

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	90
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LFBGA
Supplier Device Package	112-BGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g290f64g-e-bga112r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM.

3.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32G.

3.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32G microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

3.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32G. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

3.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

3.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

3.1.10 External Bus Interface (EBI)

The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH, ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M3. This enables seamless access from software without manually manipulating the IO settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface the external devices. The timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices.

3.1.11 Inter-Integrated Circuit Interface (I2C)

The I²C module provides an interface between the MCU and a serial I²C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I²C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.

3.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 Smart-Cards, and IrDA devices.

3.1.13 Pre-Programmed USB/UART Bootloader

The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note.

3.2.3 EFM32G222

The features of the EFM32G222 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	12C0_SDA, 12C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
ACMP0	Full configuration	ACMP0_CH[4:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:4]
DAC0	Full configuration	DAC0_OUT[1]
AES	Full configuration	NA
GPIO	37 pins	Available pins are shown in Table 4.3 (p. 57)

Table 3.3. EFM32G222 Configuration Summary

EFM32G Data Sheet System Overview

0×400-0400			0xffffffe
0x400e0400	AES		
0x400cc400			0xe0100000
0x400cc400	PRS	í 🔪 🗖 🗖	0xe00fffff
0x400cc000		``	CM3 Peripherals
0x400ca400	RMU		0×e0000000
0x400ca000			0xdffffff
0x400c8400	CMU		
0x400c6000			0×90000000
0x400c6400	EMU		0x8fffffff
0x400c6000			EBI Region 3
0x400c4000	DMA		0×8c00000
0x400c2000			0x8bffffff
0x400c0400	MSC		EBI Region 2
0x40000000			0×88000000
0x4008a400	LCD		0x87ffffff
0x40088000			EBI Region 1
0×40088000	WDOG		0×84000000
0x40086000			0x83ffffff
0x40086800	PCNT2		EBI Region 0
0×40086400	PCNT1		0×8000000
0x40080400	PCNT0		0x7ffffff
0x40080000			
0x40084800	LEUART1		0×44000000
0×40084000	LEUART0		0x43ffffff
0×40082400			Peripherals (bit-band)
0x40082000	LETIMERO		0×42000000
0x40080400			0x41fffff
0x40080000	RTC		0.41000000
0x40010c00			0×4100000
0x40010800	TIMER2		0x40fffff
0x40010400			Peripherals
0x40010000	TIMERU		0240000000
0x4000e400			0x3tttttt
0x4000e000	UARTU		0×22200000
0x4000cc00			022166666
0x4000c800			UX221TTTTT
0x4000c400			
0x4000c000	USARIU		0x2166666
0x4000a400	1200		0X2111111
0x4000a000	1200		0×20004000
0x40008400	EBI		0x20001000
0x40008000	EBI		SRAM (16 kB)
0x40007000	GPIO		(data space) 0x20000000
0x40006000	6110	r // F	0v1ffffff
0x40004400	DACO		0.1111111
0x40004000	Drico		
0x40002400	ADC0		
0x40002000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Code
0x40001800	ACMP1		
Ux40001400	ACMPO	1	
Ux40001000			
Ux40000400	VCMP	7	0×00000000
Ux40000000		· L	

Figure 3.3. System Address Space with Peripheral Listing

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
		28 MHz frequency band	27.16	28	28.84	MHz
		21 MHz frequency band	20.37	21	21.63	MHz
Oscillation frequency, V _{DD} = 3.0	£	14 MHz frequency band	13.58	14	14.42	MHz
V, T _{AMB} =25 °C	HFRCO	11 MHz frequency band	10.67	11	11.33	MHz
		7 MHz frequency band	6.402	6.6 ¹	6.798	MHz
		1 MHz frequency band	1.164	1.2 ²	1.236	MHz
Sottling time	turnee w	After start-up, f _{HFRCO} = 14 MHz		0.6	—	Cycles
	HFRCO_settling	After band switch	_	25	—	Cycles
		f _{HFRCO} = 28 MHz	_	158	190	μA
		f _{HFRCO} = 21 MHz	_	125	155	μA
Current consumption (Produc-	lurnee	f _{HFRCO} = 14 MHz	_	99	120	μA
tion test condition = 14 MHz)	HFRCO	f _{HFRCO} = 11 MHz	_	88	110	μA
		f _{HFRCO} = 6.6 MHz		72	90	μA
		f _{HFRCO} = 1.2 MHz		24	32	μA
Duty cycle	DC _{HFRCO}	f _{HFRCO} = 14 MHz	48.5	50	51	%
Frequency step for LSB change in TUNING value	TUNESTEP _{HFRCO}		_	0.3 ³	—	%

Table 4.11. HFRCO

Note:

1. For devices with prod. rev. < 19, Typ = 7 MHz and Min/Max values not applicable.

2. For devices with prod. rev. < 19, Typ = 1 MHz and Min/Max values not applicable.

3. The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input offset current		VSS < VIN < VDD	-40	—	40	nA
ADC Clock Frequency	fadcclk	BIASPROG=0x747	_	—	7	MHz
		BIASPROG=0xF4B	_	—	13	MHz
		6 bit	7			ADCCLK Cycles
Conversion time	tadcconv	8 bit	11			ADCCLK Cycles
		12 bit	13			ADCCLK Cycles
Acquisition time	t _{ADCACQ}	Programmable	1		256	ADCCLK Cycles
Required acquisition time for VDD/3 reference	t _{ADCACQVDD3}		2			μs
Startup time of reference gener-	tADCSTART	NORMAL mode	_	5	_	μs
ator and ADC core		KEEPADCWARM mode	_	1	_	μs

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Signal-to-Noise Ratio (SNR)	SNR _{ADC}	1 MSamples/s, 12 bit, single- ended, internal 1.25 V refer- ence, ADC_CLK = 13 MHz, BIASPROG = 0xF4B		59		dB
		1 MSamples/s, 12 bit, single- ended, internal 2.5 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	63	_	dB
		1 MSamples/s, 12 bit, single- ended, V _{DD} reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B		67		dB
		1 MSamples/s, 12 bit, differen- tial, internal 1.25 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B		63		dB
		1 MSamples/s, 12 bit, differen- tial, internal 2.5 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	66	_	dB
		1 MSamples/s, 12 bit, differen- tial, 5 V reference, ADC_CLK =13 MHz, BIASPROG = 0xF4B	_	66	_	dB
		1 MSamples/s, 12 bit, differen- tial, V _{DD} reference, ADC_CLK= 13 MHz, BIASPROG =0xF4B	63	69	—	dB
		1 MSamples/s, 12 bit, differen- tial, 2xV _{DD} reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	70	_	dB
		200 kSamples/s, 12 bit, single- ended, internal 1.25 V refer- ence, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	62	_	dB
		200 kSamples/s, 12 bit, single- ended, internal 2.5 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747		63		dB
		200 kSamples/s, 12 bit, single- ended, V _{DD} reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747		67		dB
		200 kSamples/s, 12 bit, differen- tial, internal 1.25 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	63	_	dB
		200 kSamples/s, 12 bit, differen- tial, internal 2.5 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	66	_	dB
		200 kSamples/s, 12 bit, differen- tial, 5 V reference, ADC_CLK = 7 MHz, BIASPROG = 0x747	—	66	—	dB

Figure 4.31. ADC Differential Linearity Error vs Code, VDD = 3V, Temp = 25°C

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
		500 kSamples/s, 12 bit, single- ended, internal 1.25 V reference	—	57	—	dB
		500 kSamples/s, 12 bit, single- ended, internal 2.5 V reference	_	54	_	dB
Signal-to-Noise plus Distortion Ratio (SNDR)	SNDR _{DAC}	500 kSamples/s, 12 bit, differen- tial, internal 1.25 V reference		56	_	dB
		500 kSamples/s, 12 bit, differen- tial, internal 2.5 V reference	_	53	_	dB
		500 kSamples/s, 12 bit, differen- tial, V _{DD} reference	_	55	_	dB
		500 kSamples/s, 12 bit, single- ended, internal 1.25V reference	—	62	—	dBc
		500 kSamples/s, 12 bit, single- ended, internal 2.5 V reference	_	56	_	dBc
Spurious-Free Dynamic Range (SFDR)	SFDR _{DAC}	500 kSamples/s, 12 bit, differen- tial, internal 1.25 V reference	_	61	_	dBc
		500 kSamples/s, 12 bit, differen- tial, internal 2.5 V reference	_	55	_	dBc
		500 kSamples/s, 12 bit, differen- tial, V _{DD} reference	_	60	—	dBc
Offectiveltage		After calibration, single-ended		2	_	mV
Onset voltage	▲DACOFFSET	After calibration, differential		2		mV
Sample-hold mode voltage drift	VDACSHMDRIFT		_	540		µV/ms
Differential non-linearity	DNL _{DAC}		—	±1	—	LSB
Integral non-linearity	INL _{DAC}		_	±5	_	LSB
No missing codes	MC _{DAC}		_	12	_	bits
Load current	ILOAD_DC			_	11	mA
VREF voltage	V _{REF}	1.25 V reference	1.2	1.25	1.3	V
		2.5 V reference	2.4	2.5	2.6	V
VREF voltage drift	V _{REF_VDRIFT}	1.25 V reference	-12.4	2.9	18.2	mV/V
		2.5 V reference, VDD > 2.5 V	-24.6	5.7	35.2	mV/V
VREF temperature drift	V _{REF_TDRIFT}	1.25 V reference	-132	272	677	μV/°C
		2.5 V reference	-231	545	1271	μV/°C
VREF current consumption	I _{VREF}	1.25 V reference	_	67	114	μA
		2.5 V reference		55	82	μA
ADC and DAC VREF matching	V _{REF_MATCH}	1.25 V reference		99.85	_	%
		2.5 V reference		100.01	_	%

Note:

1. Measured with a static input code and no loading on the output. Includes required contribution from the voltage reference.

Alternate		LOCATION						
Functionality	0	1	2	3	Description			
US0_TX	PE10		PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).			
US1_CLK	PB7				USART1 clock input / output.			
US1_CS	PB8				USART1 chip select input / output.			
US1_RX	PC1				USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MI- SO).			
US1_TX	PC0				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).			

5.2.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G222 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.6. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	_	_	_	_	_	PA10	PA9	PA8	_	_	_	_	_	PA2	PA1	PA0
Port B	_	PB14	PB13	_	PB11	_	_	PB8	PB7	_	_	_	_	_	_	_
Port C	PC15	PC14	PC13	_	PC11	PC10	PC9	PC8	_	_	_	PC4	PC3	PC2	PC1	PC0
Port D	_			_				_	PD7	PD6	PD5	PD4	_		_	_
Port E	_		PE13	PE12	PE11	PE10										_
Port F	_	_	_	_	_	_	_	_	_	_	PF5	PF4	PF3	PF2	PF1	PF0

BGA11	2 Pin# and Name		Pi	y / Description		
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
G10	PC6	ACMP0_C H6			LEU1_TX #0 I2C0_SDA #2	
G11	PC7	ACMP0_C H7			LEU1_RX #0 I2C0_SCL #2	
H1	PC0	ACMP0_C H0		PCNT0_S0IN #2	US1_TX #0	
H2	PC2	ACMP0_C H2			US2_TX #0	
H3	PD14				I2C0_SDA #3	
H4	PA7					
H5	PA8			TIM2_CC0 #0		
H6	VSS	Ground.				
H7	IOVDD_3	Digital IO po	ower supply 3.			
H8	PD8					CMU_CLK1 #1
H9	PD5	ADC0_CH 5			LEU0_RX #0	
H10	PD6	ADC0_CH 6		LETIM0_OUT0 #0	I2C0_SDA #1	
H11	PD7	ADC0_CH 7		LETIM0_OUT1 #0	I2C0_SCL #1	
J1	PC1	ACMP0_C H1		PCNT0_S1IN #2	US1_RX #0	
J2	PC3	ACMP0_C H3			US2_RX #0	
J3	PD15				I2C0_SCL #3	
J4	PA12			TIM2_CC0 #1		
J5	PA9			TIM2_CC1 #0		
J6	PA10			TIM2_CC2 #0		
J7	PB9					
J8	PB10					
J9	PD2	ADC0_CH 2		TIM0_CC1 #3	US1_CLK #1	
J10	PD3	ADC0_CH 3		TIM0_CC2 #3	US1_CS #1	
J11	PD4	ADC0_CH 4			LEU0_TX #0	
K1	PB7	LFXTAL_P			US1_CLK #0	
К2	PC4	ACMP0_C H4		LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0	
K3	PA13			TIM2_CC1 #1		
K4	VSS	Ground.		,		

BGA11	2 Pin# and Name		Pi	n Alternate Functionalit	rnate Functionality / Description							
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other						
K5	PA11											
K6	RESETn	Reset input, reset, and le	Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.									
K7	AVSS_1	Analog grou	ind 1.									
K8	AVDD_2	Analog pow	er supply 2.									
K9	AVDD_1	Analog pow	er supply 1.									
K10	AVSS_0	Analog grou	ind 0.									
K11	PD1	ADC0_CH 1		TIM0_CC0 #3 PCNT2_S1IN #0								
L1	PB8	LFXTAL_N			US1_CS #0							
L2	PC5	ACMP0_C H5		LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0							
L3	PA14			TIM2_CC2 #1								
L4	IOVDD_1	Digital IO po	ower supply 1.									
L5	PB11	DAC0_OU T0		LETIM0_OUT0 #1								
L6	PB12	DAC0_OU T1		LETIM0_OUT1 #1								
L7	AVSS_2	Analog grou	ind 2.									
L8	PB13	HFXTAL_ P			LEU0_TX #1							
L9	PB14	HFXTAL_ N	XTAL_ N LEU0_RX #1									
L10	AVDD_0	Analog pow	er supply 0.									
L11	PD0	ADC0_CH 0		PCNT2_S0IN #0	US1_TX #1							

5.8.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.

Table 5.23. Alternate functionality overview

Alternate	LOCATION				
Functionality	0	1	2	3	Description
TIM0_CC0	PA0	PA0		PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2		PD3	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
TIM2_CC0		PA12			Timer 2 Capture Compare input / output channel 0.
TIM2_CC1		PA13			Timer 2 Capture Compare input / output channel 1.
TIM2_CC2		PA14			Timer 2 Capture Compare input / output channel 2.
US0_CLK	PE12	PE5			USART0 clock input / output.
US0_CS	PE13	PE4			USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11	PE6			USART0 Synchronous mode Master Input / Slave Output (MI-SO).
	DE40	DEZ			USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
050_1X	PEIU	PE7			USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX		PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).
		000			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
051_1X		PD0			USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
					USART2 Asynchronous Receive.
US2_RX		PB4			USART2 Synchronous mode Master Input / Slave Output (MI-SO).
		DD2			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.
052_17		PB3			USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.9 EFM32G880 (LQFP100)

5.9.1 Pinout

The EFM32G880 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.9. EFM32G880 Pinout (top view, not to scale)

LQFF and	P100 Pin# d Name	Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other	
1	PA0	LCD_SEG 13	EBI_AD09 #0	TIM0_CC0 #0/1	I2C0_SDA #0		
2	PA1	LCD_SEG 14	EBI_AD10 #0	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0	
3	PA2	LCD_SEG 15	EBI_AD11 #0	TIM0_CC2 #0/1		CMU_CLK0 #0	

LQFF and	P100 Pin# d Name	Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other		
4	PA3	LCD_SEG 16	EBI_AD12 #0	TIM0_CDTI0 #0	U0_TX #2			
5	PA4	LCD_SEG 17	EBI_AD13 #0	TIM0_CDTI1 #0	U0_RX #2			
6	PA5	LCD_SEG 18	EBI_AD14 #0	TIM0_CDTI2 #0	LEU1_TX #1			
7	PA6	LCD_SEG 19	EBI_AD15 #0		LEU1_RX #1			
8	IOVDD_0	Digital IO po	ower supply 0.					
9	PB0	LCD_SEG 32		TIM1_CC0 #2				
10	PB1	LCD_SEG 33		TIM1_CC1 #2				
11	PB2	LCD_SEG 34		TIM1_CC2 #2				
12	PB3	LCD_SEG 20		PCNT1_S0IN #1	US2_TX #1			
13	PB4	LCD_SEG 21		PCNT1_S1IN #1	US2_RX #1			
14	PB5	LCD_SEG 22			US2_CLK #1			
15	PB6	LCD_SEG 23			US2_CS #1			
16	VSS	Ground.						
17	IOVDD_1	Digital IO po	ower supply 1.					
18	PC0	ACMP0_C H0		PCNT0_S0IN #2	US1_TX #0			
19	PC1	ACMP0_C H1		PCNT0_S1IN #2	US1_RX #0			
20	PC2	ACMP0_C H2			US2_TX #0			
21	PC3	ACMP0_C H3			US2_RX #0			
22	PC4	ACMP0_C H4		LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0			
23	PC5	ACMP0_C H5		LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0			
24	PB7	LFXTAL_P			US1_CLK #0			
25	PB8	LFXTAL_N			US1_CS #0			
26	PA7	LCD_SEG 35						
27	PA8	LCD_SEG 36		TIM2_CC0 #0				

Alternate	LOCATION				
Functionality	0	1	2	3	Description
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.
					Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.
EBI_AD00	PE8				External Bus Interface (EBI) address and data input / output pin 00.
EBI_AD01	PE9				External Bus Interface (EBI) address and data input / output pin 01.
EBI_AD02	PE10				External Bus Interface (EBI) address and data input / output pin 02.
EBI_AD03	PE11				External Bus Interface (EBI) address and data input / output pin 03.
EBI_AD04	PE12				External Bus Interface (EBI) address and data input / output pin 04.
EBI_AD05	PE13				External Bus Interface (EBI) address and data input / output pin 05.
EBI_AD06	PE14				External Bus Interface (EBI) address and data input / output pin 06.
EBI_AD07	PE15				External Bus Interface (EBI) address and data input / output pin 07.
EBI_AD08	PA15				External Bus Interface (EBI) address and data input / output pin 08.
EBI_AD09	PA0				External Bus Interface (EBI) address and data input / output pin 09.
EBI_AD10	PA1				External Bus Interface (EBI) address and data input / output pin 10.
EBI_AD11	PA2				External Bus Interface (EBI) address and data input / output pin 11.
EBI_AD12	PA3				External Bus Interface (EBI) address and data input / output pin 12.
EBI_AD13	PA4				External Bus Interface (EBI) address and data input / output pin 13.
EBI_AD14	PA5				External Bus Interface (EBI) address and data input / output pin 14.
EBI_AD15	PA6				External Bus Interface (EBI) address and data input / output pin 15.
EBI_ALE	PF3				External Bus Interface (EBI) Address Latch Enable output.

7.2 LQFP100 PCB Layout

Figure 7.2. LQFP100 PCB Land Pattern

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	1.45	P1	1	P6	75
b	0.30	P2	25	P7	76
с	0.50	P3	26	P8	100
d	15.40	P4	50		
e	15.40	P5	51		

Figure 7.3. LQFP100 PCB Solder Mask

Table 7.3. LQFP100 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.57
b	0.42
C	0.50
d	15.40
e	15.40

8.3 TQFP64 Package Marking

In the illustration below package fields and position are shown.

Figure 8.5. Example Chip Marking (Top View)

9. TQFP48 Package Specifications

9.1 TQFP48 Package Dimensions

Figure 9.1. TQFP48

Note:

- 1. Dimensions and tolerance per ASME Y14.5M-1994
- 2. Control dimension: Millimeter
- 3. Datum plane AB is located at bottom of lead and is coincident with the lead where the lead exists from the plastic body at the bottom of the parting line.
- 4. Datums T, U and Z to be determined at datum plane AB.
- 5. Dimensions S and V to be determined at seating plane AC.
- 6. Dimensions A and B do not include mold protrusion. Allowable protrusion is 0.250 per side. Dimensions A and B do include mold mismatch and are determined at datum AB.
- 7. Dimension D does not include dambar protrusion. Dambar protrusion shall not cause the D dimensionto exceed 0.350.
- 8. Minimum solder plate thickness shall be 0.0076.
- 9. Exact shape of each corner is optional.

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX
A	_	7.000 BSC		М	_	12DEG REF	
A1	—	3.500 BSC		N	0.090	_	0.160
В	_	7.000 BSC		Р		0.250 BSC	_
B1	—	3.500 BSC		R	0.150	_	0.250
С	1.000	—	1.200	S	_	9.000 BSC	

Table 9.1. QFP48 (Dimensions in mm)

10. QFN64 Package Specifications

10.1 QFN64 Package Dimensions

Figure 10.1. QFN64

Note:

- 1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.
- 3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm isacceptable.
- 4. Coplanarity applies to the exposed heat slug as well as the terminal.
- 5. Radius on terminal is optional.

Table 10.1.	QFN64	(Dimensions	in mm)
-------------	-------	-------------	--------

Symbol	Min	Nom	Мах			
A	0.80	0.80 0.85				
A1	0.00	0.00 —				
A3	0.203 REF					
b	0.25 0.30		0.35			
D	9.00 BSC					
E	9.00 BSC					
D2	7.10	7.20	7.30			
E2	7.10	7.20	7.30			