
# E·XFL



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Discontinued at Digi-Key                                              |
|----------------------------|-----------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                       |
| Core Size                  | 32-Bit Single-Core                                                    |
| Speed                      | 32MHz                                                                 |
| Connectivity               | EBI/EMI, I <sup>2</sup> C, IrDA, SmartCard, SPI, UART/USART           |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                            |
| Number of I/O              | 90                                                                    |
| Program Memory Size        | 32KB (32K x 8)                                                        |
| Program Memory Type        | FLASH                                                                 |
| EEPROM Size                | -                                                                     |
| RAM Size                   | 8K x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 1.98V ~ 3.8V                                                          |
| Data Converters            | A/D 8x12b; D/A 2x12b                                                  |
| Oscillator Type            | Internal                                                              |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                     |
| Mounting Type              | Surface Mount                                                         |
| Package / Case             | 112-LFBGA                                                             |
| Supplier Device Package    | 112-BGA (10x10)                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/efm32g290f32-bga112 |
|                            |                                                                       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 2. Ordering Information

The following table shows the available EFM32G devices.

| Ordering Code           | Flash (kB) | RAM (kB) | Max Speed<br>(MHz) | Supply Volt-<br>age (V) | Tempera-<br>ture (ºC) | Package |
|-------------------------|------------|----------|--------------------|-------------------------|-----------------------|---------|
| EFM32G200F16G-E-QFN32   | 16         | 8        | 32                 | 1.98 - 3.8              | -40 - 85              | QFN32   |
| EFM32G200F32G-E-QFN32   | 32         | 8        | 32                 | 1.98 - 3.8              | -40 - 85              | QFN32   |
| EFM32G200F64G-E-QFN32   | 64         | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | QFN32   |
| EFM32G210F128G-E-QFN32  | 128        | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | QFN32   |
| EFM32G222F32G-E-QFP48   | 32         | 8        | 32                 | 1.98 - 3.8              | -40 - 85              | TQFP48  |
| EFM32G222F64G-E-QFP48   | 64         | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | TQFP48  |
| EFM32G222F128G-E-QFP48  | 128        | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | TQFP48  |
| EFM32G230F32G-E-QFN64   | 32         | 8        | 32                 | 1.98 - 3.8              | -40 - 85              | QFN64   |
| EFM32G230F64G-E-QFN64   | 64         | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | QFN64   |
| EFM32G230F128G-E-QFN64  | 128        | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | QFN64   |
| EFM32G232F32G-E-QFP64   | 32         | 8        | 32                 | 1.98 - 3.8              | -40 - 85              | TQFP64  |
| EFM32G232F64G-E-QFP64   | 64         | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | TQFP64  |
| EFM32G232F128G-E-QFP64  | 128        | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | TQFP64  |
| EFM32G280F32G-E-QFP100  | 32         | 8        | 32                 | 1.98 - 3.8              | -40 - 85              | LQFP100 |
| EFM32G280F64G-E-QFP100  | 64         | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | LQFP100 |
| EFM32G280F128G-E-QFP100 | 128        | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | LQFP100 |
| EFM32G290F32G-E-BGA112  | 32         | 8        | 32                 | 1.98 - 3.8              | -40 - 85              | BGA112  |
| EFM32G290F64G-E-BGA112  | 64         | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | BGA112  |
| EFM32G290F128G-E-BGA112 | 128        | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | BGA112  |
| EFM32G840F32G-E-QFN64   | 32         | 8        | 32                 | 1.98 - 3.8              | -40 - 85              | QFN64   |
| EFM32G840F64G-E-QFN64   | 64         | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | QFN64   |
| EFM32G840F128G-E-QFN64  | 128        | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | QFN64   |
| EFM32G842F32G-E-QFP64   | 32         | 8        | 32                 | 1.98 - 3.8              | -40 - 85              | TQFP64  |
| EFM32G842F64G-E-QFP64   | 64         | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | TQFP64  |
| EFM32G842F128G-E-QFP64  | 128        | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | TQFP64  |
| EFM32G880F32G-E-QFP100  | 32         | 8        | 32                 | 1.98 - 3.8              | -40 - 85              | LQFP100 |
| EFM32G880F64G-E-QFP100  | 64         | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | LQFP100 |
| EFM32G880F128G-E-QFP100 | 128        | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | LQFP100 |
| EFM32G890F32G-E-BGA112  | 32         | 8        | 32                 | 1.98 - 3.8              | -40 - 85              | BGA112  |
| EFM32G890F64G-E-BGA112  | 64         | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | BGA112  |
| EFM32G890F128G-E-BGA112 | 128        | 16       | 32                 | 1.98 - 3.8              | -40 - 85              | BGA112  |

#### 3.1.24 Advanced Encryption Standard Accelerator (AES)

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

#### 3.1.25 General Purpose Input/Output (GPIO)

General Purpose Input/Output (GPIO) pins are organized into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

#### 3.1.26 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 4x40 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

#### 3.2.6 EFM32G280

The features of the EFM32G280 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

| Module    | Configuration                            | Pin Connections                                                   |  |  |
|-----------|------------------------------------------|-------------------------------------------------------------------|--|--|
| Cortex-M3 | Full configuration                       | NA                                                                |  |  |
| DBG       | Full configuration                       | DBG_SWCLK, DBG_SWDIO, DBG_SWO                                     |  |  |
| MSC       | Full configuration                       | NA                                                                |  |  |
| DMA       | Full configuration                       | NA                                                                |  |  |
| RMU       | Full configuration                       | NA                                                                |  |  |
| EMU       | Full configuration                       | NA                                                                |  |  |
| СМU       | Full configuration                       | CMU_OUT0, CMU_OUT1                                                |  |  |
| WDOG      | Full configuration                       | NA                                                                |  |  |
| PRS       | Full configuration                       | NA                                                                |  |  |
| EBI       | Full configuration                       | EBI_ARDY, EBI_ALE, EBI_WEn, EBI_REn,<br>EBI_CS[3:0], EBI_AD[15:0] |  |  |
| 12C0      | Full configuration                       | 12C0_SDA, 12C0_SCL                                                |  |  |
| USART0    | Full configuration with IrDA             | US0_TX, US0_RX. US0_CLK, US0_CS                                   |  |  |
| USART1    | Full configuration                       | US1_TX, US1_RX, US1_CLK, US1_CS                                   |  |  |
| USART2    | Full configuration                       | US2_TX, US2_RX, US2_CLK, US2_CS                                   |  |  |
| UART0     | Full configuration                       | U0_TX, U0_RX                                                      |  |  |
| LEUART0   | Full configuration                       | LEU0_TX, LEU0_RX                                                  |  |  |
| LEUART1   | Full configuration                       | LEU1_TX, LEU1_RX                                                  |  |  |
| TIMER0    | Full configuration with DTI              | TIM0_CC[2:0], TIM0_CDTI[2:0]                                      |  |  |
| TIMER1    | Full configuration                       | TIM1_CC[2:0]                                                      |  |  |
| TIMER2    | Full configuration                       | TIM2_CC[2:0]                                                      |  |  |
| RTC       | Full configuration                       | NA                                                                |  |  |
| LETIMER0  | Full configuration                       | LET0_O[1:0]                                                       |  |  |
| PCNT0     | Full configuration, 8-bit count register | PCNT0_S[1:0]                                                      |  |  |
| PCNT1     | Full configuration, 8-bit count register | PCNT1_S[1:0]                                                      |  |  |
| PCNT2     | Full configuration, 8-bit count register | PCNT2_S[1:0]                                                      |  |  |
| ACMP0     | Full configuration                       | ACMP0_CH[7:0], ACMP0_O                                            |  |  |
| ACMP1     | Full configuration                       | ACMP1_CH[7:0], ACMP1_O                                            |  |  |
| VCMP      | Full configuration                       | NA                                                                |  |  |
| ADC0      | Full configuration                       | ADC0_CH[7:0]                                                      |  |  |
| DAC0      | Full configuration                       | DAC0_OUT[1:0]                                                     |  |  |
| AES       | Full configuration                       | NA                                                                |  |  |
| GPIO      | 86 pins                                  | Available pins are shown in Table 4.3 (p. 57)                     |  |  |

#### Table 3.6. EFM32G280 Configuration Summary

#### 3.2.8 EFM32G840

The features of the EFM32G840 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

| Table 3.8. | EFM32G840 | Configuration | Summary |
|------------|-----------|---------------|---------|
|------------|-----------|---------------|---------|

| Module    | Configuration                            | Pin Connections                                                  |
|-----------|------------------------------------------|------------------------------------------------------------------|
| Cortex-M3 | Full configuration                       | NA                                                               |
| DBG       | Full configuration                       | DBG_SWCLK, DBG_SWDIO, DBG_SWO                                    |
| MSC       | Full configuration                       | NA                                                               |
| DMA       | Full configuration                       | NA                                                               |
| RMU       | Full configuration                       | NA                                                               |
| EMU       | Full configuration                       | NA                                                               |
| СМU       | Full configuration                       | CMU_OUT0, CMU_OUT1                                               |
| WDOG      | Full configuration                       | NA                                                               |
| PRS       | Full configuration                       | NA                                                               |
| I2C0      | Full configuration                       | 12C0_SDA, 12C0_SCL                                               |
| USART0    | Full configuration with IrDA             | US0_TX, US0_RX. US0_CLK, US0_CS                                  |
| USART1    | Full configuration                       | US1_TX, US1_RX, US1_CLK, US1_CS                                  |
| USART2    | Full configuration                       | US2_TX, US2_RX, US2_CLK, US2_CS                                  |
| LEUART0   | Full configuration                       | LEU0_TX, LEU0_RX                                                 |
| LEUART1   | Full configuration                       | LEU1_TX, LEU1_RX                                                 |
| TIMER0    | Full configuration with DTI              | TIM0_CC[2:0], TIM0_CDTI[2:0]                                     |
| TIMER1    | Full configuration                       | TIM1_CC[2:0]                                                     |
| TIMER2    | Full configuration                       | TIM2_CC[2:0]                                                     |
| RTC       | Full configuration                       | NA                                                               |
| LETIMER0  | Full configuration                       | LET0_O[1:0]                                                      |
| PCNT0     | Full configuration, 8-bit count register | PCNT0_S[1:0]                                                     |
| PCNT1     | Full configuration, 8-bit count register | PCNT1_S[1:0]                                                     |
| PCNT2     | Full configuration, 8-bit count register | PCNT2_S[1:0]                                                     |
| ACMP0     | Full configuration                       | ACMP0_CH[7:4], ACMP0_O                                           |
| ACMP1     | Full configuration                       | ACMP1_CH[7:4], ACMP1_O                                           |
| VCMP      | Full configuration                       | NA                                                               |
| ADC0      | Full configuration                       | ADC0_CH[7:0]                                                     |
| DAC0      | Full configuration                       | DAC0_OUT[1:0]                                                    |
| AES       | Full configuration                       | NA                                                               |
| GPIO      | 56 pins                                  | Available pins are shown in Table 4.3 (p. 57)                    |
| LCD       | Full configuration                       | LCD_SEG[23:0], LCD_COM[3:0], LCD_BCAP_P,<br>LCD_BCAP_N, LCD_BEXT |

#### 3.2.11 EFM32G890

The features of the EFM32G890 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

| Module    | Configuration                            | Pin Connections                                                   |
|-----------|------------------------------------------|-------------------------------------------------------------------|
| Cortex-M3 | Full configuration                       | NA                                                                |
| DBG       | Full configuration                       | DBG_SWCLK, DBG_SWDIO, DBG_SWO                                     |
| MSC       | Full configuration                       | NA                                                                |
| DMA       | Full configuration                       | NA                                                                |
| RMU       | Full configuration                       | NA                                                                |
| EMU       | Full configuration                       | NA                                                                |
| СМИ       | Full configuration                       | CMU_OUT0, CMU_OUT1                                                |
| WDOG      | Full configuration                       | NA                                                                |
| PRS       | Full configuration                       | NA                                                                |
| EBI       | Full configuration                       | EBI_ARDY, EBI_ALE, EBI_WEn, EBI_REn,<br>EBI_CS[3:0], EBI_AD[15:0] |
| I2C0      | Full configuration                       | 12C0_SDA, 12C0_SCL                                                |
| USART0    | Full configuration with IrDA             | US0_TX, US0_RX. US0_CLK, US0_CS                                   |
| USART1    | Full configuration                       | US1_TX, US1_RX, US1_CLK, US1_CS                                   |
| USART2    | Full configuration                       | US2_TX, US2_RX, US2_CLK, US2_CS                                   |
| UART0     | Full configuration                       | U0_TX, U0_RX                                                      |
| LEUART0   | Full configuration                       | LEU0_TX, LEU0_RX                                                  |
| LEUART1   | Full configuration                       | LEU1_TX, LEU1_RX                                                  |
| TIMER0    | Full configuration with DTI              | TIM0_CC[2:0], TIM0_CDTI[2:0]                                      |
| TIMER1    | Full configuration                       | TIM1_CC[2:0]                                                      |
| TIMER2    | Full configuration                       | TIM2_CC[2:0]                                                      |
| RTC       | Full configuration                       | NA                                                                |
| LETIMER0  | Full configuration                       | LET0_O[1:0]                                                       |
| PCNT0     | Full configuration, 8-bit count register | PCNT0_S[1:0]                                                      |
| PCNT1     | Full configuration, 8-bit count register | PCNT1_S[1:0]                                                      |
| PCNT2     | Full configuration, 8-bit count register | PCNT2_S[1:0]                                                      |
| ACMP0     | Full configuration                       | ACMP0_CH[7:0], ACMP0_O                                            |
| ACMP1     | Full configuration                       | ACMP1_CH[7:0], ACMP1_O                                            |
| VCMP      | Full configuration                       | NA                                                                |
| ADC0      | Full configuration                       | ADC0_CH[7:0]                                                      |
| DAC0      | Full configuration                       | DAC0_OUT[1:0]                                                     |
| AES       | Full configuration                       | NA                                                                |
| GPIO      | 90 pins                                  | Available pins are shown in Table 4.3 (p. 57)                     |

#### Table 3.11. EFM32G890 Configuration Summary

# EFM32G Data Sheet System Overview

| _                        |                |                            |
|--------------------------|----------------|----------------------------|
| 0x400e0400               | AES            | 0xffffffe                  |
| 0x400e0000               | AES            | 0xe0100000                 |
| 0x400cc400               | PRS            | 0xe00ffff                  |
| 0x400cc000               | FRS            | CM3 Peripherals            |
| 0x400ca400               | RMU            | 0xe0000000                 |
| 0x400ca000               | NH0            | 0xdfffffff                 |
| 0x400c8400               | СМИ            | 0.Aditititi                |
| 0x400c8000               | 6110           | 0×90000000                 |
| 0x400c6400               | EMU            | 0x8fffffff                 |
| 0x400c6000               |                | EBI Region 3               |
| 0x400c4000<br>0x400c2000 | DMA            | 0×8c000000                 |
| 0x400c2000               |                | 0x8bfffff                  |
| 0x400c0400               | MSC            | EBI Region 2               |
| 0x4008a400               |                | 0×88000000                 |
| 0x4008a000               | LCD            | 0x87fffff                  |
| 0x40088400               |                | EBI Region 1               |
| 0x40088000               | WDOG           | 0×84000000                 |
| 0x40086c00               | DONTO          | 0x83ffffff                 |
| 0x40086800               | PCNT2          | EBI Region 0<br>0x80000000 |
| 0x40086400               | PCNT1<br>PCNT0 |                            |
| 0x40086000               | PCNTU          | 0x7fffffff                 |
| 0x40084800               | LEUART1        | 0×44000000                 |
| 0x40084400               | LEUARTO        | 0x43ffffff                 |
| 0x40084000               | LEGARIO        | Peripherals (bit-band)     |
| 0x40082400               | LETIMERO       | 0×42000000                 |
| 0×40082000               |                | 0x41ffffff                 |
| 0x40080400               | RTC            |                            |
| 0×40080000               |                | 0×41000000                 |
| 0x40010c00               | TIMER2         | 0x40ffffff                 |
| 0×40010800<br>0×40010400 | TIMER1         | Peripherals                |
| 0x40010400               | TIMERO         | 0×40000000                 |
| 0x4000e400               |                | 0x3ffffff                  |
| 0x4000e000               | UART0          |                            |
| 0x4000cc00               |                | 0×22200000                 |
| 0x4000c800               | USART2         | 0x221fffff                 |
| 0x4000c400               | USART1         | SRAM (bit-band)            |
| 0x4000c000               | USART0         | 0×22000000                 |
| 0x4000a400               | 2C0            | / 0x21ffffff               |
| 0x4000a000               | 1200           | 0×20004000                 |
| 0x40008400               | EBI            | CDAM (1C Hp) 0x20003fff    |
| 0x40008000               | LDI            | SRAM (16 KB)               |
| 0x40007000               | GPIO           | (data space) 0x20000000    |
| 0x40006000               | GHO            | 0x1fffffff                 |
| 0x40004400               | DACO           |                            |
| 0x40004000               |                |                            |
| 0x40002400               | ADC0           |                            |
| 0x40002000               |                | / Code                     |
| 0×40001800<br>0×40001400 | ACMP1          |                            |
| 0x40001400               | ACMP0          |                            |
| 0x40001000               |                |                            |
| 0x40000400               | VCMP           | / 0×0000000                |
|                          |                |                            |

Figure 3.3. System Address Space with Peripheral Listing

| Parameter                   | Symbol             | Test Condition                                                                                                   | Min | Тур | Max | Unit |
|-----------------------------|--------------------|------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Signal-to-Noise Ratio (SNR) | SNR <sub>ADC</sub> | 1 MSamples/s, 12 bit, single-<br>ended, internal 1.25 V refer-<br>ence, ADC_CLK = 13 MHz,<br>BIASPROG = 0xF4B    | —   | 59  | —   | dB   |
|                             |                    | 1 MSamples/s, 12 bit, single-<br>ended, internal 2.5 V reference,<br>ADC_CLK = 13 MHz, BIA-<br>SPROG = 0xF4B     | _   | 63  | _   | dB   |
|                             |                    | 1 MSamples/s, 12 bit, single-<br>ended, V <sub>DD</sub> reference,<br>ADC_CLK = 13 MHz, BIA-<br>SPROG = 0xF4B    | _   | 67  | _   | dB   |
|                             |                    | 1 MSamples/s, 12 bit, differen-<br>tial, internal 1.25 V reference,<br>ADC_CLK = 13 MHz, BIA-<br>SPROG = 0xF4B   | _   | 63  |     | dB   |
|                             |                    | 1 MSamples/s, 12 bit, differen-<br>tial, internal 2.5 V reference,<br>ADC_CLK = 13 MHz, BIA-<br>SPROG = 0xF4B    | _   | 66  |     | dB   |
|                             |                    | 1 MSamples/s, 12 bit, differen-<br>tial, 5 V reference, ADC_CLK<br>=13 MHz, BIASPROG = 0xF4B                     | _   | 66  | _   | dB   |
|                             |                    | 1 MSamples/s, 12 bit, differen-<br>tial, V <sub>DD</sub> reference, ADC_CLK=<br>13 MHz, BIASPROG =0xF4B          | 63  | 69  |     | dB   |
|                             |                    | 1 MSamples/s, 12 bit, differen-<br>tial, 2xV <sub>DD</sub> reference,<br>ADC_CLK = 13 MHz, BIA-<br>SPROG = 0xF4B | _   | 70  | _   | dB   |
|                             |                    | 200 kSamples/s, 12 bit, single-<br>ended, internal 1.25 V refer-<br>ence, ADC_CLK = 7 MHz, BIA-<br>SPROG = 0x747 | _   | 62  |     | dB   |
|                             |                    | 200 kSamples/s, 12 bit, single-<br>ended, internal 2.5 V reference,<br>ADC_CLK = 7 MHz, BIA-<br>SPROG = 0x747    | _   | 63  |     | dB   |
|                             |                    | 200 kSamples/s, 12 bit, single-<br>ended, V <sub>DD</sub> reference,<br>ADC_CLK = 7 MHz, BIA-<br>SPROG = 0x747   | _   | 67  |     | dB   |
|                             |                    | 200 kSamples/s, 12 bit, differen-<br>tial, internal 1.25 V reference,<br>ADC_CLK = 7 MHz, BIA-<br>SPROG = 0x747  | _   | 63  |     | dB   |
|                             |                    | 200 kSamples/s, 12 bit, differen-<br>tial, internal 2.5 V reference,<br>ADC_CLK = 7 MHz, BIA-<br>SPROG = 0x747   | _   | 66  |     | dB   |
|                             |                    | 200 kSamples/s, 12 bit, differen-<br>tial, 5 V reference, ADC_CLK =<br>7 MHz, BIASPROG = 0x747                   | _   | 66  |     | dB   |

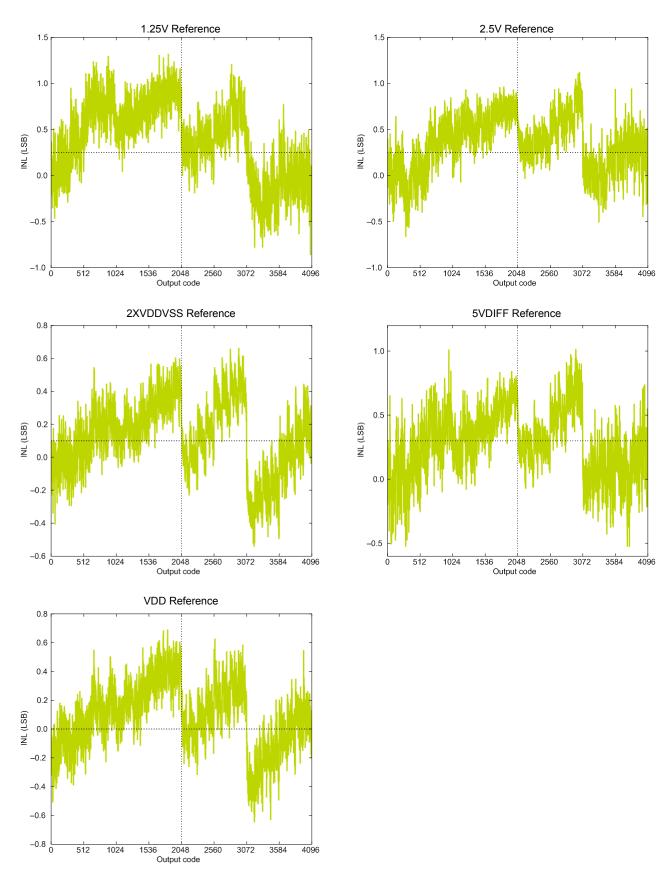



Figure 4.30. ADC Integral Linearity Error vs Code, VDD = 3V, Temp = 25°C

#### Table 4.18. LCD

| Parameter                                            | Symbol             | Test Condition                                                                                                                             | Min | Тур  | Мах | Unit |
|------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|------|
| Frame rate                                           | f <sub>LCDFR</sub> |                                                                                                                                            | 30  | _    | 200 | Hz   |
| Number of segments supported                         | NUM <sub>SEG</sub> |                                                                                                                                            | —   | 4×40 | —   | seg  |
| LCD supply voltage range                             | V <sub>LCD</sub>   | Internal boost circuit enabled                                                                                                             | 2.0 | _    | 3.8 | V    |
|                                                      |                    | Display disconnected, static mode, framerate 32 Hz, all segments on.                                                                       | _   | 250  | _   | nA   |
| Steady state current consumption.                    | I <sub>LCD</sub>   | Display disconnected, quadruplex<br>mode, framerate 32 Hz, all seg-<br>ments on, bias mode to ONE-<br>THIRD in LCD_DISPCTRL regis-<br>ter. |     | 550  | _   | nA   |
| Stoody state Current contribution                    |                    | Internal voltage boost off                                                                                                                 | _   | 0    | _   | μA   |
| Steady state Current contribution of internal boost. | ILCDBOOST          | Internal voltage boost on, boosting from 2.2 V to 3.0 V.                                                                                   | —   | 8.4  |     | μA   |
|                                                      | V <sub>BOOST</sub> | VBLEV of LCD_DISPCTRL regis-<br>ter to LEVEL0                                                                                              | _   | 3.0  | _   | V    |
|                                                      |                    | VBLEV of LCD_DISPCTRL regis-<br>ter to LEVEL1                                                                                              | _   | 3.08 | _   | V    |
|                                                      |                    | VBLEV of LCD_DISPCTRL regis-<br>ter to LEVEL2                                                                                              | _   | 3.17 | _   | V    |
|                                                      |                    | VBLEV of LCD_DISPCTRL regis-<br>ter to LEVEL3                                                                                              | _   | 3.26 | _   | V    |
| Boost Voltage                                        |                    | VBLEV of LCD_DISPCTRL regis-<br>ter to LEVEL4                                                                                              |     | 3.34 |     | V    |
|                                                      |                    | VBLEV of LCD_DISPCTRL regis-<br>ter to LEVEL5                                                                                              |     | 3.43 |     | V    |
|                                                      |                    | VBLEV of LCD_DISPCTRL regis-<br>ter to LEVEL6                                                                                              |     | 3.52 | _   | V    |
|                                                      |                    | VBLEV of LCD_DISPCTRL regis-<br>ter to LEVEL7                                                                                              | —   | 3.6  | —   | V    |

The total LCD current is given by the following equation.  $I_{LCDBOOST}$  is zero if internal boost is off.

 $I_{LCDTOTAL} = I_{LCD} + I_{LCDBOOST}$ 

| Alternate     |      |      |     |      | LOCATION                                                                                                      |
|---------------|------|------|-----|------|---------------------------------------------------------------------------------------------------------------|
| Functionality | 0    | 1    | 2   | 3    | Description                                                                                                   |
| LETIM0_OUT1   | PD7  |      | PF1 |      | Low Energy Timer LETIM0, output channel 1.                                                                    |
| LEU0_RX       | PD5  | PB14 |     |      | LEUART0 Receive input.                                                                                        |
| LEU0_TX       | PD4  | PB13 |     |      | LEUART0 Transmit output. Also used as receive input in half duplex communication.                             |
| LFXTAL_N      | PB8  |      |     |      | Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. |
| LFXTAL_P      | PB7  |      |     |      | Low Frequency Crystal (typically 32.768 kHz) positive pin.                                                    |
| PCNT0_S0IN    | PC13 |      | PC0 |      | Pulse Counter PCNT0 input number 0.                                                                           |
| PCNT0_S1IN    | PC14 |      | PC1 |      | Pulse Counter PCNT0 input number 1.                                                                           |
| TIM0_CC0      | PA0  | PA0  |     |      | Timer 0 Capture Compare input / output channel 0.                                                             |
| TIM0_CC1      | PA1  | PA1  |     |      | Timer 0 Capture Compare input / output channel 1.                                                             |
| TIM0_CC2      | PA2  | PA2  |     |      | Timer 0 Capture Compare input / output channel 2.                                                             |
| TIM0_CDTI0    |      | PC13 |     | PC13 | Timer 0 Complimentary Deat Time Insertion channel 0.                                                          |
| TIM0_CDTI1    |      | PC14 |     | PC14 | Timer 0 Complimentary Deat Time Insertion channel 1.                                                          |
| TIM0_CDTI2    |      | PC15 |     | PC15 | Timer 0 Complimentary Deat Time Insertion channel 2.                                                          |
| TIM1_CC0      | PC13 | PE10 |     |      | Timer 1 Capture Compare input / output channel 0.                                                             |
| TIM1_CC1      | PC14 | PE11 |     |      | Timer 1 Capture Compare input / output channel 1.                                                             |
| TIM1_CC2      | PC15 | PE12 |     |      | Timer 1 Capture Compare input / output channel 2.                                                             |
| US0_CLK       | PE12 |      |     |      | USART0 clock input / output.                                                                                  |
| US0_CS        | PE13 |      |     |      | USART0 chip select input / output.                                                                            |
|               |      |      |     |      | USART0 Asynchronous Receive.                                                                                  |
| US0_RX        | PE11 |      |     |      | USART0 Synchronous mode Master Input / Slave Output (MI-SO).                                                  |
|               | 0540 |      |     |      | USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.                         |
| US0_TX        | PE10 |      |     |      | USART0 Synchronous mode Master Output / Slave Input (MOSI).                                                   |
| US1_CLK       | PB7  |      |     |      | USART1 clock input / output.                                                                                  |
| US1_CS        | PB8  |      |     |      | USART1 chip select input / output.                                                                            |
|               |      |      |     |      | USART1 Asynchronous Receive.                                                                                  |
| US1_RX        | PC1  |      |     |      | USART1 Synchronous mode Master Input / Slave Output (MI-SO).                                                  |
|               | DC0  |      |     |      | USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.                         |
| US1_TX        | PC0  |      |     |      | USART1 Synchronous mode Master Output / Slave Input (MOSI).                                                   |

| Alternate     |      |      |   |   | LOCATION                                                                                        |
|---------------|------|------|---|---|-------------------------------------------------------------------------------------------------|
| Functionality | 0    | 1    | 2 | 3 | Description                                                                                     |
| DAC0_OUT0     | PB11 |      |   |   | Digital to Analog Converter DAC0 output channel number 0.                                       |
| DAC0_OUT1     | PB12 |      |   |   | Digital to Analog Converter DAC0 output channel number 1.                                       |
|               |      |      |   |   | Debug-interface Serial Wire clock input.                                                        |
| DBG_SWCLK     | PF0  | PF0  |   |   | Note that this function is enabled to pin out of reset, and has a built-in pull down.           |
|               |      |      |   |   | Debug-interface Serial Wire data input / output.                                                |
| DBG_SWDIO     | PF1  | PF1  |   |   | Note that this function is enabled to pin out of reset, and has a built-in pull up.             |
|               |      |      |   |   | Debug-interface Serial Wire viewer Output.                                                      |
| DBG_SWO       | PF2  | PC15 |   |   | Note that this function is not enabled after reset, and must be enabled by software to be used. |
| EBI_AD00      | PE8  |      |   |   | External Bus Interface (EBI) address and data input / output pin 00.                            |
| EBI_AD01      | PE9  |      |   |   | External Bus Interface (EBI) address and data input / output pin 01.                            |
| EBI_AD02      | PE10 |      |   |   | External Bus Interface (EBI) address and data input / output pin 02.                            |
| EBI_AD03      | PE11 |      |   |   | External Bus Interface (EBI) address and data input / output pin 03.                            |
| EBI_AD04      | PE12 |      |   |   | External Bus Interface (EBI) address and data input / output pin 04.                            |
| EBI_AD05      | PE13 |      |   |   | External Bus Interface (EBI) address and data input / output pin 05.                            |
| EBI_AD06      | PE14 |      |   |   | External Bus Interface (EBI) address and data input / output pin 06.                            |
| EBI_AD07      | PE15 |      |   |   | External Bus Interface (EBI) address and data input / output pin 07.                            |
| EBI_AD08      | PA15 |      |   |   | External Bus Interface (EBI) address and data input / output pin 08.                            |
| EBI_AD09      | PA0  |      |   |   | External Bus Interface (EBI) address and data input / output pin 09.                            |
| EBI_AD10      | PA1  |      |   |   | External Bus Interface (EBI) address and data input / output pin 10.                            |
| EBI_AD11      | PA2  |      |   |   | External Bus Interface (EBI) address and data input / output pin 11.                            |
| EBI_AD12      | PA3  |      |   |   | External Bus Interface (EBI) address and data input / output pin 12.                            |
| EBI_AD13      | PA4  |      |   |   | External Bus Interface (EBI) address and data input / output pin 13.                            |
| EBI_AD14      | PA5  |      |   |   | External Bus Interface (EBI) address and data input / output pin 14.                            |
| EBI_AD15      | PA6  |      |   |   | External Bus Interface (EBI) address and data input / output pin 15.                            |
| EBI_ALE       | PF3  |      |   |   | External Bus Interface (EBI) Address Latch Enable output.                                       |

| Alternate     |      |      |   |   | LOCATION                                                                                           |  |  |
|---------------|------|------|---|---|----------------------------------------------------------------------------------------------------|--|--|
| Functionality | 0    | 1    | 2 | 3 | Description                                                                                        |  |  |
| DAC0_OUT0     | PB11 |      |   |   | Digital to Analog Converter DAC0 output channel number 0.                                          |  |  |
| DAC0_OUT1     | PB12 |      |   |   | Digital to Analog Converter DAC0 output channel number 1.                                          |  |  |
|               |      |      |   |   | Debug-interface Serial Wire clock input.                                                           |  |  |
| DBG_SWCLK     | PF0  | PF0  |   |   | Note that this function is enabled to pin out of reset, and has a built-in pull down.              |  |  |
|               |      |      |   |   | Debug-interface Serial Wire data input / output.                                                   |  |  |
| DBG_SWDIO     | PF1  | PF1  |   |   | Note that this function is enabled to pin out of reset, and has a built-in pull up.                |  |  |
|               |      |      |   |   | Debug-interface Serial Wire viewer Output.                                                         |  |  |
| DBG_SWO       | PF2  | PC15 |   |   | Note that this function is not enabled after reset, and must be<br>enabled by software to be used. |  |  |
| EBI_AD00      | PE8  |      |   |   | External Bus Interface (EBI) address and data input / output pin 00.                               |  |  |
| EBI_AD01      | PE9  |      |   |   | External Bus Interface (EBI) address and data input / output pin 01.                               |  |  |
| EBI_AD02      | PE10 |      |   |   | External Bus Interface (EBI) address and data input / output pin 02.                               |  |  |
| EBI_AD03      | PE11 |      |   |   | External Bus Interface (EBI) address and data input / output pin 03.                               |  |  |
| EBI_AD04      | PE12 |      |   |   | External Bus Interface (EBI) address and data input / output pin 04.                               |  |  |
| EBI_AD05      | PE13 |      |   |   | External Bus Interface (EBI) address and data input / output pin 05.                               |  |  |
| EBI_AD06      | PE14 |      |   |   | External Bus Interface (EBI) address and data input / output pin 06.                               |  |  |
| EBI_AD07      | PE15 |      |   |   | External Bus Interface (EBI) address and data input / output pin 07.                               |  |  |
| EBI_AD08      | PA15 |      |   |   | External Bus Interface (EBI) address and data input / output pin 08.                               |  |  |
| EBI_AD09      | PA0  |      |   |   | External Bus Interface (EBI) address and data input / output pin 09.                               |  |  |
| EBI_AD10      | PA1  |      |   |   | External Bus Interface (EBI) address and data input / output pin 10.                               |  |  |
| EBI_AD11      | PA2  |      |   |   | External Bus Interface (EBI) address and data input / output pin 11.                               |  |  |
| EBI_AD12      | PA3  |      |   |   | External Bus Interface (EBI) address and data input / output pin 12.                               |  |  |
| EBI_AD13      | PA4  |      |   |   | External Bus Interface (EBI) address and data input / output pin 13.                               |  |  |
| EBI_AD14      | PA5  |      |   |   | External Bus Interface (EBI) address and data input / output pin 14.                               |  |  |
| EBI_AD15      | PA6  |      |   |   | External Bus Interface (EBI) address and data input / output pin 15.                               |  |  |
| EBI_ALE       | PF3  |      |   |   | External Bus Interface (EBI) Address Latch Enable output.                                          |  |  |

| Alternate     |      |      |      |     | LOCATION                                                                                                      |
|---------------|------|------|------|-----|---------------------------------------------------------------------------------------------------------------|
| Functionality | 0    | 1    | 2    | 3   | Description                                                                                                   |
| LCD_SEG9      | PE13 |      |      |     | LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.                                        |
| LCD_SEG10     | PE14 |      |      |     | LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2.                                       |
| LCD_SEG11     | PE15 |      |      |     | LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2.                                       |
| LCD_SEG12     | PA15 |      |      |     | LCD segment line 12. Segments 12, 13, 14 and 15 are controlled by SEGEN3.                                     |
| LCD_SEG13     | PA0  |      |      |     | LCD segment line 13. Segments 12, 13, 14 and 15 are con-<br>trolled by SEGEN3.                                |
| LCD_SEG14     | PA1  |      |      |     | LCD segment line 14. Segments 12, 13, 14 and 15 are con-<br>trolled by SEGEN3.                                |
| LCD_SEG15     | PA2  |      |      |     | LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3.                                     |
| LCD_SEG16     | PA3  |      |      |     | LCD segment line 16. Segments 16, 17, 18 and 19 are con-<br>trolled by SEGEN4.                                |
| LCD_SEG17     | PA4  |      |      |     | LCD segment line 17. Segments 16, 17, 18 and 19 are con-<br>trolled by SEGEN4.                                |
| LCD_SEG18     | PA5  |      |      |     | LCD segment line 18. Segments 16, 17, 18 and 19 are con-<br>trolled by SEGEN4.                                |
| LCD_SEG19     | PA6  |      |      |     | LCD segment line 19. Segments 16, 17, 18 and 19 are con-<br>trolled by SEGEN4.                                |
| LCD_SEG20     | PB3  |      |      |     | LCD segment line 20. Segments 20, 21, 22 and 23 are con-<br>trolled by SEGEN5.                                |
| LCD_SEG21     | PB4  |      |      |     | LCD segment line 21. Segments 20, 21, 22 and 23 are con-<br>trolled by SEGEN5.                                |
| LCD_SEG22     | PB5  |      |      |     | LCD segment line 22. Segments 20, 21, 22 and 23 are con-<br>trolled by SEGEN5.                                |
| LCD_SEG23     | PB6  |      |      |     | LCD segment line 23. Segments 20, 21, 22 and 23 are con-<br>trolled by SEGEN5.                                |
| LETIM0_OUT0   | PD6  | PB11 | PF0  | PC4 | Low Energy Timer LETIM0, output channel 0.                                                                    |
| LETIM0_OUT1   | PD7  | PB12 | PF1  | PC5 | Low Energy Timer LETIM0, output channel 1.                                                                    |
| LEU0_RX       | PD5  | PB14 | PE15 |     | LEUART0 Receive input.                                                                                        |
| LEU0_TX       | PD4  | PB13 | PE14 |     | LEUART0 Transmit output. Also used as receive input in half duplex communication.                             |
| LEU1_RX       | PC7  | PA6  |      |     | LEUART1 Receive input.                                                                                        |
| LEU1_TX       | PC6  | PA5  |      |     | LEUART1 Transmit output. Also used as receive input in half duplex communication.                             |
| LFXTAL_N      | PB8  |      |      |     | Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. |
| LFXTAL_P      | PB7  |      |      |     | Low Frequency Crystal (typically 32.768 kHz) positive pin.                                                    |
| PCNT0_S0IN    | PC13 |      |      |     | Pulse Counter PCNT0 input number 0.                                                                           |
| PCNT0_S1IN    | PC14 |      |      |     | Pulse Counter PCNT0 input number 1.                                                                           |

| Alternate     | LOCATION |      |     |   |                                                                                                                                                                     |  |
|---------------|----------|------|-----|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Functionality | 0        | 1    | 2   | 3 | Description                                                                                                                                                         |  |
|               |          |      |     |   | Debug-interface Serial Wire viewer Output.                                                                                                                          |  |
| DBG_SWO       | PF2      | PC15 |     |   | Note that this function is not enabled after reset, and must be<br>enabled by software to be used.                                                                  |  |
| HFXTAL_N      | PB14     |      |     |   | High Frequency Crystal negative pin. Also used as external optional clock input pin.                                                                                |  |
| HFXTAL_P      | PB13     |      |     |   | High Frequency Crystal positive pin.                                                                                                                                |  |
| I2C0_SCL      | PA1      | PD7  | PC7 |   | I2C0 Serial Clock Line input / output.                                                                                                                              |  |
| I2C0_SDA      | PA0      | PD6  | PC6 |   | I2C0 Serial Data input / output.                                                                                                                                    |  |
| LCD_BCAP_N    | PA13     |      |     |   | LCD voltage booster (optional), boost capacitor, negative pin.<br>If using the LCD voltage booster, connect a 22 nF capacitor<br>between LCD_BCAP_N and LCD_BCAP_P. |  |
| LCD_BCAP_P    | PA12     |      |     |   | LCD voltage booster (optional), boost capacitor, positive pin.<br>If using the LCD voltage booster, connect a 22 nF capacitor<br>between LCD_BCAP_N and LCD_BCAP_P. |  |
|               |          |      |     |   | LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS.                                  |  |
| LCD_BEXT      | PA14     |      |     |   | An external LCD voltage may also be applied to this pin if the booster is not enabled.                                                                              |  |
|               |          |      |     |   | If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.                                                             |  |
| LCD_COM0      | PE4      |      |     |   | LCD driver common line number 0.                                                                                                                                    |  |
| LCD_COM1      | PE5      |      |     |   | LCD driver common line number 1.                                                                                                                                    |  |
| LCD_COM2      | PE6      |      |     |   | LCD driver common line number 2.                                                                                                                                    |  |
| LCD_COM3      | PE7      |      |     |   | LCD driver common line number 3.                                                                                                                                    |  |
| LCD_SEG0      | PF2      |      |     |   | LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0.                                                                                                |  |
| LCD_SEG1      | PF3      |      |     |   | LCD segment line 1. Segments 0, 1, 2 and 3 are controlled by SEGEN0.                                                                                                |  |
| LCD_SEG2      | PF4      |      |     |   | LCD segment line 2. Segments 0, 1, 2 and 3 are controlled by SEGEN0.                                                                                                |  |
| LCD_SEG3      | PF5      |      |     |   | LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0.                                                                                                |  |
| LCD_SEG4      | PE8      |      |     |   | LCD segment line 4. Segments 4, 5, 6 and 7 are controlled by SEGEN1.                                                                                                |  |
| LCD_SEG5      | PE9      |      |     |   | LCD segment line 5. Segments 4, 5, 6 and 7 are controlled by SEGEN1.                                                                                                |  |
| LCD_SEG6      | PE10     |      |     |   | LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1.                                                                                                |  |
| LCD_SEG7      | PE11     |      |     |   | LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.                                                                                                |  |
| LCD_SEG8      | PE12     |      |     |   | LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.                                                                                              |  |

|       | l2 Pin# and<br>Name |                            | Ρ             | in Alternate Functionality | ality / Description |                          |  |  |
|-------|---------------------|----------------------------|---------------|----------------------------|---------------------|--------------------------|--|--|
| Pin # | Pin Name            | Analog                     | EBI           | Timers                     | Communication       | Other                    |  |  |
| C3    | PE10                | LCD_SEG<br>6               | EBI_AD02 #0   | TIM1_CC0 #1                | US0_TX #0           | BOOT_TX                  |  |  |
| C4    | PD13                |                            |               |                            |                     |                          |  |  |
| C5    | PD12                | LCD_SEG<br>31              | EBI_CS3 #0    |                            |                     |                          |  |  |
| C6    | PF9                 | LCD_SEG<br>27              |               |                            |                     |                          |  |  |
| C7    | VSS                 | Ground.                    |               |                            |                     | ,                        |  |  |
| C8    | PF2                 | LCD_SEG<br>0               | EBI_ARDY #0   |                            |                     | ACMP1_O #0<br>DBG_SWO #0 |  |  |
| C9    | PE6                 | LCD_COM<br>2               |               |                            | US0_RX #1           |                          |  |  |
| C10   | PC10                | ACMP1_C<br>H2              |               | TIM2_CC2 #2                | US0_RX #2           |                          |  |  |
| C11   | PC11                | ACMP1_C<br>H3              |               |                            | US0_TX #2           |                          |  |  |
| D1    | PA3                 | LCD_SEG<br>16              | EBI_AD12 #0   | TIM0_CDTI0 #0              | U0_TX #2            |                          |  |  |
| D2    | PA2                 | LCD_SEG<br>15              | EBI_AD11 #0   | TIM0_CC2 #0/1              |                     | CMU_CLK0 #0              |  |  |
| D3    | PB15                |                            |               |                            |                     |                          |  |  |
| D4    | VSS                 | Ground.                    |               |                            |                     | ,                        |  |  |
| D5    | IOVDD_6             | Digital IO po              | wer supply 6. |                            |                     |                          |  |  |
| D6    | PD9                 | LCD_SEG<br>28 EBI_CS0 #0   |               |                            |                     |                          |  |  |
| D7    | IOVDD_5             | Digital IO power supply 5. |               |                            |                     |                          |  |  |
| D8    | PF1                 |                            |               | LETIM0_OUT1 #2             |                     | DBG_SWDIO #0/1           |  |  |
| D9    | PE7                 | LCD_COM<br>3               |               |                            | US0_TX #1           |                          |  |  |
| D10   | PC8                 | ACMP1_C<br>H0              |               | TIM2_CC0 #2                | US0_CS #2           |                          |  |  |
| D11   | PC9                 | ACMP1_C<br>H1              |               | TIM2_CC1 #2                | US0_CLK #2          |                          |  |  |
| E1    | PA6                 | LCD_SEG<br>19              | EBI_AD15 #0   |                            | LEU1_RX #1          |                          |  |  |
| E2    | PA5                 | LCD_SEG<br>18              | EBI_AD14 #0   | TIM0_CDTI2 #0              | LEU1_TX #1          |                          |  |  |
| E3    | PA4                 | LCD_SEG<br>17              | EBI_AD13 #0   | TIM0_CDTI1 #0              | U0_RX #2            |                          |  |  |
| E4    | PB0                 | LCD_SEG<br>32              |               | TIM1_CC0 #2                |                     |                          |  |  |
| E8    | PF0                 |                            |               | LETIM0_OUT0 #2             |                     | DBG_SWCLK #0/1           |  |  |

| Alternate     |      |      |      |      | LOCATION                                                                                                                                                   |
|---------------|------|------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Functionality | 0    | 1    | 2    | 3    | Description                                                                                                                                                |
| TIM0_CDTI1    | PA4  | PC14 | PF4  | PC14 | Timer 0 Complimentary Deat Time Insertion channel 1.                                                                                                       |
| TIM0_CDTI2    | PA5  | PC15 | PF5  | PC15 | Timer 0 Complimentary Deat Time Insertion channel 2.                                                                                                       |
| TIM1_CC0      | PC13 | PE10 | PB0  |      | Timer 1 Capture Compare input / output channel 0.                                                                                                          |
| TIM1_CC1      | PC14 | PE11 | PB1  |      | Timer 1 Capture Compare input / output channel 1.                                                                                                          |
| TIM1_CC2      | PC15 | PE12 | PB2  |      | Timer 1 Capture Compare input / output channel 2.                                                                                                          |
| TIM2_CC0      | PA8  | PA12 | PC8  |      | Timer 2 Capture Compare input / output channel 0.                                                                                                          |
| TIM2_CC1      | PA9  | PA13 | PC9  |      | Timer 2 Capture Compare input / output channel 1.                                                                                                          |
| TIM2_CC2      | PA10 | PA14 | PC10 |      | Timer 2 Capture Compare input / output channel 2.                                                                                                          |
| U0_RX         | PF7  | PE1  | PA4  | PC15 | UART0 Receive input.                                                                                                                                       |
| U0_TX         | PF6  | PE0  | PA3  | PC14 | UART0 Transmit output. Also used as receive input in half duplex communication.                                                                            |
| US0_CLK       | PE12 | PE5  | PC9  |      | USART0 clock input / output.                                                                                                                               |
| US0_CS        | PE13 | PE4  | PC8  |      | USART0 chip select input / output.                                                                                                                         |
|               |      | PE6  | PC10 |      | USART0 Asynchronous Receive.                                                                                                                               |
| US0_RX        | PE11 |      |      |      | USART0 Synchronous mode Master Input / Slave Output (MI-SO).                                                                                               |
| US0_TX        | PE10 | PE7  | PC11 |      | USART0 Asynchronous Transmit.Also used as receive input<br>in half duplex communication.<br>USART0 Synchronous mode Master Output / Slave Input<br>(MOSI). |
| US1_CLK       | PB7  | PD2  |      |      | USART1 clock input / output.                                                                                                                               |
| US1_CS        | PB8  | PD3  |      |      | USART1 chip select input / output.                                                                                                                         |
| US1_RX        | PC1  | PD1  |      |      | USART1 Asynchronous Receive.<br>USART1 Synchronous mode Master Input / Slave Output (MI-<br>SO).                                                           |
| US1_TX        | PC0  | PD0  |      |      | USART1 Asynchronous Transmit.Also used as receive input<br>in half duplex communication.<br>USART1 Synchronous mode Master Output / Slave Input<br>(MOSI). |
| US2_CLK       | PC4  | PB5  |      |      | USART2 clock input / output.                                                                                                                               |
| US2_CS        | PC5  | PB6  |      |      | USART2 chip select input / output.                                                                                                                         |
| US2_RX        | PC3  | PB4  |      |      | USART2 Asynchronous Receive.<br>USART2 Synchronous mode Master Input / Slave Output (MI-<br>SO).                                                           |
| US2_TX        | PC2  | PB3  |      |      | USART2 Asynchronous Transmit.Also used as receive input<br>in half duplex communication.<br>USART2 Synchronous mode Master Output / Slave Input<br>(MOSI). |

#### 8.2 TQFP64 PCB Layout

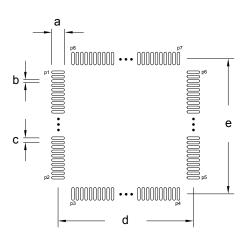



Figure 8.2. TQFP64 PCB Land Pattern



| Symbol | Dim. (mm) | Symbol | Pin Number | Symbol | Pin Number |
|--------|-----------|--------|------------|--------|------------|
| а      | 1.60      | P1     | 1          | P6     | 48         |
| b      | 0.30      | P2     | 16         | P7     | 49         |
| С      | 0.50      | P3     | 17         | P8     | 64         |
| d      | 11.50     | P4     | 32         |        |            |
| е      | 11.50     | P5     | 33         |        |            |

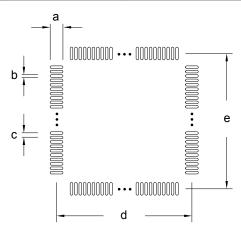



Figure 8.3. TQFP64 PCB Solder Mask

#### Table 8.3. TQFP64 PCB Solder Mask Dimensions (Dimensions in mm)

| Symbol | Dim. (mm) |
|--------|-----------|
| а      | 1.72      |
| b      | 0.42      |
| с      | 0.50      |
| d      | 11.50     |
| e      | 11.50     |

### 12. Chip Revision, Solder Information, Errata

#### 12.1 Chip Revision

The revision of a chip can be determined from the "Revision" field in the package marking.

#### 12.2 Soldering Information

The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.

#### 12.3 Errata

Please see the errata document for description and resolution of device errata. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit

#### 13.15 Revision 0.90

This revision applies the following devices:

• EFM32G222

Initial preliminary revision, April 14th, 2011

This revision applies the following devices:

- EFM32G232
- EFM32G842

Initial preliminary revision, June 30th, 2011

#### 13.16 Revision 0.85

February 19th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Renamed DBG\_SWV pin to DBG\_SWO.

#### 13.17 Revision 0.84

February 11th, 2010

This revision applies the following devices:

- EFM32G230
- EFM32G840

Corrected pinout tables.

#### 13.18 Revision 0.83

January 25th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Updated errata section.

Specified flash word width in Flash Electrical Characteristics.

Added Capacitive Sense Internal Resistor values in ACMP Electrical Characteristics.





#### **Simplicity Studio**

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!







Support and Community community.silabs.com

#### Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

#### **Trademark Information**

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.



Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

## http://www.silabs.com