Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	

2 0 0 0 0 0	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g842f128-qfp64t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.3 EFM32G222

The features of the EFM32G222 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
12C0	Full configuration	12C0_SDA, 12C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
ACMP0	Full configuration	ACMP0_CH[4:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:4]
DAC0	Full configuration	DAC0_OUT[1]
AES	Full configuration	NA
GPIO	37 pins	Available pins are shown in Table 4.3 (p. 57)

Table 3.3. EFM32G222 Configuration Summary

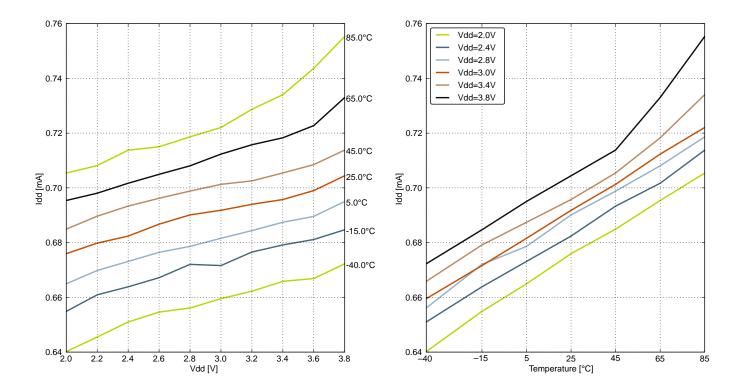


Figure 4.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz

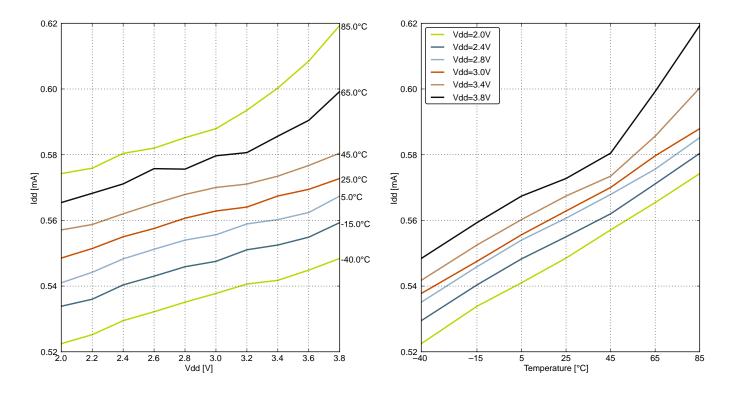


Figure 4.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Flash erase cycles before failure	EC _{FLASH}		20000	_	_	cycles
		T _{AMB} <150 °C	10000	_	_	h
Flash data retention	RET _{FLASH}	T _{AMB} <85 °C	10	_	_	years
		T _{AMB} <70 °C	20	_	_	years
Word (32-bit) programming time	tw_prog		20	_	—	μs
Page erase time ²	t _{P_ERASE}		20.7	22.0	24.8	ms
Device erase time ³	t _{D_ERASE}		41.8	45.0	49.2	ms
Erase current	I _{ERASE}		_		7 ¹	mA
Write current	I _{WRITE}		_	—	7 ¹	mA
Supply voltage during flash erase and write	V _{FLASH}		1.98	_	3.8	V

Note:

1. Measured at 25 °C.

2. From setting ERASEPAGE bit in MSC_WRITECMD to 1 to reading 1 in ERASE bit in MSC_IF. Internal setup and hold times for flash control signals are included.

3. From setting DEVICEERASE bit in AAP_CMD to 1 to reading 0 in ERASEBUSY bit in AAP_STATUS. Internal setup and hold times for flash control signals are included.

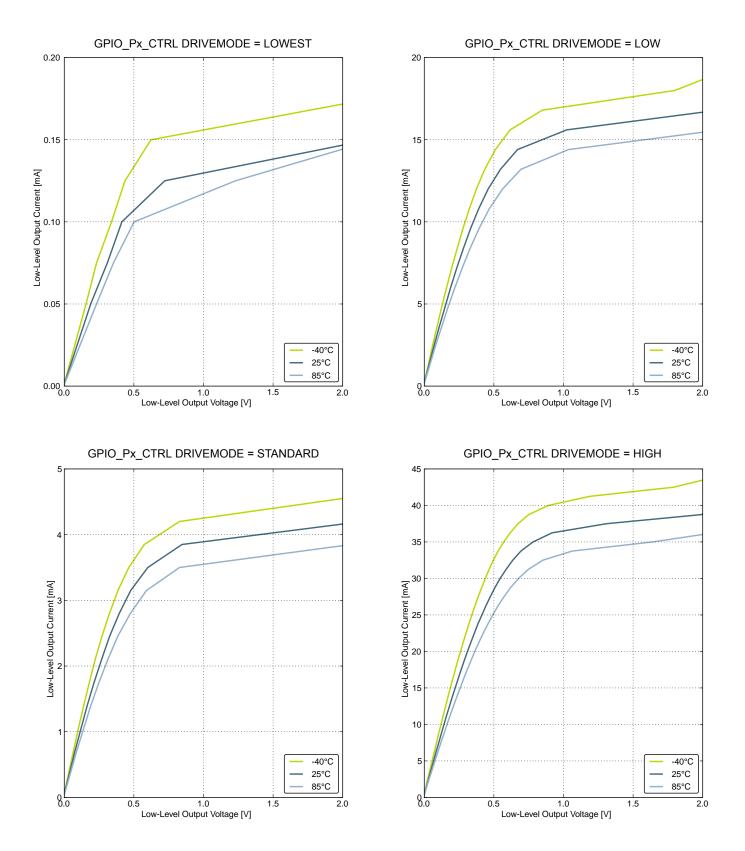


Figure 4.14. Typical Low-Level Output Current, 2V Supply Voltage

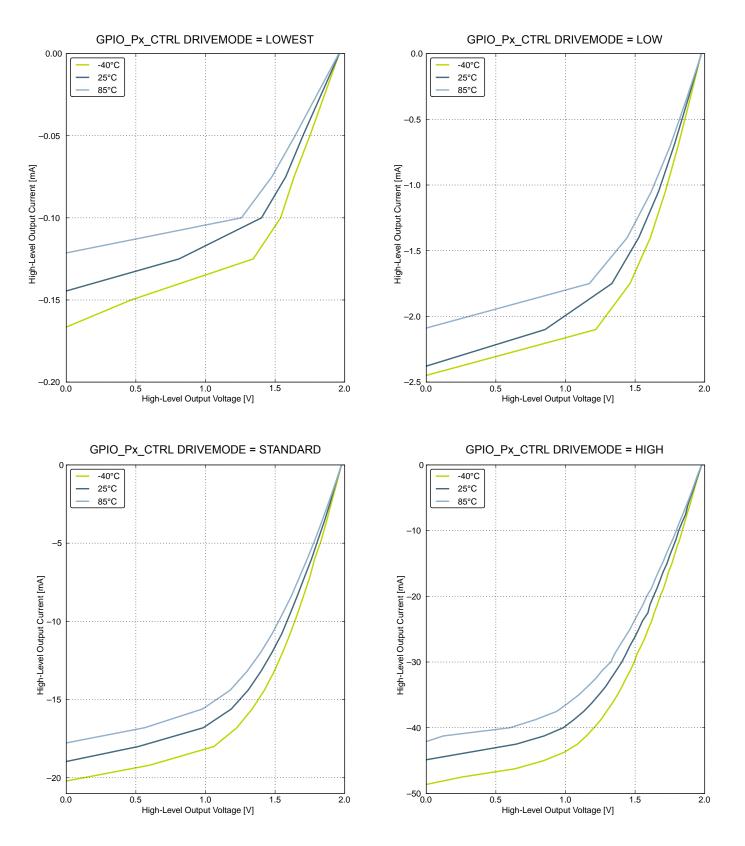


Figure 4.15. Typical High-Level Output Current, 2V Supply Voltage

4.10 Analog Digital Converter (ADC)

Table 4.14. ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
	V	Single-ended	0	_	V _{REF}	V
Input voltage range	V _{ADCIN}	Differential	-V _{REF} /2	_	V _{REF} /2	V
Input range of external refer- ence voltage, single-ended and differential	V _{ADCREFIN}		1.25		V _{DD}	V
Input range of external negative reference voltage on channel 7	VADCREFIN_CH7	See V _{ADCREFIN}	0	—	V _{DD} - 1.1	V
Input range of external positive reference voltage on channel 6	VADCREFIN_CH6	See V _{ADCREFIN}	0.625	—	V _{DD}	V
Common mode input range	VADCCMIN		0	—	V _{DD}	V
Input current	I _{ADCIN}	2 pF sampling capacitors	_	<100	—	nA
Analog input common mode re- jection ratio	CMRR _{ADC}			65	_	dB
		1 Msamples/s, 12 bit, external reference, ADC_CLK = 13 MHz, BIASPROG = 0xF4B	_	735 ¹	_	μA
	I _{ADC}	1 Msamples/s, 12 bit, internal 1.25V reference, ADC_CLK = 13 MHz, BIASPROG = 0xF4B		760 ¹	_	μA
		500 Ksamples/s, 12 bit, external reference, ADC_CLK = 7 MHz, BIASPROG = 0x747	_	346 ¹	_	μA
Average active current		500 Ksamples/s, 12 bit, internal 1.25V reference, ADC_CLK = 7 MHz, BIASPROG = 0x747	_	354 ¹	_	μA
		10 kSamples/s, 12 bit, internal 1.25 V reference, WARMUP = 00b, ADC_CLK = 7 MHz, BIA- SPROG = 0x747		52 ¹	_	μA
		10 kSamples/s, 12 bit, internal 1.25 V reference, WARMUP = 01b, ADC_CLK = 7 MHz, BIA- SPROG = 0x747		50 ¹	_	μA
		10 kSamples/s, 12 bit, internal 1.25 V reference, WARMUP = 10b, ADC_CLK = 7 MHz, BIA- SPROG = 0x747		54 ¹	_	μA
Input capacitance	C _{ADCIN}		_	2	_	pF
Input ON resistance	R _{ADCIN}		1			MΩ
Input RC filter resistance	R _{ADCFILT}		_	10		kΩ
Input RC filter/decoupling ca- pacitance	CADCFILT		_	250	-	fF
Input bias current	IADCBIASIN	VSS < VIN < VDD	-40	_	40	nA
	1		1		1	

5.1.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2				Clock Management Unit, clock output number 0.
CMU_CLK1	PA1				Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.
					Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7			I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6			I2C0 Serial Data input / output.
LETIM0_OUT0	PD6	PB11	PF0		Low Energy Timer LETIM0, output channel 0.

Table 5.2. Alternate functionality overview

5.4 EFM32G232 (TQFP64)

5.4.1 Pinout

The EFM32G232 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

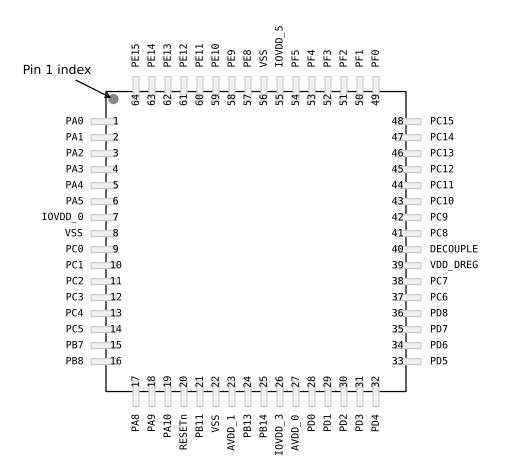


Figure 5.4. EFM32G232 Pinout (top view, not to scale)

Table 5.10. Device Pinout

	64 Pin# and Name		Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	Timers	Communication	Other			
1	PA0		TIM0_CC0 #0/1	I2C0_SDA #0				
2	PA1		TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0			
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0			
4	PA3		TIM0_CDTI0 #0					
5	PA4		TIM0_CDTI1 #0					

	12 Pin# and Name	# and Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other	
A6	PF7			TIM0_CC1 #2	U0_RX #0		
A7	PF5		EBI_REn #0	TIM0_CDTI2 #2			
A8	PF4		EBI_WEn #0	TIM0_CDTI1 #2			
A9	PE4				US0_CS #1		
A10	PC14	ACMP1_C H6		TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0	U0_TX #3		
A11	PC15	ACMP1_C H7		TIM0_CDTI2 #1/3 TIM1_CC2 #0	U0_RX #3	DBG_SWO #1	
B1	PA15		EBI_AD08 #0				
B2	PE13		EBI_AD05 #0		US0_CS #0	ACMP0_O #0	
B3	PE11		EBI_AD03 #0	TIM1_CC1 #1	US0_RX #0	BOOT_RX	
B4	PE8		EBI_AD00 #0	PCNT2_S0IN #1			
B5	PD11		EBI_CS2 #0				
B6	PF8			TIM0_CC2 #2			
B7	PF6			TIM0_CC0 #2	U0_TX #0		
B8	PF3		EBI_ALE #0	TIM0_CDTI0 #2			
B9	PE5				US0_CLK #1		
B10	PC12	ACMP1_C H4				CMU_CLK0 #1	
B11	PC13	ACMP1_C H5		TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0			
C1	PA1		EBI_AD10 #0	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0	
C2	PA0		EBI_AD09 #0	TIM0_CC0 #0/1	I2C0_SDA #0		
C3	PE10		EBI_AD02 #0	TIM1_CC0 #1	US0_TX #0	BOOT_TX	
C4	PD13						
C5	PD12		EBI_CS3 #0				
C6	PF9						
C7	VSS	Ground.					
C8	PF2		EBI_ARDY #0			ACMP1_O #0 DBG_SWO #0	
C9	PE6				US0_RX #1		
C10	PC10	ACMP1_C H2		TIM2_CC2 #2	US0_RX #2		
C11	PC11	ACMP1_C H3			US0_TX #2		
D1	PA3		EBI_AD12 #0	TIM0_CDTI0 #0	U0_TX #2		
D2	PA2		EBI_AD11 #0	TIM0_CC2 #0/1		CMU_CLK0 #0	

	12 Pin# and Name	Pin Alternate Functionality / Description								
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other				
K5	PA11									
K6	RESETn		active low.To apply an electric the internal pull-up ensu	xternal reset source to this ure that reset is released.	s pin, it is required to only	drive this pin low during				
K7	AVSS_1	Analog grou	ind 1.							
K8	AVDD_2	Analog pow	er supply 2.							
K9	AVDD_1	Analog pow	er supply 1.							
K10	AVSS_0	Analog grou	ind 0.							
K11	PD1	ADC0_CH 1		TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1					
L1	PB8	LFXTAL_N			US1_CS #0					
L2	PC5	ACMP0_C H5		LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0					
L3	PA14			TIM2_CC2 #1						
L4	IOVDD_1	Digital IO po	ower supply 1.							
L5	PB11	DAC0_OU T0		LETIM0_OUT0 #1						
L6	PB12	DAC0_OU T1		LETIM0_OUT1 #1						
L7	AVSS_2	Analog grou	ind 2.	- -	- -	·				
L8	PB13	HFXTAL_ P			LEU0_TX #1					
L9	PB14	HFXTAL_ N			LEU0_RX #1					
L10	AVDD_0	Analog pow	er supply 0.							
L11	PD0	ADC0_CH 0		PCNT2_S0IN #0	US1_TX #1					

5.6.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Table 5.17. Alternate functionality overview

Alternate					LOCATION
Functionality	0	1	2	3	Description
PCNT1_S0IN	PC4	PB3			Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5	PB4			Pulse Counter PCNT1 input number 1.
PCNT2_S0IN	PD0	PE8			Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.
TIM0_CC0	PA0	PA0		PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2		PD3	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
TIM2_CC0		PA12			Timer 2 Capture Compare input / output channel 0.
TIM2_CC1		PA13			Timer 2 Capture Compare input / output channel 1.
TIM2_CC2		PA14			Timer 2 Capture Compare input / output channel 2.
US0_CLK	PE12	PE5			USART0 clock input / output.
US0_CS	PE13	PE4			USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11	PE6			USART0 Synchronous mode Master Input / Slave Output (MI-SO).
US0_TX	PE10				USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
030_1X	FEIU	PE7			USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX		PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).
		DDO			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX		PD0			USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
					USART2 Asynchronous Receive.
US2_RX		PB4			USART2 Synchronous mode Master Input / Slave Output (MI-SO).

	P100 Pin# d Name	Pin Alternate Functionality / Description				
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
53	PD7	ADC0_CH 7		LETIM0_OUT1 #0	I2C0_SCL #1	
54	PD8					CMU_CLK1 #1
55	PC6	ACMP0_C H6			LEU1_TX #0 I2C0_SDA #2	
56	PC7	ACMP0_C H7			LEU1_RX #0 I2C0_SCL #2	
57	VDD_DRE G	Power supp	ly for on-chip voltage reg	ulator.		
58	VSS	Ground.				
59	DECOU- PLE	Decouple or	utput for on-chip voltage r	egulator. An external capa	acitance of size C _{DECOUP}	LE is required at this pin.
60	PE0			PCNT0_S0IN #1	U0_TX #1	
61	PE1			PCNT0_S1IN #1	U0_RX #1	
62	PE2					ACMP0_O #1
63	PE3					ACMP1_O #1
64	PE4	LCD_COM 0			US0_CS #1	
65	PE5	LCD_COM 1			US0_CLK #1	
66	PE6	LCD_COM 2			US0_RX #1	
67	PE7	LCD_COM 3			US0_TX #1	
68	PC8	ACMP1_C H0		TIM2_CC0 #2	US0_CS #2	
69	PC9	ACMP1_C H1		TIM2_CC1 #2	US0_CLK #2	
70	PC10	ACMP1_C H2		TIM2_CC2 #2	US0_RX #2	
71	PC11	ACMP1_C H3			US0_TX #2	
72	PC12	ACMP1_C H4				CMU_CLK0 #1
73	PC13	ACMP1_C H5		TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0		
74	PC14	ACMP1_C H6		TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0	U0_TX #3	
75	PC15	ACMP1_C H7		TIM0_CDTI2 #1/3 TIM1_CC2 #0	U0_RX #3	DBG_SWO #1
76	PF0			LETIM0_OUT0 #2		DBG_SWCLK #0/1

Alternate					LOCATION
Functionality	0	1	2	3	Description
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.
					Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.
EBI_AD00	PE8				External Bus Interface (EBI) address and data input / output pin 00.
EBI_AD01	PE9				External Bus Interface (EBI) address and data input / output pin 01.
EBI_AD02	PE10				External Bus Interface (EBI) address and data input / output pin 02.
EBI_AD03	PE11				External Bus Interface (EBI) address and data input / output pin 03.
EBI_AD04	PE12				External Bus Interface (EBI) address and data input / output pin 04.
EBI_AD05	PE13				External Bus Interface (EBI) address and data input / output pin 05.
EBI_AD06	PE14				External Bus Interface (EBI) address and data input / output pin 06.
EBI_AD07	PE15				External Bus Interface (EBI) address and data input / output pin 07.
EBI_AD08	PA15				External Bus Interface (EBI) address and data input / output pin 08.
EBI_AD09	PA0				External Bus Interface (EBI) address and data input / output pin 09.
EBI_AD10	PA1				External Bus Interface (EBI) address and data input / output pin 10.
EBI_AD11	PA2				External Bus Interface (EBI) address and data input / output pin 11.
EBI_AD12	PA3				External Bus Interface (EBI) address and data input / output pin 12.
EBI_AD13	PA4				External Bus Interface (EBI) address and data input / output pin 13.
EBI_AD14	PA5				External Bus Interface (EBI) address and data input / output pin 14.
EBI_AD15	PA6				External Bus Interface (EBI) address and data input / output pin 15.
EBI_ALE	PF3				External Bus Interface (EBI) Address Latch Enable output.

Alternate					LOCATION
Functionality	0	1	2	3	Description
LCD_SEG7	PE11				LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG8	PE12				LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG9	PE13				LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG10	PE14				LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG11	PE15				LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG12	PA15				LCD segment line 12. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG13	PA0				LCD segment line 13. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG14	PA1				LCD segment line 14. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG15	PA2				LCD segment line 15. Segments 12, 13, 14 and 15 are con- trolled by SEGEN3.
LCD_SEG16	PA3				LCD segment line 16. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG17	PA4				LCD segment line 17. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG18	PA5				LCD segment line 18. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG19	PA6				LCD segment line 19. Segments 16, 17, 18 and 19 are con- trolled by SEGEN4.
LCD_SEG20	PB3				LCD segment line 20. Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LCD_SEG21	PB4				LCD segment line 21. Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LCD_SEG22	PB5				LCD segment line 22. Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LCD_SEG23	PB6				LCD segment line 23. Segments 20, 21, 22 and 23 are con- trolled by SEGEN5.
LCD_SEG24	PF6				LCD segment line 24. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG25	PF7				LCD segment line 25. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG26	PF8				LCD segment line 26. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG27	PF9				LCD segment line 27. Segments 24, 25, 26 and 27 are con- trolled by SEGEN6.
LCD_SEG28	PD9				LCD segment line 28. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.
LCD_SEG29	PD10				LCD segment line 29. Segments 28, 29, 30 and 31 are con- trolled by SEGEN7.

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX
D	0.170	—	0.270	S1		4.500 BSC	—
E	0.950	—	1.050	V		9.000 BSC	—
F	0.170	—	0.230	V1	_	4.5000 BSC	—
G	—	0.500 BSC		W	_	0.200 BSC	—
Н	0.050	_	0.150	AA	_	1.000BSC	—
J	0.090	—	0.200				
К	0.500	_	0.700				
L	0DE G	_	7DEG				

The TQFP48 Package is 7 by 7 mm in size and has a 0.5 mm pin pitch.

The TQFP48 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

10.2 QFN64 PCB Layout

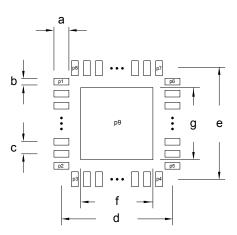


Figure 10.2. QFN64 PCB Land Pattern

Table 10.2. QFN64 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	0.85	P1	1	P8	64
b	0.30	P2	16	P9	65
с	0.50	P3	17		
d	8.90	P4	32		
e	8.90	P5	33		
f	7.20	P6	48		
g	7.20	P7	49		

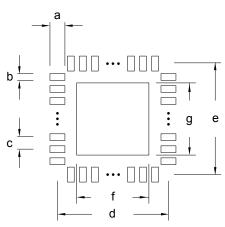


Figure 10.3. QFN64 PCB Solder Mask

Table 10.3. QFN64 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Dim. (mm)
а	0.97	e	8.90
b	0.42	f	7.32
с	0.50	g	7.32

11.2 QFN32 PCB Layout

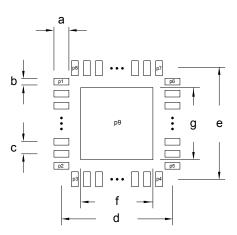


Figure 11.2. QFN32 PCB Land Pattern

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	0.80	P1	1	P6	24
b	0.35	P2	8	P7	25
С	0.65	P3	9	P8	32
d	6.00	P4	16	P9	33
е	6.00	P5	17		
f	4.40				
g	4.40				

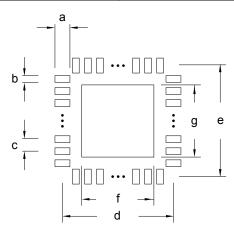


Figure 11.3. QFN32 PCB Solder Mask

Table 11.3. QFN32 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.92
b	0.47
с	0.65

Symbol	Dim. (mm)
d	6.00
e	6.00
f	4.52
g	4.52

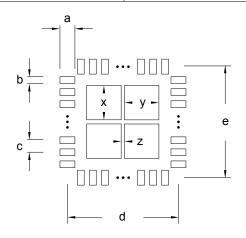


Figure 11.4. QFN32 PCB Stencil Design

Table 11.4. QFN32 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.70
b	0.25
с	0.65
d	6.00
e	6.00
x	1.30
у	1.30
Z	0.50

Note:

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see 5. Pin Definitions.

Corrected pin number for symbol P3 in Table 11.2 QFN32 PCB Land Pattern Dimensions (Dimensions in mm) on page 191.

Updated package marking figures to include temperature grade.

13.3 Revision 1.90

May 22nd, 2015

For devices with an ADC, Added clarification on conditions for INL_{ADC} and DNL_{ADC} parameters.

Corrected EM2 current consumption condition in Electrical Characteristics section.

Added AUXHFRCO to block diagram and Electrical Characteristics.

Updated HFRCO table in the Electrical Characteristics section.

Updated EM0, EM2, EM3, and EM4 maximum current specifications in the Electrical Characteristics section.

Updated the Output Low Voltage maximum for sinking 20 mA with VDD = 3.0 V in the Electrical Characteristics section.

Updated the Input Leakage Current maximum in the Electrical Characteristics section.

Updated the minimum and maximum frequency specifications for the LFRCO, HFRCO, and AUXHFRCO in the Electrical Characteristics section.

Updated the maximum current consumption of the HFRCO in the Electrical Characteristics section.

Updated the maximum current consumption of the HFRCO in the Electrical Characteristics section.

Added some minimum ADC SNR, SNDR, and SFDR specifications in the Electrical Characteristics section.

Added some minimum and maximum ADC offset voltage, DNL, and INL specifications in the Electrical Characteristics section.

Added maximum DAC current specifications in the Electrical Characteristics section.

Added maximum ACMP current and maximum and minimum offset voltage specifications in the Electrical Characteristics section.

Added maximum VCMP current and updated typical VCMP current specifications in the Electrical Characteristics section.

Updated references to energyAware Designer to Configurator.

13.4 Revision 1.80

July 2nd, 2014 Corrected single power supply voltage minimum value from 1.85V to 1.98V. Updated current consumption. Updated transition between energy modes. Updated power management data. Updated GPIO data. Updated LFXO, HFXO, HFRCO and ULFRCO data. Updated LFRCO and HFRCO plots.

For devices with an ACMP, updated ACMP data.