

Details

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	56
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g840f64g-e-qfn64r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4 Current Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
		32 MHz HFXO, all peripheral clocks disabled, $V_{DD}\text{=}$ 3.0 V	—	180	_	µA/MHz
		28 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	—	181	206	µA/MHz
EM0 current. No prescaling.		21 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	—	183	207	µA/MHz
Running prime number cal- culation code from Flash. (Production test condition =	I _{EMO}	14 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	185	211	µA/MHz
14 MHz)		11 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	—	186	215	µA/MHz
		6.6 MHz HFRCO, all peripheral clocks disabled, V_{DD}= 3.0 V	_	191	218	µA/MHz
		1.2 MHz HFRCO, all peripheral clocks disabled, V_DD= 3.0 V	—	220	_	µA/MHz
	I _{EM1}	32 MHz HFXO, all peripheral clocks disabled, $V_{DD}\text{=}$ 3.0 V	—	45	_	µA/MHz
		28 MHz HFRCO, all peripheral clocks disabled, V_DD= 3.0 V		47	62	µA/MHz
		21 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	48	64	µA/MHz
EM1 current (Production test condition = 14 MHz)		14 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	—	50	69	µA/MHz
		11 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	—	51	72	µA/MHz
		6.6 MHz HFRCO, all peripheral clocks disabled, V_DD= 3.0 V	—	56	83	µA/MHz
		1.2 MHz HFRCO. all peripheral clocks disabled, V_{DD} = 3.0 V	—	103	_	µA/MHz
EN/2 ourset		EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, V _{DD} = 3.0 V, T _{AMB} =25 °C	_	0.9	1.5	μA
EM2 current	'EM2	EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, V _{DD} = 3.0 V, T _{AMB} =85 °C	_	3.0	6.0	μA
EM2 ourrent	1	V _{DD} = 3.0 V, T _{AMB} =25 °C	—	0.59	1.0	μA
	'EM3	V _{DD} = 3.0 V, T _{AMB} =85 °C	_	2.75	5.8	μA
EM4 ourropt	I	V _{DD} = 3.0 V, T _{AMB} =25 °C	_	0.02	0.045	μA
EM4 current	IEM4	V _{DD} = 3.0 V, T _{AMB} =85 °C		0.25	0.7	μA

Table 4.3. Current Consumption

Figure 4.27. Integral Non-Linearity (INL)

Figure 4.28. Differential Non-Linearity (DNL)

Table 4.18. LCD

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frame rate	f _{LCDFR}		30	_	200	Hz
Number of segments supported	NUM _{SEG}		—	4×40	_	seg
LCD supply voltage range	V _{LCD}	Internal boost circuit enabled	2.0	_	3.8	V
		Display disconnected, static mode, framerate 32 Hz, all segments on.		250		nA
Steady state current consumption.	I _{LCD}	Display disconnected, quadruplex mode, framerate 32 Hz, all seg- ments on, bias mode to ONE- THIRD in LCD_DISPCTRL regis- ter.		550		nA
Steady state Current contribution		Internal voltage boost off	—	0	—	μA
of internal boost.	ILCDBOOST	Internal voltage boost on, boosting from 2.2 V to 3.0 V.	_	8.4	_	μA
		VBLEV of LCD_DISPCTRL regis- ter to LEVEL0	_	3.0	_	V
		VBLEV of LCD_DISPCTRL regis- ter to LEVEL1	_	3.08	_	V
		VBLEV of LCD_DISPCTRL regis- ter to LEVEL2	_	3.17	_	V
Report Voltage		VBLEV of LCD_DISPCTRL regis- ter to LEVEL3	_	3.26	_	V
Boost voltage	VBOOST	VBLEV of LCD_DISPCTRL regis- ter to LEVEL4	_	3.34	_	V
		VBLEV of LCD_DISPCTRL regis- ter to LEVEL5	_	3.43	_	V
		VBLEV of LCD_DISPCTRL regis- ter to LEVEL6	_	3.52		V
		VBLEV of LCD_DISPCTRL regis- ter to LEVEL7		3.6		V

The total LCD current is given by the following equation. $I_{LCDBOOST}$ is zero if internal boost is off.

 $I_{LCDTOTAL} = I_{LCD} + I_{LCDBOOST}$

QFN32 P	Pin# and Name	Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	Timers	Communication	Other			
31	PE12		TIM1_CC2 #1	US0_CLK #0				
32	PE13			US0_CS #0	ACMP0_O #0			

5.2 EFM32G222 (TQFP48)

5.2.1 Pinout

The EFM32G222 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.2. EFM32G222 Pinout (top view, not to scale)

Table 5.4. Device Pinout

TQFP	48 Pin# and Name	Pin Alternate Functionality / Description								
Pin #	Pin Name	Analog	Timers	Communication	Other					
1	PA0		TIM0_CC0 #0/1	I2C0_SDA #0						
2	PA1		TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0					
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0					
4	IOVDD_0	Digital IO powe	Digital IO power supply 0.							
5	VSS	Ground.								

5.2.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2				Clock Management Unit, clock output number 0.
CMU_CLK1	PA1				Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.

Table 5.5. Alternate functionality overview

Alternate					LOCATION
Functionality	0	1	2	3	Description
US0_TX	PE10		PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7				USART1 clock input / output.
US1_CS	PB8				USART1 chip select input / output.
US1_RX	PC1				USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MI- SO).
US1_TX	PC0				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.2.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G222 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.6. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	_	_	_	_	_	PA10	PA9	PA8	_	_	_	_	_	PA2	PA1	PA0
Port B	_	PB14	PB13	_	PB11	_	_	PB8	PB7	_	_	_	_	_	_	_
Port C	PC15	PC14	PC13	_	PC11	PC10	PC9	PC8	_	_	—	PC4	PC3	PC2	PC1	PC0
Port D	_			_				_	PD7	PD6	PD5	PD4	_		_	_
Port E	_		PE13	PE12	PE11	PE10					_					_
Port F	_	_	_	_	_	_	_	_	_	_	PF5	PF4	PF3	PF2	PF1	PF0

QFN64 P	in# and Name		Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	Timers	Communication	Other			
40	DECOUPLE	Decouple outp pin.	C _{DECOUPLE} is required at this					
41	PC8	ACMP1_CH0	TIM2_CC0 #2	US0_CS #2				
42	PC9	ACMP1_CH1	TIM2_CC1 #2	US0_CLK #2				
43	PC10	ACMP1_CH2	TIM2_CC2 #2	US0_RX #2				
44	PC11	ACMP1_CH3		US0_TX #2				
45	PC12	ACMP1_CH4			CMU_CLK0 #1			
46	PC13	ACMP1_CH5	TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0					
47	PC14	ACMP1_CH6	TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0					
48	PC15	ACMP1_CH7	TIM0_CDTI2 #1/3 TIM1_CC2 #0		DBG_SWO #1			
49	PF0		LETIM0_OUT0 #2		DBG_SWCLK #0/1			
50	PF1		LETIM0_OUT1 #2		DBG_SWDIO #0/1			
51	PF2				ACMP1_O #0 DBG_SWO #0			
52	PF3		TIM0_CDTI0 #2					
53	PF4		TIM0_CDTI1 #2					
54	PF5		TIM0_CDTI2 #2					
55	IOVDD_5	Digital IO powe	er supply 5.					
56	PE8		PCNT2_S0IN #1					
57	PE9		PCNT2_S1IN #1					
58	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX			
59	PE11		TIM1_CC1 #1	US0_RX #0	BOOT_RX			
60	PE12		TIM1_CC2 #1	US0_CLK #0				
61	PE13			US0_CS #0	ACMP0_O #0			
62	PE14			LEU0_TX #2				
63	PE15			LEU0_RX #2				
64	PA15							

Alternate					LOCATION
Functionality	0	1	2	3	Description
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
TIM2_CC0	PA8		PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9		PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10		PC10		Timer 2 Capture Compare input / output channel 2.
US0_CLK	PE12		PC9		USART0 clock input / output.
US0_CS	PE13		PC8		USART0 chip select input / output.
	PE11				USART0 Asynchronous Receive.
US0_RX			PC10		USART0 Synchronous mode Master Input / Slave Output (MI-SO).
US0_TX	DE10		D011		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
	PEIU		PGTT		USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX	PC1	PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).
	DOO	000			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
	PCU	PD0			USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4				USART2 clock input / output.
US2_CS	PC5				USART2 chip select input / output.
					USART2 Asynchronous Receive.
US2_RX	PC3				USART2 Synchronous mode Master Input / Slave Output (MI-SO).
US2 TX	PC2				USART2 Asynchronous Transmit. Also used as receive input in half duplex communication.
					USART2 Synchronous mode Master Output / Slave Input (MOSI).

LQFF and	P100 Pin# d Name	Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other		
63	PE3					ACMP1_O #1		
64	PE4				US0_CS #1			
65	PE5				US0_CLK #1			
66	PE6				US0_RX #1			
67	PE7				US0_TX #1			
68	PC8	ACMP1_C H0		TIM2_CC0 #2	US0_CS #2			
69	PC9	ACMP1_C H1		TIM2_CC1 #2	US0_CLK #2			
70	PC10	ACMP1_C H2		TIM2_CC2 #2	US0_RX #2			
71	PC11	ACMP1_C H3			US0_TX #2			
72	PC12	ACMP1_C H4				CMU_CLK0 #1		
73	PC13	ACMP1_C H5		TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0				
74	PC14	ACMP1_C H6		TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0	U0_TX #3			
75	PC15	ACMP1_C H7		TIM0_CDTI2 #1/3 TIM1_CC2 #0	U0_RX #3	DBG_SWO #1		
76	PF0			LETIM0_OUT0 #2		DBG_SWCLK #0/1		
77	PF1			LETIM0_OUT1 #2		DBG_SWDIO #0/1		
78	PF2		EBI_ARDY #0			ACMP1_O #0 DBG_SWO #0		
79	PF3		EBI_ALE #0	TIM0_CDTI0 #2				
80	PF4		EBI_WEn #0	TIM0_CDTI1 #2				
81	PF5		EBI_REn #0	TIM0_CDTI2 #2				
82	IOVDD_5	Digital IO po	wer supply 5.					
83	VSS	Ground.			1			
84	PF6			TIM0_CC0 #2	U0_TX #0			
85	PF7			TIM0_CC1 #2	U0_RX #0			
86	PF8			TIM0_CC2 #2				
87	PF9							
88	PD9		EBI_CS0 #0					
89	PD10		EBI_CS1 #0					
90	PD11		EBI_CS2 #0					
91	PD12		EBI_CS3 #0					

Alternate					LOCATION
Functionality	0	1	2	3	Description
LCD_SEG9	PE13				LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG10	PE14				LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG11	PE15				LCD segment line 11. Segments 8, 9, 10 and 11 are control- led by SEGEN2.
LCD_SEG13	PA0				LCD segment line 13. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG14	PA1				LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG15	PA2				LCD segment line 15. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG16	PA3				LCD segment line 16. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG17	PA4				LCD segment line 17. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG18	PA5				LCD segment line 18. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG20	PB3				LCD segment line 20. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG21	PB4				LCD segment line 21. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG22	PB5				LCD segment line 22. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG23	PB6				LCD segment line 23. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LETIM0_OUT0	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1	PC5	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15		LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14		LEUART0 Transmit output. Also used as receive input in half duplex communication.
LEU1_RX	PC7				LEUART1 Receive input.
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13				Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14				Pulse Counter PCNT0 input number 1.
PCNT1_S0IN	PC4	PB3			Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5	PB4			Pulse Counter PCNT1 input number 1.
PCNT2_S0IN	PD0	PE8			Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.

LQFP100 Pin# and Name		Pin Alternate Functionality / Description								
Pin #	Pin Name	Analog EBI		Timers	Communication	Other				
4	PA3	LCD_SEG 16	EBI_AD12 #0	TIM0_CDTI0 #0	U0_TX #2					
5	PA4	LCD_SEG 17	EBI_AD13 #0	TIM0_CDTI1 #0	U0_RX #2					
6	PA5	LCD_SEG 18	EBI_AD14 #0	TIM0_CDTI2 #0	LEU1_TX #1					
7	PA6	LCD_SEG 19	EBI_AD15 #0		LEU1_RX #1					
8	IOVDD_0	Digital IO po	ower supply 0.							
9	PB0	LCD_SEG 32		TIM1_CC0 #2						
10	PB1	LCD_SEG 33		TIM1_CC1 #2						
11	PB2	LCD_SEG 34		TIM1_CC2 #2						
12	PB3	LCD_SEG 20		PCNT1_S0IN #1	US2_TX #1					
13	PB4	LCD_SEG 21		PCNT1_S1IN #1	US2_RX #1					
14	PB5	LCD_SEG 22			US2_CLK #1					
15	PB6	LCD_SEG 23			US2_CS #1					
16	VSS	Ground.								
17	IOVDD_1	Digital IO power supply 1.								
18	PC0	ACMP0_C H0		PCNT0_S0IN #2	US1_TX #0					
19	PC1	ACMP0_C H1		PCNT0_S1IN #2	US1_RX #0					
20	PC2	ACMP0_C H2			US2_TX #0					
21	PC3	ACMP0_C H3			US2_RX #0					
22	PC4	ACMP0_C H4		LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0					
23	PC5	ACMP0_C H5		LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0					
24	PB7	LFXTAL_P			US1_CLK #0					
25	PB8	LFXTAL_N			US1_CS #0					
26	PA7	LCD_SEG 35								
27	PA8	LCD_SEG 36		TIM2_CC0 #0						

LQFP100 Pin# and Name		Pin Alternate Functionality / Description							
Pin #	Pin Name	Analog EBI		Timers	Communication	Other			
77	PF1			LETIM0_OUT1 #2		DBG_SWDIO #0/1			
78	PF2	LCD_SEG 0	EBI_ARDY #0			ACMP1_O #0 DBG_SWO #0			
79	PF3	LCD_SEG 1	EBI_ALE #0	TIM0_CDTI0 #2					
80	PF4	LCD_SEG 2	EBI_WEn #0	TIM0_CDTI1 #2					
81	PF5	LCD_SEG 3	EBI_REn #0	TIM0_CDTI2 #2					
82	IOVDD_5	Digital IO po	ower supply 5.						
83	VSS	Ground.							
84	PF6	LCD_SEG 24		TIM0_CC0 #2	U0_TX #0				
85	PF7	LCD_SEG 25		TIM0_CC1 #2	U0_RX #0				
86	PF8	LCD_SEG 26		TIM0_CC2 #2					
87	PF9	LCD_SEG 27							
88	PD9	LCD_SEG 28	EBI_CS0 #0						
89	PD10	LCD_SEG 29	EBI_CS1 #0						
90	PD11	LCD_SEG 30	EBI_CS2 #0						
91	PD12	LCD_SEG 31	EBI_CS3 #0						
92	PE8	LCD_SEG 4	EBI_AD00 #0	PCNT2_S0IN #1					
93	PE9	LCD_SEG 5	EBI_AD01 #0	PCNT2_S1IN #1					
94	PE10	LCD_SEG 6	EBI_AD02 #0	TIM1_CC0 #1	US0_TX #0	BOOT_TX			
95	PE11	LCD_SEG 7	EBI_AD03 #0	TIM1_CC1 #1	US0_RX #0	BOOT_RX			
96	PE12	LCD_SEG 8	EBI_AD04 #0	TIM1_CC2 #1	US0_CLK #0				
97	PE13	LCD_SEG 9	EBI_AD05 #0		US0_CS #0	ACMP0_O #0			
98	PE14	LCD_SEG 10	EBI_AD06 #0		LEU0_TX #2				
99	PE15	LCD_SEG 11	EBI_AD07 #0		LEU0_RX #2				

Alternate					LOCATION
Functionality	0	1	2	3	Description
LCD_SEG30	PD11				LCD segment line 30. Segments 28, 29, 30 and 31 are controlled by SEGEN7.
LCD_SEG31	PD12				LCD segment line 31. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.
LCD_SEG32	PB0				LCD segment line 32. Segments 32, 33, 34 and 35 are con- trolled by SEGEN8.
LCD_SEG33	PB1				LCD segment line 33. Segments 32, 33, 34 and 35 are controlled by SEGEN8.
LCD_SEG34	PB2				LCD segment line 34. Segments 32, 33, 34 and 35 are controlled by SEGEN8.
LCD_SEG35	PA7				LCD segment line 35. Segments 32, 33, 34 and 35 are con- trolled by SEGEN8.
LCD_SEG36	PA8				LCD segment line 36. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.
LCD_SEG37	PA9				LCD segment line 37. Segments 36, 37, 38 and 39 are controlled by SEGEN9.
LCD_SEG38	PA10				LCD segment line 38. Segments 36, 37, 38 and 39 are controlled by SEGEN9.
LCD_SEG39	PA11				LCD segment line 39. Segments 36, 37, 38 and 39 are con- trolled by SEGEN9.
LETIM0_OUT0	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7	PB12	PF1	PC5	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15		LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14		LEUART0 Transmit output. Also used as receive input in half duplex communication.
LEU1_RX	PC7	PA6			LEUART1 Receive input.
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13	PE0	PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14	PE1	PC1		Pulse Counter PCNT0 input number 1.
PCNT1_S0IN	PC4	PB3			Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5	PB4			Pulse Counter PCNT1 input number 1.
PCNT2_S0IN	PD0	PE8			Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.
TIM0_CC0	PA0	PA0	PF6	PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1	PF7	PD2	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2	PF8	PD3	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.

5.10.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Table 5.29. Alternate functionality overview

Alternate	LOCATION					
Functionality	0	1	2	3	Description	
EBI_ARDY	PF2				External Bus Interface (EBI) Hardware Ready Control input.	
EBI_CS0	PD9				External Bus Interface (EBI) Chip Select output 0.	
EBI_CS1	PD10				External Bus Interface (EBI) Chip Select output 1.	
EBI_CS2	PD11				External Bus Interface (EBI) Chip Select output 2.	
EBI_CS3	PD12				External Bus Interface (EBI) Chip Select output 3.	
EBI_REn	PF5				External Bus Interface (EBI) Read Enable output.	
EBI_WEn	PF4				External Bus Interface (EBI) Write Enable output.	
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.	
HFXTAL_P	PB13				High Frequency Crystal positive pin.	
I2C0_SCL	PA1	PD7	PC7	PD15	I2C0 Serial Clock Line input / output.	
I2C0_SDA	PA0	PD6	PC6	PD14	I2C0 Serial Data input / output.	
LCD_BCAP_N	PA13				LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.	
LCD_BCAP_P	PA12				LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.	
LCD_BEXT	PA14				LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS. An external LCD voltage may also be applied to this pin if the booster is not enabled. If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.	
LCD_COM0	PE4				LCD driver common line number 0.	
LCD_COM1	PE5				LCD driver common line number 1.	
LCD_COM2	PE6				LCD driver common line number 2.	
LCD_COM3	PE7				LCD driver common line number 3.	
LCD_SEG0	PF2				LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0.	
LCD_SEG1	PF3				LCD segment line 1. Segments 0, 1, 2 and 3 are controlled by SEGEN0.	
LCD_SEG2	PF4				LCD segment line 2. Segments 0, 1, 2 and 3 are controlled by SEGEN0.	
LCD_SEG3	PF5				LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0.	
LCD_SEG4	PE8				LCD segment line 4. Segments 4, 5, 6 and 7 are controlled by SEGEN1.	
LCD_SEG5	PE9				LCD segment line 5. Segments 4, 5, 6 and 7 are controlled by SEGEN1.	
LCD_SEG6	PE10				LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1.	

Alternate					LOCATION
Functionality	0	1	2	3	Description
LCD_SEG7	PE11				LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG8	PE12				LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG9	PE13				LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG10	PE14				LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG11	PE15				LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG12	PA15				LCD segment line 12. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG13	PA0				LCD segment line 13. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG14	PA1				LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG15	PA2				LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG16	PA3				LCD segment line 16. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG17	PA4				LCD segment line 17. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG18	PA5				LCD segment line 18. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG19	PA6				LCD segment line 19. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG20	PB3				LCD segment line 20. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG21	PB4				LCD segment line 21. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG22	PB5				LCD segment line 22. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG23	PB6				LCD segment line 23. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG24	PF6				LCD segment line 24. Segments 24, 25, 26 and 27 are controlled by SEGEN6.
LCD_SEG25	PF7				LCD segment line 25. Segments 24, 25, 26 and 27 are controlled by SEGEN6.
LCD_SEG26	PF8				LCD segment line 26. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG27	PF9				LCD segment line 27. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG28	PD9				LCD segment line 28. Segments 28, 29, 30 and 31 are controlled by SEGEN7.
LCD_SEG29	PD10				LCD segment line 29. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.

12. Chip Revision, Solder Information, Errata

12.1 Chip Revision

The revision of a chip can be determined from the "Revision" field in the package marking.

12.2 Soldering Information

The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.

12.3 Errata

Please see the errata document for description and resolution of device errata. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit

13.11 Revision 1.20

December 17th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Increased max storage temperature.

Added data for <150°C and <70°C on Flash data retention.

Changed latch-up sensitivity test description.

Added IO leakage current.

For LQFP100 devices, updated ESD CDM value.

Added Flash current consumption.

Updated HFRCO data.

Updated LFRCO data.

Added graph for ADC Absolute Offset over temperature.

Added graph for ADC Temperature sensor readout.

13.12 Revision 1.11

November 17th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Corrected maximum DAC clock speed for continuous mode.

Added DAC sample-hold mode voltage drift rate.

Added pulse widths detected by the HFXO glitch detector.

Added power sequencing information to Power Management section.

13.13 Revision 1.10

September 13th, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

For LQFP100 devices, corrected number of GPIO pins.

Added typical values for $\mathsf{R}_{\mathsf{ADCFILT}}$ and $\mathsf{C}_{\mathsf{ADCFILT}}.$

Added two conditions for DAC clock frequency; one for sample/hold and one for sample/off.

Added RoHS information and specified leadframe/solderballs material.

Added Serial Bootloader to feature list and system summary.

Updated ADC characterization data.

Updated DAC characterization data.

Updated RCO characterization data.

Updated ACMP characterization data.

Updated VCMP characterization data.

13.14 Revision 1.00

April 23rd, 2010

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880EFM32G890

ADC VCM line removed.

Added pinout illustration and additional pinout table.

Changed "Errata" chapter. Errata description moved to separate document.

Document changed status from "Preliminary".

Updated "Electrical Characteristics" chapter.

For EFM32G222

May 20th, 2011

Updated LFXO load capacitance section.