E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	56
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g840f64-qfn64

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

- ARM Cortex-M3 CPU platform
 - · High Performance 32-bit processor @ up to 32 MHz
 - Memory Protection Unit
 - Wake-up Interrupt Controller
 - SysTick System Timer
- Flexible Energy Management System
 - 20 nA @ 3 V Shutoff Mode
 - 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention
 - 0.9 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention
 - 45 µA/MHz @ 3 V Sleep Mode
 - 180 µA/MHz @ 3 V Run Mode, with code executed from flash
- 128/64/32 KB Flash
- 16/8 KB RAM
- · Up to 90 General Purpose I/O pins
 - · Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
 - · Configurable peripheral I/O locations
 - · 16 asynchronous external interrupts
 - · Output state retention and wake-up from Shutoff Mode
- 8 Channel DMA Controller
- · 8 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
- Hardware AES with 128/256-bit keys in 54/75 cycles
- Timers/Counters
 - 3 × 16-bit Timer/Counter
 - 3×3 Compare/Capture/PWM channels
 - Dead-Time Insertion on TIMER0
 - 16-bit Low Energy Timer
 - 1× 24-bit Real-Time Counter
 - 3× 8-bit Pulse Counter
 - Watchdog Timer with dedicated RC oscillator @ 50 nA
- Integrated LCD Controller for up to 4×40 segments
 - · Voltage boost, adjustable contrast and autonomous animation
- External Bus Interface for up to 4x64 MB of external memory mapped space
 - TFT Controller with Direct Drive
- Communication interfaces
 - Up to 3× Universal Synchronous/Asynchronous Receiver/ Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
 - Triple buffered full/half-duplex operation
 - 1× Universal Asynchronous Receiver/Transmitter
 - 2× Low Energy UART
 - Autonomous operation with DMA in Deep Sleep Mode
 - I²C Interface with SMBus support
 - Address recognition in Stop Mode
- Ultra low power precision analog peripherals
 - 12-bit 1 Msamples/s Analog to Digital Converter
 - · 8 single-ended channels/4 differential channels
 - On-chip temperature sensor
 - · 12-bit 500 ksamples/s Digital to Analog Converter
 - 2 single-ended channels/1 differential channel
 - 2× Analog Comparator
 - · Capacitive sensing with up to 16 inputs

Module	Configuration	Pin Connections
LCD	Full configuration	LCD_SEG[39:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT

4.4 Current Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
		32 MHz HFXO, all peripheral clocks disabled, $V_{\text{DD}}\text{=}$ 3.0 V	—	180	_	µA/MHz
		28 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	181	206	µA/MHz
EM0 current. No prescaling.		21 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	—	183	207	µA/MHz
Running prime number cal- culation code from Flash. (Production test condition =	I _{EMO}	14 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	185	211	µA/MHz
14 MHz)		11 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	—	186	215	µA/MHz
		6.6 MHz HFRCO, all peripheral clocks disabled, V_{DD}= 3.0 V	_	191	218	µA/MHz
		1.2 MHz HFRCO, all peripheral clocks disabled, V_DD= 3.0 V	—	220	_	µA/MHz
	I _{EM1}	32 MHz HFXO, all peripheral clocks disabled, $V_{DD}\text{=}$ 3.0 V	—	45	_	µA/MHz
		28 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	47	62	µA/MHz
		21 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	48	64	µA/MHz
EM1 current (Production test condition = 14 MHz)		14 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	—	50	69	µA/MHz
		11 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	—	51	72	µA/MHz
		6.6 MHz HFRCO, all peripheral clocks disabled, V_DD= 3.0 V	—	56	83	µA/MHz
		1.2 MHz HFRCO. all peripheral clocks disabled, V_{DD} = 3.0 V	—	103	_	µA/MHz
EN/2 ourset		EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, V _{DD} = 3.0 V, T _{AMB} =25 °C	_	0.9	1.5	μA
EM2 current	I _{EM2}	EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, V _{DD} = 3.0 V, T _{AMB} =85 °C	_	3.0	6.0	μA
EM2 ourrent	1	V _{DD} = 3.0 V, T _{AMB} =25 °C	—	0.59	1.0	μA
	'EM3	V _{DD} = 3.0 V, T _{AMB} =85 °C	_	2.75	5.8	μA
EM4 ourropt	I	V _{DD} = 3.0 V, T _{AMB} =25 °C	_	0.02	0.045	μA
EM4 current	IEM4	V _{DD} = 3.0 V, T _{AMB} =85 °C		0.25	0.7	μA

Table 4.3. Current Consumption

Figure 4.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz

Figure 4.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz

Figure 4.14. Typical Low-Level Output Current, 2V Supply Voltage

Figure 4.17. Typical High-Level Output Current, 3V Supply Voltage

4.9 Oscillators

4.9.1 LFXO

Table 4.8. LFXO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supported nominal crystal fre- quency	f _{LFXO}		—	32.768	—	kHz
Supported crystal equivalent ser- ies resistance (ESR)	ESR _{LFXO}		_	30	120	kOhm
Supported crystal external load range	C _{LFXOL}		X ¹	_	25	pF
Current consumption for core and buffer after startup	I _{LFXO}	ESR=30 kΩ, C _L =10 pF, LFXO- BOOST in CMU_CTRL is 1	_	190	_	nA
Start-up time	t _{LFXO}	ESR=30 k Ω , C _L =10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1		400		ms

Note:

1. See Minimum Load Capacitance (C_{LFXOL}) Requirement For Safe Crystal Startup in Configurator in Simplicity Studio.

For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration".

Table 4.9. HFXO

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supported nominal crystal Fre- quency	f _{HFXO}		4	_	32	MHz
Supported crystal equivalent ser-	ESPUEIXO	Crystal frequency 32 MHz	_	30	60	Ω
ies resistance (ESR)	LOINHEXO	Crystal frequency 4 MHz	_	400	1500	Ω
The transconductance of the HFXO input transistor at crystal startup	9 _{mHFXO}	HFXOBOOST in CMU_CTRL equals 0b11	20			mS
Supported crystal external load range	C _{HFXOL}		5	_	25	pF
Current consumption for HFXO	1	4 MHz: ESR=400 Ω , C _L =20 pF, HFXOBOOST in CMU_CTRL equals 0b11	_	85	_	μA
after startup	^I HFXO	32 MHz: ESR=30 Ω , C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		165		μΑ
Startup time	t _{HFXO}	32 MHz: ESR=30 Ω , C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		400	_	μs
Pulse width removed by glitch de- tector			1	_	4	ns

Alternate	LOCATION					
Functionality	0	1	2	3	Description	
LETIM0_OUT1	PD7		PF1		Low Energy Timer LETIM0, output channel 1.	
LEU0_RX	PD5	PB14			LEUART0 Receive input.	
LEU0_TX	PD4	PB13			LEUART0 Transmit output. Also used as receive input in half duplex communication.	
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.	
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.	
PCNT0_S0IN	PC13		PC0		Pulse Counter PCNT0 input number 0.	
PCNT0_S1IN	PC14		PC1		Pulse Counter PCNT0 input number 1.	
TIM0_CC0	PA0	PA0			Timer 0 Capture Compare input / output channel 0.	
TIM0_CC1	PA1	PA1			Timer 0 Capture Compare input / output channel 1.	
TIM0_CC2	PA2	PA2			Timer 0 Capture Compare input / output channel 2.	
TIM0_CDTI0		PC13		PC13	Timer 0 Complimentary Deat Time Insertion channel 0.	
TIM0_CDTI1		PC14		PC14	Timer 0 Complimentary Deat Time Insertion channel 1.	
TIM0_CDTI2		PC15		PC15	Timer 0 Complimentary Deat Time Insertion channel 2.	
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.	
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.	
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.	
US0_CLK	PE12				USART0 clock input / output.	
US0_CS	PE13				USART0 chip select input / output.	
					USART0 Asynchronous Receive.	
US0_RX	PE11				USART0 Synchronous mode Master Input / Slave Output (MI-SO).	
					USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.	
050_1X	PEIU				USART0 Synchronous mode Master Output / Slave Input (MOSI).	
US1_CLK	PB7				USART1 clock input / output.	
US1_CS	PB8				USART1 chip select input / output.	
					USART1 Asynchronous Receive.	
US1_RX	PC1				USART1 Synchronous mode Master Input / Slave Output (MI-SO).	
US1_TX	PC0				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.	
					(MOSI).	

Alternate		LOCATION						
Functionality	0	1	2	3	Description			
US0_TX	PE10		PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).			
US1_CLK	PB7				USART1 clock input / output.			
US1_CS	PB8				USART1 chip select input / output.			
US1_RX	PC1				USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MI- SO).			
US1_TX	PC0				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).			

5.2.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G222 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.6. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	_	_	_	_	_	PA10	PA9	PA8	_	_	_	_	_	PA2	PA1	PA0
Port B	_	PB14	PB13	_	PB11	_	_	PB8	PB7	_	_	_	_	_	_	_
Port C	PC15	PC14	PC13	_	PC11	PC10	PC9	PC8	_	_	—	PC4	PC3	PC2	PC1	PC0
Port D	_			_				_	PD7	PD6	PD5	PD4	_		_	_
Port E	_		PE13	PE12	PE11	PE10					_					_
Port F	_	_	_	_	_	_	_	_	_	_	PF5	PF4	PF3	PF2	PF1	PF0

Alternate					LOCATION
Functionality	0	1	2	3	Description
					Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7	PC7		I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6	PC6		I2C0 Serial Data input / output.
LETIM0_OUT0	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1	PC5	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15		LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14		LEUART0 Transmit output. Also used as receive input in half duplex communication.
LEU1_RX	PC7				LEUART1 Receive input.
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13		PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1		Pulse Counter PCNT0 input number 1.
PCNT1_S0IN	PC4				Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5				Pulse Counter PCNT1 input number 1.
PCNT2_S0IN	PD0	PE8			Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.
TIM0_CC0	PA0	PA0		PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2		PD3	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
TIM2_CC0	PA8		PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9		PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10		PC10		Timer 2 Capture Compare input / output channel 2.
US0_CLK	PE12		PC9		USART0 clock input / output.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.
					Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.
EBI_AD00	PE8				External Bus Interface (EBI) address and data input / output pin 00.
EBI_AD01	PE9				External Bus Interface (EBI) address and data input / output pin 01.
EBI_AD02	PE10				External Bus Interface (EBI) address and data input / output pin 02.
EBI_AD03	PE11				External Bus Interface (EBI) address and data input / output pin 03.
EBI_AD04	PE12				External Bus Interface (EBI) address and data input / output pin 04.
EBI_AD05	PE13				External Bus Interface (EBI) address and data input / output pin 05.
EBI_AD06	PE14				External Bus Interface (EBI) address and data input / output pin 06.
EBI_AD07	PE15				External Bus Interface (EBI) address and data input / output pin 07.
EBI_AD08	PA15				External Bus Interface (EBI) address and data input / output pin 08.
EBI_AD09	PA0				External Bus Interface (EBI) address and data input / output pin 09.
EBI_AD10	PA1				External Bus Interface (EBI) address and data input / output pin 10.
EBI_AD11	PA2				External Bus Interface (EBI) address and data input / output pin 11.
EBI_AD12	PA3				External Bus Interface (EBI) address and data input / output pin 12.
EBI_AD13	PA4				External Bus Interface (EBI) address and data input / output pin 13.
EBI_AD14	PA5				External Bus Interface (EBI) address and data input / output pin 14.
EBI_AD15	PA6				External Bus Interface (EBI) address and data input / output pin 15.
EBI_ALE	PF3				External Bus Interface (EBI) Address Latch Enable output.

5.8 EFM32G842 (TQFP64)

5.8.1 Pinout

The EFM32G842 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.8. EFM32G842 Pinout (top view, not to scale)

Table 5.22. Device Pinout

TQFP	64 Pin# and Name	Pin Alternate Functionality / Description							
Pin #	Pin Name	Analog	Analog Timers Communication		Other				
1	PA0	LCD_SEG13	TIM0_CC0 #0/1	I2C0_SDA #0					
2	PA1	LCD_SEG14	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0				
3	PA2	LCD_SEG15	TIM0_CC2 #0/1		CMU_CLK0 #0				
4	PA3	LCD_SEG16	TIM0_CDTI0 #0						
5	PA4	LCD_SEG17	TIM0_CDTI1 #0						

LQFF and	P100 Pin# d Name		Pi	Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other			
53	PD7	ADC0_CH 7		LETIM0_OUT1 #0	I2C0_SCL #1				
54	PD8					CMU_CLK1 #1			
55	PC6	ACMP0_C H6			LEU1_TX #0 I2C0_SDA #2				
56	PC7	ACMP0_C H7			LEU1_RX #0 I2C0_SCL #2				
57	VDD_DRE G	Power supp	ly for on-chip voltage reg	ulator.					
58	VSS	Ground.							
59	DECOU- PLE	Decouple or	utput for on-chip voltage r	egulator. An external cap	acitance of size C _{DECOUP}	_{LE} is required at this pin.			
60	PE0			PCNT0_S0IN #1	U0_TX #1				
61	PE1			PCNT0_S1IN #1	U0_RX #1				
62	PE2					ACMP0_O #1			
63	PE3					ACMP1_O #1			
64	PE4	LCD_COM 0			US0_CS #1				
65	PE5	LCD_COM 1			US0_CLK #1				
66	PE6	LCD_COM 2			US0_RX #1				
67	PE7	LCD_COM 3			US0_TX #1				
68	PC8	ACMP1_C H0		TIM2_CC0 #2	US0_CS #2				
69	PC9	ACMP1_C H1		TIM2_CC1 #2	US0_CLK #2				
70	PC10	ACMP1_C H2		TIM2_CC2 #2	US0_RX #2				
71	PC11	ACMP1_C H3			US0_TX #2				
72	PC12	ACMP1_C H4				CMU_CLK0 #1			
73	PC13	ACMP1_C H5		TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0					
74	PC14	ACMP1_C H6		TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0	U0_TX #3				
75	PC15	ACMP1_C H7		TIM0_CDTI2 #1/3 TIM1_CC2 #0	U0_RX #3	DBG_SWO #1			
76	PF0			LETIM0_OUT0 #2		DBG_SWCLK #0/1			

LQFP100 Pin# and Name		Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other	
77	PF1			LETIM0_OUT1 #2		DBG_SWDIO #0/1	
78	PF2	LCD_SEG 0	EBI_ARDY #0			ACMP1_O #0 DBG_SWO #0	
79	PF3	LCD_SEG 1	EBI_ALE #0	TIM0_CDTI0 #2			
80	PF4	LCD_SEG 2	EBI_WEn #0	TIM0_CDTI1 #2			
81	PF5	LCD_SEG 3	EBI_REn #0	TIM0_CDTI2 #2			
82	IOVDD_5	Digital IO po	ower supply 5.				
83	VSS	Ground.					
84	PF6	LCD_SEG 24		TIM0_CC0 #2	U0_TX #0		
85	PF7	LCD_SEG 25		TIM0_CC1 #2	U0_RX #0		
86	PF8	LCD_SEG 26		TIM0_CC2 #2			
87	PF9	LCD_SEG 27					
88	PD9	LCD_SEG 28	EBI_CS0 #0				
89	PD10	LCD_SEG 29	EBI_CS1 #0				
90	PD11	LCD_SEG 30	EBI_CS2 #0				
91	PD12	LCD_SEG 31	EBI_CS3 #0				
92	PE8	LCD_SEG 4	EBI_AD00 #0	PCNT2_S0IN #1			
93	PE9	LCD_SEG 5	EBI_AD01 #0	PCNT2_S1IN #1			
94	PE10	LCD_SEG 6	EBI_AD02 #0	TIM1_CC0 #1	US0_TX #0	BOOT_TX	
95	PE11	LCD_SEG 7	EBI_AD03 #0	TIM1_CC1 #1	US0_RX #0	BOOT_RX	
96	PE12	LCD_SEG 8	EBI_AD04 #0	TIM1_CC2 #1	US0_CLK #0		
97	PE13	LCD_SEG 9	EBI_AD05 #0		US0_CS #0	ACMP0_O #0	
98	PE14	LCD_SEG 10	EBI_AD06 #0		LEU0_TX #2		
99	PE15	LCD_SEG 11	EBI_AD07 #0		LEU0_RX #2		

7. LQFP100 Package Specifications

7.1 LQFP100 Package Dimensions

Figure 7.1. LQFP100

Note:

- 1. Datum 'T', 'U' and 'Z' to be determined at datum plane 'H'
- 2. Datum 'D' and 'E' to be determined at seating plane datum 'Y'.
- 3. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25 per side. Dimensions 'D1' and 'E1' do include mold mismatch and are determined at datum plane datum 'H'.
- 4. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause thelead width to exceed the maximum 'b' dimension by more than 0.08 mm. Dambar can not be locatedon the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm.
- 5. Exact shape of each corner is optional.

	SYMBOL	MIN	NOM	МАХ
total thickness	A	_	_	1.6
stand off	A1	0.05	_	0.15
mold thickness	A2	1.35	1.4	1.45
lead width (plating)	b	0.17	0.2	0.27
lead width	b1	0.17	_	0.23
L/F thickness (plating)	С	0.09	_	0.2
lead thickness	c1	0.09		0.16

Table 7.1. LQFP100 (Dimensions in mm)

9. TQFP48 Package Specifications

9.1 TQFP48 Package Dimensions

Figure 9.1. TQFP48

Note:

- 1. Dimensions and tolerance per ASME Y14.5M-1994
- 2. Control dimension: Millimeter
- 3. Datum plane AB is located at bottom of lead and is coincident with the lead where the lead exists from the plastic body at the bottom of the parting line.
- 4. Datums T, U and Z to be determined at datum plane AB.
- 5. Dimensions S and V to be determined at seating plane AC.
- 6. Dimensions A and B do not include mold protrusion. Allowable protrusion is 0.250 per side. Dimensions A and B do include mold mismatch and are determined at datum AB.
- 7. Dimension D does not include dambar protrusion. Dambar protrusion shall not cause the D dimensionto exceed 0.350.
- 8. Minimum solder plate thickness shall be 0.0076.
- 9. Exact shape of each corner is optional.

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX
A	_	7.000 BSC		М	_	12DEG REF	
A1	—	3.500 BSC		N	0.090	_	0.160
В	_	7.000 BSC		Р		0.250 BSC	_
B1	—	3.500 BSC		R	0.150	_	0.250
С	1.000	_	1.200	S	_	9.000 BSC	_

Table 9.1. QFP48 (Dimensions in mm)

Figure 9.4. TQFP48 PCB Stencil Design

Table 9.4. TQFP48 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.50
b	0.20
С	0.50
d	8.50
e	8.50

Note:

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see 5. Pin Definitions.

Corrected pin number for symbol P3 in Table 11.2 QFN32 PCB Land Pattern Dimensions (Dimensions in mm) on page 191.

Updated package marking figures to include temperature grade.

13.3 Revision 1.90

May 22nd, 2015

For devices with an ADC, Added clarification on conditions for INL_{ADC} and DNL_{ADC} parameters.

Corrected EM2 current consumption condition in Electrical Characteristics section.

Added AUXHFRCO to block diagram and Electrical Characteristics.

Updated HFRCO table in the Electrical Characteristics section.

Updated EM0, EM2, EM3, and EM4 maximum current specifications in the Electrical Characteristics section.

Updated the Output Low Voltage maximum for sinking 20 mA with VDD = 3.0 V in the Electrical Characteristics section.

Updated the Input Leakage Current maximum in the Electrical Characteristics section.

Updated the minimum and maximum frequency specifications for the LFRCO, HFRCO, and AUXHFRCO in the Electrical Characteristics section.

Updated the maximum current consumption of the HFRCO in the Electrical Characteristics section.

Updated the maximum current consumption of the HFRCO in the Electrical Characteristics section.

Added some minimum ADC SNR, SNDR, and SFDR specifications in the Electrical Characteristics section.

Added some minimum and maximum ADC offset voltage, DNL, and INL specifications in the Electrical Characteristics section.

Added maximum DAC current specifications in the Electrical Characteristics section.

Added maximum ACMP current and maximum and minimum offset voltage specifications in the Electrical Characteristics section.

Added maximum VCMP current and updated typical VCMP current specifications in the Electrical Characteristics section.

Updated references to energyAware Designer to Configurator.

13.4 Revision 1.80

July 2nd, 2014 Corrected single power supply voltage minimum value from 1.85V to 1.98V. Updated current consumption. Updated transition between energy modes. Updated power management data. Updated GPIO data. Updated LFXO, HFXO, HFRCO and ULFRCO data. Updated LFRCO and HFRCO plots.

For devices with an ACMP, updated ACMP data.

13.11 Revision 1.20

December 17th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Increased max storage temperature.

Added data for <150°C and <70°C on Flash data retention.

Changed latch-up sensitivity test description.

Added IO leakage current.

For LQFP100 devices, updated ESD CDM value.

Added Flash current consumption.

Updated HFRCO data.

Updated LFRCO data.

Added graph for ADC Absolute Offset over temperature.

Added graph for ADC Temperature sensor readout.

13.12 Revision 1.11

November 17th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Corrected maximum DAC clock speed for continuous mode.

Added DAC sample-hold mode voltage drift rate.

Added pulse widths detected by the HFXO glitch detector.

Added power sequencing information to Power Management section.