

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	56
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g840f64g-e-qfn64

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

- ARM Cortex-M3 CPU platform
 - · High Performance 32-bit processor @ up to 32 MHz
 - Memory Protection Unit
 - Wake-up Interrupt Controller
 - SysTick System Timer
- Flexible Energy Management System
 - 20 nA @ 3 V Shutoff Mode
 - 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention
 - 0.9 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention
 - 45 µA/MHz @ 3 V Sleep Mode
 - 180 µA/MHz @ 3 V Run Mode, with code executed from flash
- 128/64/32 KB Flash
- 16/8 KB RAM
- · Up to 90 General Purpose I/O pins
 - · Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
 - · Configurable peripheral I/O locations
 - · 16 asynchronous external interrupts
 - · Output state retention and wake-up from Shutoff Mode
- 8 Channel DMA Controller
- · 8 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
- Hardware AES with 128/256-bit keys in 54/75 cycles
- Timers/Counters
 - 3 × 16-bit Timer/Counter
 - 3×3 Compare/Capture/PWM channels
 - Dead-Time Insertion on TIMER0
 - 16-bit Low Energy Timer
 - 1× 24-bit Real-Time Counter
 - 3× 8-bit Pulse Counter
 - Watchdog Timer with dedicated RC oscillator @ 50 nA
- Integrated LCD Controller for up to 4×40 segments
 - · Voltage boost, adjustable contrast and autonomous animation
- External Bus Interface for up to 4x64 MB of external memory mapped space
 - TFT Controller with Direct Drive
- Communication interfaces
 - Up to 3× Universal Synchronous/Asynchronous Receiver/ Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
 - Triple buffered full/half-duplex operation
 - 1× Universal Asynchronous Receiver/Transmitter
 - 2× Low Energy UART
 - Autonomous operation with DMA in Deep Sleep Mode
 - I²C Interface with SMBus support
 - Address recognition in Stop Mode
- Ultra low power precision analog peripherals
 - 12-bit 1 Msamples/s Analog to Digital Converter
 - · 8 single-ended channels/4 differential channels
 - On-chip temperature sensor
 - · 12-bit 500 ksamples/s Digital to Analog Converter
 - 2 single-ended channels/1 differential channel
 - 2× Analog Comparator
 - · Capacitive sensing with up to 16 inputs

3. System Overview

3.1 System Introduction

The EFM32 MCUs are the world's most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32G microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32G devices. For a complete feature set and in-depth information on the modules, the reader is referred to the EFM32G Reference Manual.

The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

3.1.1 ARM Cortex-M3 Core

The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in EFM32G Reference Manual.

3.1.2 Debug Interface (DBG)

This device includes hardware debug support through a 2-pin serial-wire debug interface . In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages.

3.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32G microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Signal-to-Noise Ratio (SNR)	SNR _{ADC}	200 kSamples/s, 12 bit, differen- tial, V _{DD} reference,ADC_CLK = 7 MHz, BIASPROG = 0x747	63	69		dB
		200 kSamples/s, 12 bit, differen- tial, 2xV _{DD} reference,ADC_CLK = 7 MHz, BIASPROG = 0x747	_	70		dB

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Spurious-Free Dynamic Range (SFDR)	SFDR _{ADC}	200 kSamples/s, 12 bit, differen- tial, V_{DD} reference, ADC_CLK = 7 MHz, BIASPROG = 0x747	68	79	_	dBc
		200 kSamples/s, 12 bit, differen- tial, 2xV _{DD} reference,ADC_CLK = 7 MHz, BIASPROG = 0x747	_	79	_	dBc
Offset voltage	VADCOFFSET	After calibration, single-ended	—	0.3	_	mV
		After calibration, differential	-4	0.3	4	mV
Thermometer output gradient	TGRAD _{ADCTH}		—	-1.92	_	mV/°C
			_	-6.3		ADC Co- des/°C
Differential non-linearity (DNL)	DNL _{ADC}	V _{DD} = 3.0 V, external 2.5 V reference	-1	±0.7	4	LSB
Integral non-linearity (INL), End point method	INL _{ADC}	V _{DD} = 3.0 V, external 2.5 V reference	—	±1.2	±3	LSB
Missing codes	MC _{ADC}		—	—	3	LSB
Gain error drift	GAIN _{ED}	1.25 V reference	_	0.01 ²	0.033 ³	%/°C
		2.5 V reference		0.01 ²	0.03 ³	%/°C
Offset error drift	OFFSET _{ED}	1.25 V reference		0.00 ²	0.06 ³	LSB/°C
		2.5 V reference	_	0.00 ²	0.04 ³	LSB/°C
VREF voltage	V _{REF}	1.25 V reference	1.2	1.25	1.3	V
		2.5 V reference	2.4	2.5	2.6	V
VREF voltage drift	V _{REF_VDRIFT}	1.25 V reference	-12.4	2.9	18.2	mV/V
		2.5 V reference, VDD > 2.5 V	-24.6	5.7	35.2	mV/V
VREF temperature drift	V _{REF_TDRIFT}	1.25 V reference	-132	272	677	μV/°C
		2.5 V reference	-231	545	1271	μV/°C
VREF current consumption	I _{VREF}	1.25 V reference	—	67	114	μA
		2.5 V reference	—	55	82	μA
ADC and DAC VREF matching	V _{REF_MATCH}	1.25 V reference	_	99.85	_	%
		2.5 V reference	_	100.01	_	%

Note:

1. Includes required contribution from the voltage reference.

2. Typical numbers given by abs(Mean) / (85 - 25).

3. Max number given by (abs(Mean) + 3x stddev) / (85 - 25).

The integral non-linearity (INL) and differential non-linearity parameters are explained in the following figures.

Figure 4.32. ADC Absolute Offset, Common Mode = VDD/2

Figure 4.33. ADC Dynamic Performance vs Temperature for all ADC References, VDD = 3V

Alternate	LOCATION						
Functionality	0	1	2	3	Description		
LETIM0_OUT1	PD7		PF1		Low Energy Timer LETIM0, output channel 1.		
LEU0_RX	PD5	PB14			LEUART0 Receive input.		
LEU0_TX	PD4	PB13			LEUART0 Transmit output. Also used as receive input in half duplex communication.		
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.		
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.		
PCNT0_S0IN	PC13		PC0		Pulse Counter PCNT0 input number 0.		
PCNT0_S1IN	PC14		PC1		Pulse Counter PCNT0 input number 1.		
TIM0_CC0	PA0	PA0			Timer 0 Capture Compare input / output channel 0.		
TIM0_CC1	PA1	PA1			Timer 0 Capture Compare input / output channel 1.		
TIM0_CC2	PA2	PA2			Timer 0 Capture Compare input / output channel 2.		
TIM0_CDTI0		PC13		PC13	Timer 0 Complimentary Deat Time Insertion channel 0.		
TIM0_CDTI1		PC14		PC14	Timer 0 Complimentary Deat Time Insertion channel 1.		
TIM0_CDTI2		PC15		PC15	Timer 0 Complimentary Deat Time Insertion channel 2.		
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.		
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.		
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.		
US0_CLK	PE12				USART0 clock input / output.		
US0_CS	PE13				USART0 chip select input / output.		
					USART0 Asynchronous Receive.		
US0_RX	PE11				USART0 Synchronous mode Master Input / Slave Output (MI-SO).		
					USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.		
050_1X	PEIU				USART0 Synchronous mode Master Output / Slave Input (MOSI).		
US1_CLK	PB7				USART1 clock input / output.		
US1_CS	PB8				USART1 chip select input / output.		
					USART1 Asynchronous Receive.		
US1_RX	PC1				USART1 Synchronous mode Master Input / Slave Output (MI-SO).		
US1_TX	PC0				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.		
					(MOSI).		

5.1.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G200 and EFM32G210 is shown in the following table. Each GPIO port is organized as 16bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	_	_	_	_	_	_	_	_	_	_	_	_	PA2	PA1	PA0
Port B	_	PB14	PB13	_	PB11	_	_	PB8	PB7	_	_	_	_	_	_	_
Port C	PC15	PC14	PC13	_					_	_	_		_	_	PC1	PC0
Port D	-	—	—	—	_	_	_	_	PD7	PD6	PD5	PD4	_	_	_	_
Port E	_	_	PE13	PE12	PE11	PE10			_	_	_	_	_	_	_	
Port F	_	_	_	_		_			_	_	_	_	_	PF2	PF1	PF0

Table 5.3. GPIO Pinout

5.3.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G230 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	_	_	_	_	PA10	PA8	PA8 —	_	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	_	PB14	PB13	PB12	PB11	_	_	PB8	PB7	_	_	_	_	_	—	_
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	_	_	_			_	_	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	_	_	_	_	_	_	—	—
Port F	_	_	_	_	_	_	_	_	_	_	PF5	PF4	PF3	PF2	PF1	PF0

Table 5.9. GPIO Pinout

Alternate	LOCATION							
Functionality	0	1	2	3	Description			
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.			
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.			
					Debug-interface Serial Wire clock input.			
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.			
					Debug-interface Serial Wire data input / output.			
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.			
					Debug-interface Serial Wire viewer Output.			
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.			
EBI_AD00	PE8				External Bus Interface (EBI) address and data input / output pin 00.			
EBI_AD01	PE9				External Bus Interface (EBI) address and data input / output pin 01.			
EBI_AD02	PE10				External Bus Interface (EBI) address and data input / output pin 02.			
EBI_AD03	PE11				External Bus Interface (EBI) address and data input / output pin 03.			
EBI_AD04	PE12				External Bus Interface (EBI) address and data input / output pin 04.			
EBI_AD05	PE13				External Bus Interface (EBI) address and data input / output pin 05.			
EBI_AD06	PE14				External Bus Interface (EBI) address and data input / output pin 06.			
EBI_AD07	PE15				External Bus Interface (EBI) address and data input / output pin 07.			
EBI_AD08	PA15				External Bus Interface (EBI) address and data input / output pin 08.			
EBI_AD09	PA0				External Bus Interface (EBI) address and data input / output pin 09.			
EBI_AD10	PA1				External Bus Interface (EBI) address and data input / output pin 10.			
EBI_AD11	PA2				External Bus Interface (EBI) address and data input / output pin 11.			
EBI_AD12	PA3				External Bus Interface (EBI) address and data input / output pin 12.			
EBI_AD13	PA4				External Bus Interface (EBI) address and data input / output pin 13.			
EBI_AD14	PA5				External Bus Interface (EBI) address and data input / output pin 14.			
EBI_AD15	PA6				External Bus Interface (EBI) address and data input / output pin 15.			
EBI_ALE	PF3				External Bus Interface (EBI) Address Latch Enable output.			

BGA11	2 Pin# and Name	Pin Alternate Functionality / Description									
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other					
D3	PB15										
D4	VSS	Ground.		1							
D5	IOVDD_6	Digital IO po	ower supply 6.								
D6	PD9	LCD_SEG 28	EBI_CS0 #0								
D7	IOVDD_5	Digital IO po	ower supply 5.								
D8	PF1			LETIM0_OUT1 #2		DBG_SWDIO #0/1					
D9	PE7				US0_TX #1						
D10	PC8	ACMP1_C H0		TIM2_CC0 #2	US0_CS #2						
D11	PC9	ACMP1_C H1		TIM2_CC1 #2	US0_CLK #2						
E1	PA6		EBI_AD15 #0		LEU1_RX #1						
E2	PA5		EBI_AD14 #0	TIM0_CDTI2 #0	LEU1_TX #1						
E3	PA4		EBI_AD13 #0	TIM0_CDTI1 #0	U0_RX #2						
E4	PB0			TIM1_CC0 #2							
E8	PF0			LETIM0_OUT0 #2		DBG_SWCLK #0/1					
E9	PE0			PCNT0_S0IN #1	U0_TX #1						
E10	PE1			PCNT0_S1IN #1	U0_RX #1						
E11	PE3					ACMP1_O #1					
F1	PB1			TIM1_CC1 #2							
F2	PB2			TIM1_CC2 #2							
F3	PB3			PCNT1_S0IN #1	US2_TX #1						
F4	PB4			PCNT1_S1IN #1	US2_RX #1						
F8	VDD_DRE G	Power supp	ly for on-chip voltage reg	ulator.							
F9	VSS_DRE G	Ground for o	on-chip voltage regulator.								
F10	PE2					ACMP0_O #1					
F11	DECOU- PLE	Decouple or	utput for on-chip voltage r	egulator. An external capa	acitance of size C _{DECOUP}	LE is required at this pin.					
G1	PB5				US2_CLK #1						
G2	PB6				US2_CS #1						
G3	VSS	Ground.	•		•						
G4	IOVDD_0	Digital IO po	ower supply 0.								
G8	IOVDD_4	Digital IO po	ower supply 4.								
G9	VSS	Ground.									

Alternate	LOCATION						
Functionality	0	1	2	3	Description		
TIM0_CC0	PA0	PA0		PD1	Timer 0 Capture Compare input / output channel 0.		
TIM0_CC1	PA1	PA1		PD2	Timer 0 Capture Compare input / output channel 1.		
TIM0_CC2	PA2	PA2		PD3	Timer 0 Capture Compare input / output channel 2.		
TIM0_CDTI0	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.		
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.		
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.		
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.		
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.		
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.		
TIM2_CC0		PA12			Timer 2 Capture Compare input / output channel 0.		
TIM2_CC1		PA13			Timer 2 Capture Compare input / output channel 1.		
TIM2_CC2		PA14			Timer 2 Capture Compare input / output channel 2.		
US0_CLK	PE12	PE5			USART0 clock input / output.		
US0_CS	PE13	PE4			USART0 chip select input / output.		
					USART0 Asynchronous Receive.		
US0_RX	PE11	PE6			USART0 Synchronous mode Master Input / Slave Output (MI-SO).		
US0 TX	PE10	PE7			USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.		
000_1X					USART0 Synchronous mode Master Output / Slave Input (MOSI).		
US1_CLK	PB7	PD2			USART1 clock input / output.		
US1_CS	PB8	PD3			USART1 chip select input / output.		
					USART1 Asynchronous Receive.		
US1_RX		PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).		
					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.		
051_1X		PD0			USART1 Synchronous mode Master Output / Slave Input (MOSI).		
US2_CLK	PC4	PB5			USART2 clock input / output.		
US2_CS	PC5	PB6			USART2 chip select input / output.		
					USART2 Asynchronous Receive.		
US2_RX		PB4			USART2 Synchronous mode Master Input / Slave Output (MI-SO).		
					USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.		
052_1X		PB3			USART2 Synchronous mode Master Output / Slave Input (MOSI).		

5.9.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Table 5.26. Alternate functionality overview

5.10 EFM32G890 (BGA112)

5.10.1 Pinout

The EFM32G890 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.10. EFM32G890 Pinout (top view, not to scale)

BGA11	2 Pin# and Name	Pin Alternate Functionality / Description								
Pin #	Pin Name	Analog EBI		Timers	Communication	Other				
A1	PE15	LCD_SEG 11	EBI_AD07 #0		LEU0_RX #2					
A2	PE14	LCD_SEG 10	EBI_AD06 #0		LEU0_TX #2					
A3	PE12	LCD_SEG 8	EBI_AD04 #0	TIM1_CC2 #1	US0_CLK #0					

BGA112 Pin# and Name		Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other	
C3	PE10	LCD_SEG 6	EBI_AD02 #0	TIM1_CC0 #1	US0_TX #0	BOOT_TX	
C4	PD13						
C5	PD12	LCD_SEG 31	EBI_CS3 #0				
C6	PF9	LCD_SEG 27					
C7	VSS	Ground.					
C8	PF2	LCD_SEG 0	EBI_ARDY #0			ACMP1_O #0 DBG_SWO #0	
C9	PE6	LCD_COM 2			US0_RX #1		
C10	PC10	ACMP1_C H2		TIM2_CC2 #2	US0_RX #2		
C11	PC11	ACMP1_C H3			US0_TX #2		
D1	PA3	LCD_SEG 16	EBI_AD12 #0	TIM0_CDTI0 #0	U0_TX #2		
D2	PA2	LCD_SEG 15	EBI_AD11 #0	TIM0_CC2 #0/1		CMU_CLK0 #0	
D3	PB15						
D4	VSS	Ground.					
D5	IOVDD_6	Digital IO power supply 6.					
D6	PD9	LCD_SEG 28	LCD_SEG 28 EBI_CS0 #0				
D7	IOVDD_5	Digital IO power supply 5.					
D8	PF1			LETIM0_OUT1 #2		DBG_SWDIO #0/1	
D9	PE7	LCD_COM 3			US0_TX #1		
D10	PC8	ACMP1_C H0		TIM2_CC0 #2	US0_CS #2		
D11	PC9	ACMP1_C H1		TIM2_CC1 #2	US0_CLK #2		
E1	PA6	LCD_SEG 19	EBI_AD15 #0		LEU1_RX #1		
E2	PA5	LCD_SEG 18	EBI_AD14 #0	TIM0_CDTI2 #0	LEU1_TX #1		
E3	PA4	LCD_SEG 17	EBI_AD13 #0	TIM0_CDTI1 #0	U0_RX #2		
E4	PB0	LCD_SEG 32		TIM1_CC0 #2			
E8	PF0			LETIM0_OUT0 #2		DBG_SWCLK #0/1	

6.3 BGA112 Package Marking

In the illustration below package fields and position are shown.

Figure 6.5. Example Chip Marking (Top View)

7. LQFP100 Package Specifications

7.1 LQFP100 Package Dimensions

Figure 7.1. LQFP100

Note:

- 1. Datum 'T', 'U' and 'Z' to be determined at datum plane 'H'
- 2. Datum 'D' and 'E' to be determined at seating plane datum 'Y'.
- 3. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25 per side. Dimensions 'D1' and 'E1' do include mold mismatch and are determined at datum plane datum 'H'.
- 4. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause thelead width to exceed the maximum 'b' dimension by more than 0.08 mm. Dambar can not be locatedon the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm.
- 5. Exact shape of each corner is optional.

	SYMBOL	MIN	NOM	МАХ
total thickness	A	_	_	1.6
stand off	A1	0.05	_	0.15
mold thickness	A2	1.35	1.4	1.45
lead width (plating)	b	0.17	0.2	0.27
lead width	b1	0.17	_	0.23
L/F thickness (plating)	С	0.09	_	0.2
lead thickness	c1	0.09		0.16

Table 7.1. LQFP100 (Dimensions in mm)

8.2 TQFP64 PCB Layout

Figure 8.2. TQFP64 PCB Land Pattern

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	1.60	P1	1	P6	48
b	0.30	P2	16	P7	49
с	0.50	P3	17	P8	64
d	11.50	P4	32		
e	11.50	P5	33		

Figure 8.3. TQFP64 PCB Solder Mask

Table 8.3. TQFP64 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.72
b	0.42
C	0.50
d	11.50
e	11.50

Figure 8.4. TQFP64 PCB Stencil Design

Table 8.4. TQFP64 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.50
b	0.20
C	0.50
d	11.50
e	11.50

Note:

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see Pin Definitions.

13.11 Revision 1.20

December 17th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Increased max storage temperature.

Added data for <150°C and <70°C on Flash data retention.

Changed latch-up sensitivity test description.

Added IO leakage current.

For LQFP100 devices, updated ESD CDM value.

Added Flash current consumption.

Updated HFRCO data.

Updated LFRCO data.

Added graph for ADC Absolute Offset over temperature.

Added graph for ADC Temperature sensor readout.

13.12 Revision 1.11

November 17th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Corrected maximum DAC clock speed for continuous mode.

Added DAC sample-hold mode voltage drift rate.

Added pulse widths detected by the HFXO glitch detector.

Added power sequencing information to Power Management section.

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com