise Ratio (SNR)	SNR _{ADC}	1 MSamples/s, 12 bit, single- ended, internal 1.25 V refer- ence, ADC_CLK = 13 MHz, BIASPROG = 0xF4B		59		dB				
		1 MSamples/s, 12 bit, single- ended, internal 2.5 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	63	_	dB				
		1 MSamples/s, 12 bit, single- ended, V _{DD} reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B		67		dB				
		1 MSamples/s, 12 bit, differen- tial, internal 1.25 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B		63		dB				
		1 MSamples/s, 12 bit, differen- tial, internal 2.5 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	66	_	dB				
		1 MSamples/s, 12 bit, differen- tial, 5 V reference, ADC_CLK =13 MHz, BIASPROG = 0xF4B	_	66	_	dB				
		1 MSamples/s, 12 bit, differen- tial, V _{DD} reference, ADC_CLK= 13 MHz, BIASPROG =0xF4B	63	69	—	dB				
		1 MSamples/s, 12 bit, differen- tial, 2xV _{DD} reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	70	_	dB				
		200 kSamples/s, 12 bit, single- ended, internal 1.25 V refer- ence, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	62	_	dB				
				200 kSamples/s, 12 bit, single- ended, internal 2.5 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747		63		dB		
								200 kSamples/s, 12 bit, single- ended, V _{DD} reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747		67
		200 kSamples/s, 12 bit, differen- tial, internal 1.25 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	63	_	dB				
		200 kSamples/s, 12 bit, differen- tial, internal 2.5 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	66	_	dB				
		200 kSamples/s, 12 bit, differen- tial, 5 V reference, ADC_CLK = 7 MHz, BIASPROG = 0x747	—	66	—	dB				

5.2.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2				Clock Management Unit, clock output number 0.
CMU_CLK1	PA1				Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.

Table 5.5. Alternate functionality overview

QFN64 P	in# and Name	Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	Timers	Communication	Other		
40	DECOUPLE	Decouple output for on-chip voltage regulator. An external capacitance of size C _{DECOUPLE} is required at pin.					
41	PC8	ACMP1_CH0	TIM2_CC0 #2	US0_CS #2			
42	PC9	ACMP1_CH1	TIM2_CC1 #2	US0_CLK #2			
43	PC10	ACMP1_CH2	TIM2_CC2 #2	US0_RX #2			
44	PC11	ACMP1_CH3		US0_TX #2			
45	PC12	ACMP1_CH4			CMU_CLK0 #1		
46	PC13	ACMP1_CH5	TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0				
47	PC14	ACMP1_CH6	TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0				
48	PC15	ACMP1_CH7	TIM0_CDTI2 #1/3 TIM1_CC2 #0		DBG_SWO #1		
49	PF0		LETIM0_OUT0 #2		DBG_SWCLK #0/1		
50	PF1		LETIM0_OUT1 #2		DBG_SWDIO #0/1		
51	PF2				ACMP1_O #0 DBG_SWO #0		
52	PF3		TIM0_CDTI0 #2				
53	PF4		TIM0_CDTI1 #2				
54	PF5		TIM0_CDTI2 #2				
55	IOVDD_5	Digital IO powe	er supply 5.				
56	PE8		PCNT2_S0IN #1				
57	PE9		PCNT2_S1IN #1				
58	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX		
59	PE11		TIM1_CC1 #1	US0_RX #0	BOOT_RX		
60	PE12		TIM1_CC2 #1	US0_CLK #0			
61	PE13			US0_CS #0	ACMP0_O #0		
62	PE14			LEU0_TX #2			
63	PE15			LEU0_RX #2			
64	PA15						

BGA112 Pin# and Name		d Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other		
K5	PA11							
K6	RESETn	Reset input, reset, and le	active low.To apply an e et the internal pull-up ensu	xternal reset source to this ure that reset is released.	s pin, it is required to only	drive this pin low during		
K7	AVSS_1	Analog grou	ind 1.					
K8	AVDD_2	Analog pow	er supply 2.					
K9	AVDD_1	Analog pow	er supply 1.					
K10	AVSS_0	Analog grou	ind 0.					
K11	PD1	ADC0_CH 1		TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1			
L1	PB8	LFXTAL_N			US1_CS #0			
L2	PC5	ACMP0_C H5		LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0			
L3	PA14			TIM2_CC2 #1				
L4	IOVDD_1	Digital IO po	ower supply 1.					
L5	PB11	DAC0_OU T0		LETIM0_OUT0 #1				
L6	PB12	DAC0_OU T1		LETIM0_OUT1 #1				
L7	AVSS_2	Analog grou	ind 2.					
L8	PB13	HFXTAL_ P			LEU0_TX #1			
L9	PB14	HFXTAL_ N	LEU0_RX #1					
L10	AVDD_0	Analog pow	er supply 0.					
L11	PD0	ADC0_CH 0		PCNT2_S0IN #0	US1_TX #1			

5.6.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_0	PF2	PE3			Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Table 5.17. Alternate functionality overview

QFN64 P	in# and Name		Pin Alternate	nate Functionality / Description					
Pin #	Pin Name	Analog	Timers	Communication	Other				
38	PC7	ACMP0_CH7		LEU1_RX #0 I2C0_SCL #2					
39	VDD_DREG	Power supply f	or on-chip voltage regulator.						
40	DECOUPLE	Decouple outp pin.	ple output for on-chip voltage regulator. An external capacitance of size C _{DECOUPLE} is required at this						
41	PE4	LCD_COM0		US0_CS #1					
42	PE5	LCD_COM1		US0_CLK #1					
43	PE6	LCD_COM2		US0_RX #1					
44	PE7	LCD_COM3		US0_TX #1					
45	PC12	ACMP1_CH4			CMU_CLK0 #1				
46	PC13	ACMP1_CH5	TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0						
47	PC14	ACMP1_CH6	TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0						
48	PC15	ACMP1_CH7	TIM0_CDTI2 #1/3 TIM1_CC2 #0		DBG_SWO #1				
49	PF0		LETIM0_OUT0 #2		DBG_SWCLK #0/1				
50	PF1		LETIM0_OUT1 #2		DBG_SWDIO #0/1				
51	PF2	LCD_SEG0			ACMP1_O #0 DBG_SWO #0				
52	PF3	LCD_SEG1	TIM0_CDTI0 #2						
53	PF4	LCD_SEG2	TIM0_CDTI1 #2						
54	PF5	LCD_SEG3	TIM0_CDTI2 #2						
55	IOVDD_5	Digital IO powe	er supply 5.						
56	PE8	LCD_SEG4	PCNT2_S0IN #1						
57	PE9	LCD_SEG5	PCNT2_S1IN #1						
58	PE10	LCD_SEG6	TIM1_CC0 #1	US0_TX #0	BOOT_TX				
59	PE11	LCD_SEG7	TIM1_CC1 #1	US0_RX #0	BOOT_RX				
60	PE12	LCD_SEG8	TIM1_CC2 #1	US0_CLK #0					
61	PE13	LCD_SEG9		US0_CS #0	ACMP0_O #0				
62	PE14	LCD_SEG10		LEU0_TX #2					
63	PE15	LCD_SEG11		LEU0_RX #2					
64	PA15	LCD_SEG12							

5.8.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.

Table 5.23. Alternate functionality overview

Alternate	LOCATION				
Functionality	0	1	2	3	Description
TIM0_CC0	PA0	PA0		PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2		PD3	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
TIM2_CC0		PA12			Timer 2 Capture Compare input / output channel 0.
TIM2_CC1		PA13			Timer 2 Capture Compare input / output channel 1.
TIM2_CC2		PA14			Timer 2 Capture Compare input / output channel 2.
US0_CLK	PE12	PE5			USART0 clock input / output.
US0_CS	PE13	PE4			USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11	PE6			USART0 Synchronous mode Master Input / Slave Output (MI-SO).
	DE40	DEZ			USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
050_1X	PEIU	PE7			USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX		PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).
		000			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
051_1X		PD0			USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
					USART2 Asynchronous Receive.
US2_RX		PB4			USART2 Synchronous mode Master Input / Slave Output (MI-SO).
		DD2			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.
US2_1X		FD3			USART2 Synchronous mode Master Output / Slave Input (MOSI).

LQFF and	P100 Pin# d Name	Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other	
77	PF1			LETIM0_OUT1 #2		DBG_SWDIO #0/1	
78	PF2	LCD_SEG 0	EBI_ARDY #0			ACMP1_O #0 DBG_SWO #0	
79	PF3	LCD_SEG 1	EBI_ALE #0	TIM0_CDTI0 #2			
80	PF4	LCD_SEG 2	EBI_WEn #0	TIM0_CDTI1 #2			
81	PF5	LCD_SEG 3	EBI_REn #0	TIM0_CDTI2 #2			
82	IOVDD_5	Digital IO po	ower supply 5.				
83	VSS	Ground.					
84	PF6	LCD_SEG 24		TIM0_CC0 #2	U0_TX #0		
85	PF7	LCD_SEG 25		TIM0_CC1 #2	U0_RX #0		
86	PF8	LCD_SEG 26		TIM0_CC2 #2			
87	PF9	LCD_SEG 27					
88	PD9	LCD_SEG 28	EBI_CS0 #0				
89	PD10	LCD_SEG 29	EBI_CS1 #0				
90	PD11	LCD_SEG 30	EBI_CS2 #0				
91	PD12	LCD_SEG 31	EBI_CS3 #0				
92	PE8	LCD_SEG 4	EBI_AD00 #0	PCNT2_S0IN #1			
93	PE9	LCD_SEG 5	EBI_AD01 #0	PCNT2_S1IN #1			
94	PE10	LCD_SEG 6	EBI_AD02 #0	TIM1_CC0 #1	US0_TX #0	BOOT_TX	
95	PE11	LCD_SEG 7	EBI_AD03 #0	TIM1_CC1 #1	US0_RX #0	BOOT_RX	
96	PE12	LCD_SEG 8	EBI_AD04 #0	TIM1_CC2 #1	US0_CLK #0		
97	PE13	LCD_SEG 9	EBI_AD05 #0		US0_CS #0	ACMP0_O #0	
98	PE14	LCD_SEG 10	EBI_AD06 #0		LEU0_TX #2		
99	PE15	LCD_SEG 11	EBI_AD07 #0		LEU0_RX #2		

Alternate					LOCATION
Functionality	0	1	2	3	Description
LCD_SEG7	PE11				LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG8	PE12				LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG9	PE13				LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG10	PE14				LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG11	PE15				LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG12	PA15				LCD segment line 12. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG13	PA0				LCD segment line 13. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG14	PA1				LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG15	PA2				LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG16	PA3				LCD segment line 16. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG17	PA4				LCD segment line 17. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG18	PA5				LCD segment line 18. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG19	PA6				LCD segment line 19. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG20	PB3				LCD segment line 20. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG21	PB4				LCD segment line 21. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG22	PB5				LCD segment line 22. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG23	PB6				LCD segment line 23. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG24	PF6				LCD segment line 24. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG25	PF7				LCD segment line 25. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG26	PF8				LCD segment line 26. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG27	PF9				LCD segment line 27. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG28	PD9				LCD segment line 28. Segments 28, 29, 30 and 31 are controlled by SEGEN7.
LCD_SEG29	PD10				LCD segment line 29. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.

Alternate					LOCATION
Functionality	0	1	2	3	Description
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10	PB0		Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11	PB1		Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12	PB2		Timer 1 Capture Compare input / output channel 2.
TIM2_CC0	PA8	PA12	PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9	PA13	PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10	PA14	PC10		Timer 2 Capture Compare input / output channel 2.
U0_RX	PF7	PE1	PA4	PC15	UART0 Receive input.
U0_TX	PF6	PE0	PA3	PC14	UART0 Transmit output. Also used as receive input in half duplex communication.
US0_CLK	PE12	PE5	PC9		USART0 clock input / output.
US0_CS	PE13	PE4	PC8		USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11	PE6	PC10		USART0 Synchronous mode Master Input / Slave Output (MI-SO).
US0_TX	PE10	PE7	PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
US1_RX	PC1	PD1			USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MI- SO).
US1_TX	PC0	PD0			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
					USART2 Asynchronous Receive.
US2_RX	PC3	PB4			USART2 Synchronous mode Master Input / Slave Output (MI-SO).
US2_TX	PC2	PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).

6.3 BGA112 Package Marking

In the illustration below package fields and position are shown.

Figure 6.5. Example Chip Marking (Top View)

		SYMBOL	MIN	NOM	MAX		
x		D	16 BSC				
	у	E		16 BSC			
hady aiza	х	D1	14 BSC				
body size	у	E1	14 BSC				
lead pitch		e	0.5 BSC				
		L	0.45	0.6	0.75		
footprint		L1	1 REF				
		θ	0°	3.5°	7°		
		θ1	0°				
		θ2	11º 12º		13º		
		θ3	11º	12°	13º		
		R1	0.08	_	—		
		R1	0.08	_	0.2		
		S	0.2				
package edge tolerance		aaa	0.2				
lead edge tolerance		bbb	0.2				
coplanarity		ссс	0.08				
lead offset		ddd	0.08				
mold flatness		eee	0.05				

The LQFP100 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

Figure 9.4. TQFP48 PCB Stencil Design

Table 9.4. TQFP48 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.50
b	0.20
С	0.50
d	8.50
e	8.50

Note:

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see 5. Pin Definitions.

Symbol	Dim. (mm)
d	6.00
e	6.00
f	4.52
g	4.52

Figure 11.4. QFN32 PCB Stencil Design

Table 11.4. QFN32 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.70
b	0.25
С	0.65
d	6.00
e	6.00
x	1.30
у	1.30
Z	0.50

Note:

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see 5. Pin Definitions.

12. Chip Revision, Solder Information, Errata

12.1 Chip Revision

The revision of a chip can be determined from the "Revision" field in the package marking.

12.2 Soldering Information

The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.

12.3 Errata

Please see the errata document for description and resolution of device errata. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit