

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g842f64g-e-qfp64r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Ordering Information

The following table shows the available EFM32G devices.

Ordering Code	Flash (kB)	RAM (kB)	Max Speed (MHz)	Supply Volt- age (V)	Tempera- ture (°C)	Package
EFM32G200F16G-E-QFN32	16	8	32	1.98 - 3.8	-40 - 85	QFN32
EFM32G200F32G-E-QFN32	32	8	32	1.98 - 3.8	-40 - 85	QFN32
EFM32G200F64G-E-QFN32	64	16	32	1.98 - 3.8	-40 - 85	QFN32
EFM32G210F128G-E-QFN32	128	16	32	1.98 - 3.8	-40 - 85	QFN32
EFM32G222F32G-E-QFP48	32	8	32	1.98 - 3.8	-40 - 85	TQFP48
EFM32G222F64G-E-QFP48	64	16	32	1.98 - 3.8	-40 - 85	TQFP48
EFM32G222F128G-E-QFP48	128	16	32	1.98 - 3.8	-40 - 85	TQFP48
EFM32G230F32G-E-QFN64	32	8	32	1.98 - 3.8	-40 - 85	QFN64
EFM32G230F64G-E-QFN64	64	16	32	1.98 - 3.8	-40 - 85	QFN64
EFM32G230F128G-E-QFN64	128	16	32	1.98 - 3.8	-40 - 85	QFN64
EFM32G232F32G-E-QFP64	32	8	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32G232F64G-E-QFP64	64	16	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32G232F128G-E-QFP64	128	16	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32G280F32G-E-QFP100	32	8	32	1.98 - 3.8	-40 - 85	LQFP100
EFM32G280F64G-E-QFP100	64	16	32	1.98 - 3.8	-40 - 85	LQFP100
EFM32G280F128G-E-QFP100	128	16	32	1.98 - 3.8	-40 - 85	LQFP100
EFM32G290F32G-E-BGA112	32	8	32	1.98 - 3.8	-40 - 85	BGA112
EFM32G290F64G-E-BGA112	64	16	32	1.98 - 3.8	-40 - 85	BGA112
EFM32G290F128G-E-BGA112	128	16	32	1.98 - 3.8	-40 - 85	BGA112
EFM32G840F32G-E-QFN64	32	8	32	1.98 - 3.8	-40 - 85	QFN64
EFM32G840F64G-E-QFN64	64	16	32	1.98 - 3.8	-40 - 85	QFN64
EFM32G840F128G-E-QFN64	128	16	32	1.98 - 3.8	-40 - 85	QFN64
EFM32G842F32G-E-QFP64	32	8	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32G842F64G-E-QFP64	64	16	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32G842F128G-E-QFP64	128	16	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32G880F32G-E-QFP100	32	8	32	1.98 - 3.8	-40 - 85	LQFP100
EFM32G880F64G-E-QFP100	64	16	32	1.98 - 3.8	-40 - 85	LQFP100
EFM32G880F128G-E-QFP100	128	16	32	1.98 - 3.8	-40 - 85	LQFP100
EFM32G890F32G-E-BGA112	32	8	32	1.98 - 3.8	-40 - 85	BGA112
EFM32G890F64G-E-BGA112	64	16	32	1.98 - 3.8	-40 - 85	BGA112
EFM32G890F128G-E-BGA112	128	16	32	1.98 - 3.8	-40 - 85	BGA112

3.1.14 Universal Asynchronous Receiver/Transmitter (UART)

The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module. It supports full- and half-duplex asynchronous UART communication.

3.1.15 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption.

3.1.16 Timer/Counter (TIMER)

The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications.

3.1.17 Real Time Counter (RTC)

The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down.

3.1.18 Low Energy Timer (LETIMER)

The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC.

3.1.19 Pulse Counter (PCNT)

The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3.

3.1.20 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

3.1.21 Voltage Comparator (VCMP)

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

3.1.22 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals.

3.1.23 Digital to Analog Converter (DAC)

The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single-ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output.

3.3 Memory Map

The EFM32G memory map is shown in the figure below. RAM and Flash sizes are for the largest memory configuration.

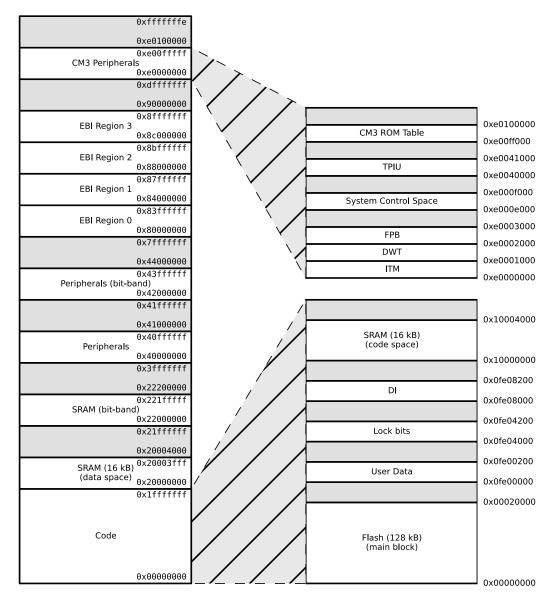


Figure 3.2. System Address Space with Core and Code Space Listing

EFM32G Data Sheet System Overview

_		
0x400e0400	AES	0xffffffe
0x400e0000	AES	0xe0100000
0x400cc400	PRS	0xe00ffff
0x400cc000	FRS	CM3 Peripherals
0x400ca400	RMU	0xe0000000
0x400ca000	NH0	0xdfffffff
0x400c8400	СМИ	0.Aditititi
0x400c8000	6110	0×90000000
0x400c6400	EMU	0x8fffffff
0x400c6000		EBI Region 3
0x400c4000 0x400c2000	DMA	0×8c000000
0x400c2000		0x8bfffff
0x400c0400	MSC	EBI Region 2
0x4008a400		0×88000000
0x4008a000	LCD	0x87fffff
0x40088400		EBI Region 1
0x40088000	WDOG	0×84000000
0x40086c00	DONTO	0x83ffffff
0x40086800	PCNT2	EBI Region 0 0x80000000
0x40086400	PCNT1 PCNT0	
0x40086000	PCNTU	0x7fffffff
0x40084800	LEUART1	0×44000000
0x40084400	LEUARTO	0x43ffffff
0x40084000	LEGARIO	Peripherals (bit-band)
0x40082400	LETIMERO	0×42000000
0×40082000		0x41ffffff
0x40080400	RTC	
0×40080000		0×41000000
0x40010c00	TIMER2	0x40ffffff
0×40010800 0×40010400	TIMER1	Peripherals
0x40010400	TIMERO	0×40000000
0x4000e400		0x3ffffff
0x4000e000	UART0	
0x4000cc00		0×22200000
0x4000c800	USART2	0x221fffff
0x4000c400	USART1	SRAM (bit-band)
0x4000c000	USART0	0×22000000
0x4000a400	2C0	/ 0x21ffffff
0x4000a000	1200	0×20004000
0x40008400	EBI	CDAM (1C Hp) 0x20003fff
0x40008000	LDI	SRAM (16 KB)
0x40007000	GPIO	(data space) 0x20000000
0x40006000	GHO	0x1fffffff
0x40004400	DACO	
0x40004000		
0x40002400	ADC0	
0x40002000		/ Code
0×40001800 0×40001400	ACMP1	
0x40001400	ACMP0	
0x40001000		
0x40000400	VCMP	/ 0×0000000

Figure 3.3. System Address Space with Peripheral Listing

4.4.2 EM1 Current Consumption

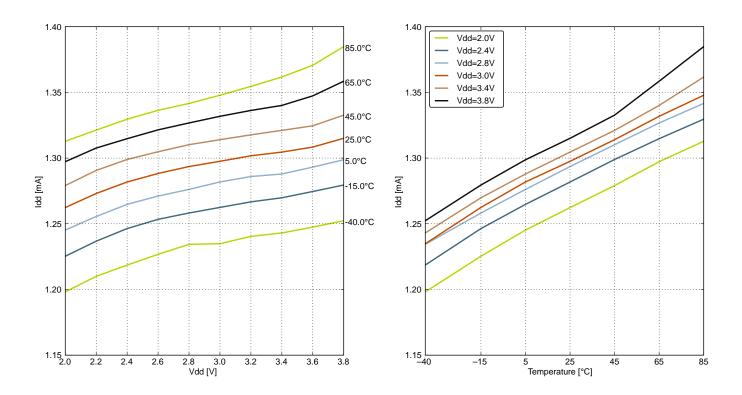


Figure 4.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 28 MHz

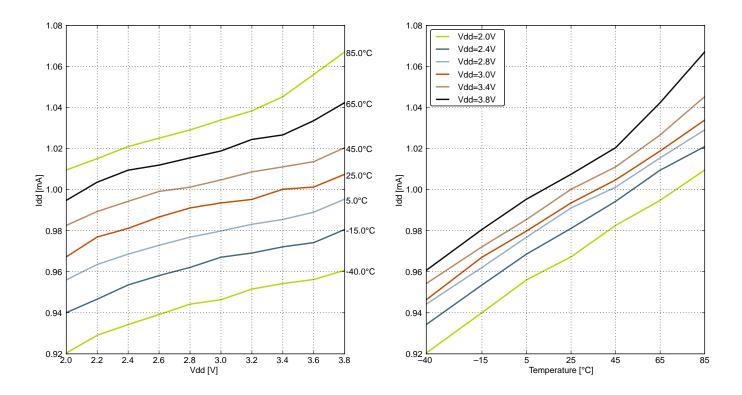


Figure 4.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz

4.6 Power Management

The EFM32G requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, "AN0002 EFM32 Hardware Design Considerations".

Table 4.5. Power Management

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
BOD threshold on falling external sup-	V _{BODextthr} -	EM0	1.74	_	1.96	V
ply voltage		EM1	1.74	_	1.96	V
		EM2	1.74	_	1.96	V
BOD threshold on rising external supply voltage	V _{BODextthr+}	EM0	—	1.85	_	V
Power-on Reset (POR) threshold on rising external supply voltage	V _{PORthr+}		—	_	1.98	V
Delay from reset is released until pro- gram execution starts	tRESETdly	Applies to Power-on Re- set, Brown-out Reset and pin reset.	_	163	_	μs
negative pulse length to ensure com- plete reset of device	t _{RESET}		50	_	_	ns
Voltage regulator decoupling capaci- tor.	C _{DECOUPLE}	X5R capacitor recom- mended. Apply between DECOUPLE pin and GROUND		1		μF

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Flash erase cycles before failure	EC _{FLASH}		20000	_	_	cycles
		T _{AMB} <150 °C	10000	_	_	h
Flash data retention	RET _{FLASH}	T _{AMB} <85 °C	10	_	_	years
		T _{AMB} <70 °C	20	_	_	years
Word (32-bit) programming time	tw_prog		20	_	—	μs
Page erase time ²	t _{P_ERASE}		20.7	22.0	24.8	ms
Device erase time ³	t _{D_ERASE}		41.8	45.0	49.2	ms
Erase current	I _{ERASE}		_		7 ¹	mA
Write current	I _{WRITE}		_	—	7 ¹	mA
Supply voltage during flash erase and write	V _{FLASH}		1.98	_	3.8	V

Note:

1. Measured at 25 °C.

2. From setting ERASEPAGE bit in MSC_WRITECMD to 1 to reading 1 in ERASE bit in MSC_IF. Internal setup and hold times for flash control signals are included.

3. From setting DEVICEERASE bit in AAP_CMD to 1 to reading 0 in ERASEBUSY bit in AAP_STATUS. Internal setup and hold times for flash control signals are included.

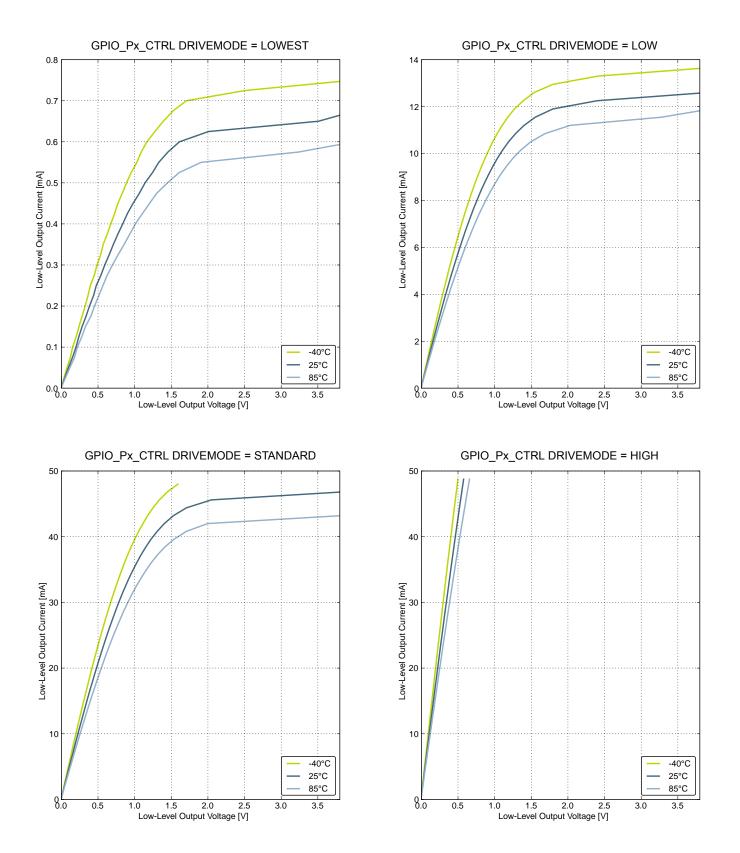


Figure 4.18. Typical Low-Level Output Current, 3.8V Supply Voltage

4.9.5 AUXHFRCO

Table 4.12. AUXHFRCO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency, V _{DD} = 3.0 V, T _{AMB} =25 °C	fauxhfrco	14 MHz frequency band	13.580	14.0	14.420	MHz
Settling time after start-up	t _{AUXHFRCO_settling}	f _{AUXHFRCO} = 14 MHz	_	0.6	—	Cycles
Duty cycle	DC _{AUXHFRCO}	f _{AUXHFRCO} = 14 MHz	48.5	50	51	%
Frequency step for LSB change in TUNING value	TUNESTEPAUXHFRCO		_	0.3 ¹	_	%

Note:

1. The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value in the 14 MHz range across operating conditions.

4.9.6 ULFRCO

Table 4.13. ULFRCO

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Oscillation frequency	fulfrco	25 °C, 3 V	0.7	_	1.75	kHz
Temperature coefficient	TC _{ULFRCO}			0.05		%/°C
Supply voltage coefficient	VC _{ULFRCO}			-18.2	_	%/V

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Signal-to-Noise And Distortion Ratio (SINAD)	SINAD _{ADC}	200 kSamples/s, 12 bit, differen- tial, V _{DD} reference, ADC_CLK = 7 MHz, BIASPROG = 0x747	62	68	_	dB
		200 kSamples/s, 12 bit, differen- tial, 2xV _{DD} reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	69	_	dB

Alternate					LOCATION
Functionality	0	1	2	3	Description
LETIM0_OUT1	PD7		PF1		Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14			LEUART0 Receive input.
LEU0_TX	PD4	PB13			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13		PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1		Pulse Counter PCNT0 input number 1.
TIM0_CC0	PA0	PA0			Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1			Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2			Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0		PC13		PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1		PC14		PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2		PC15		PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12				USART0 clock input / output.
US0_CS	PE13				USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11				USART0 Synchronous mode Master Input / Slave Output (MI-SO).
	0540				USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX	PE10				USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7				USART1 clock input / output.
US1_CS	PB8				USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX	PC1				USART1 Synchronous mode Master Input / Slave Output (MI-SO).
	DC0				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX	PC0				USART1 Synchronous mode Master Output / Slave Input (MOSI).

Alternate					LOCATION
Functionality	0	1	2	3	Description
TIM2_CC0	PA8	PA12	PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9	PA13	PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10	PA14	PC10		Timer 2 Capture Compare input / output channel 2.
U0_RX	PF7	PE1	PA4	PC15	UART0 Receive input.
U0_TX	PF6	PE0	PA3	PC14	UART0 Transmit output. Also used as receive input in half duplex communication.
US0_CLK	PE12	PE5	PC9		USART0 clock input / output.
US0_CS	PE13	PE4	PC8		USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11	PE6	PC10		USART0 Synchronous mode Master Input / Slave Output (MI-SO).
		057	DOI1		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX	PE10	PE7	PC11		USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX	PC1	PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).
	DC0	000			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX	PC0	PD0			USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
					USART2 Asynchronous Receive.
US2_RX	PC3	PB4			USART2 Synchronous mode Master Input / Slave Output (MI-SO).
US2 TX	PC2	PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.
032_17	F02	FDJ			USART2 Synchronous mode Master Output / Slave Input (MOSI).

BGA112 Pin# and Name Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
K5	PA11					
K6	RESETn		active low.To apply an electric the internal pull-up ensu	xternal reset source to this ure that reset is released.	s pin, it is required to only	drive this pin low during
K7	AVSS_1	Analog grou	ind 1.			
K8	AVDD_2	Analog pow	er supply 2.			
K9	AVDD_1	Analog pow	er supply 1.			
K10	AVSS_0	Analog grou	ind 0.			
K11	PD1	ADC0_CH 1		TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1	
L1	PB8	LFXTAL_N			US1_CS #0	
L2	PC5	ACMP0_C H5		LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0	
L3	PA14			TIM2_CC2 #1		
L4	IOVDD_1	Digital IO po	ower supply 1.			
L5	PB11	DAC0_OU T0		LETIM0_OUT0 #1		
L6	PB12	DAC0_OU T1		LETIM0_OUT1 #1		
L7	AVSS_2	Analog grou	Analog ground 2.			
L8	PB13	HFXTAL_ P			LEU0_TX #1	
L9	PB14	HFXTAL_ N			LEU0_RX #1	
L10	AVDD_0	Analog power supply 0.				
L11	PD0	ADC0_CH 0		PCNT2_S0IN #0	US1_TX #1	

5.6.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

KCMP0_CH0 PC0 Analog comparator ACMP0, channel 0. KCMP0_CH1 PC1 Image: Comparator ACMP0, channel 1. KCMP0_CH2 PC2 Image: Comparator ACMP0, channel 1. KCMP0_CH3 PC3 Image: Comparator ACMP0, channel 2. KCMP0_CH4 PC4 Image: Comparator ACMP0, channel 3. KCMP0_CH4 PC4 Image: Comparator ACMP0, channel 4. KCMP0_CH5 PC5 Image: Comparator ACMP0, channel 5. KCMP0_CH6 PC6 Image: Comparator ACMP0, channel 6. KCMP0_CH7 PC7 Image: Comparator ACMP0, channel 7. KCMP0_O PE13 PE2 Image: Comparator ACMP1, channel 7. KCMP1_CH0 PC8 Image: Comparator ACMP1, channel 1. KCMP1_CH1 PC9 Image: Comparator ACMP1, channel 1. KCMP1_CH3 PC11 Image: Comparator ACMP1, channel 1. KCMP1_CH4 PC12 Image: Comparator ACMP1, channel 3. KCMP1_CH4 PC12 Image: Comparator ACMP1, channel 3. KCMP1_CH4 PC12 Image: Comparator ACMP1, channel 5. KCMP1_CH4 PC12 Imalog: Comparator ACMP1, chan	Alternate					LOCATION
KCMP0_CH1 PC1 Analog comparator ACMP0, channel 1. XCMP0_CH2 PC2 Analog comparator ACMP0, channel 2. XCMP0_CH3 PC3 Analog comparator ACMP0, channel 3. XCMP0_CH4 PC4 Analog comparator ACMP0, channel 4. XCMP0_CH5 PC5 Analog comparator ACMP0, channel 5. XCMP0_CH6 PC6 Analog comparator ACMP0, channel 6. XCMP0_CH7 PC7 Analog comparator ACMP0, channel 6. XCMP0_CH7 PC7 Analog comparator ACMP0, channel 7. XCMP0_CH7 PC7 Analog comparator ACMP0, channel 7. XCMP1_CH0 PC8 Analog comparator ACMP1, channel 7. XCMP1_CH1 PC9 Analog comparator ACMP1, channel 1. XCMP1_CH2 PC10 Analog comparator ACMP1, channel 1. XCMP1_CH2 PC11 Analog comparator ACMP1, channel 3. XCMP1_CH4 PC12 Analog comparator ACMP1, channel 4. XCMP1_CH4 PC12 Analog comparator ACMP1, channel 5. XCMP1_CH5 PC13 Analog comparator ACMP1, channel 7. XCMP1_CH6 PC14 Analog comparator ACMP1, channel 7. <th>Functionality</th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>Description</th>	Functionality	0	1	2	3	Description
KCMP0_CH2 PC2 Analog comparator ACMP0, channel 2. KCMP0_CH3 PC3 Analog comparator ACMP0, channel 3. KCMP0_CH4 PC4 Analog comparator ACMP0, channel 4. KCMP0_CH5 PC5 Analog comparator ACMP0, channel 5. KCMP0_CH6 PC6 Analog comparator ACMP0, channel 5. KCMP0_CH7 PC7 Analog comparator ACMP0, channel 6. KCMP0_CH7 PC7 Analog comparator ACMP0, channel 7. KCMP0_CH7 PC6 Analog comparator ACMP0, digital output. KCMP1_CH1 PC9 Analog comparator ACMP1, channel 0. KCMP1_CH1 PC9 Analog comparator ACMP1, channel 1. KCMP1_CH2 PC10 Analog comparator ACMP1, channel 2. KCMP1_CH3 PC11 Analog comparator ACMP1, channel 3. KCMP1_CH4 PC12 Analog comparator ACMP1, channel 5. KCMP1_CH4 PC12 Analog comparator ACMP1, channel 7.	ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH3 PC3 Analog comparator ACMP0, channel 3. ACMP0_CH4 PC4 Analog comparator ACMP0, channel 4. ACMP0_CH5 PC5 Analog comparator ACMP0, channel 5. ACMP0_CH6 PC6 Analog comparator ACMP0, channel 6. ACMP0_CH7 PC7 Analog comparator ACMP0, channel 6. ACMP0_CH7 PC7 Analog comparator ACMP0, channel 7. ACMP0_O PE13 PE2 Analog comparator ACMP0, digital output. ACMP1_CH0 PC8 Analog comparator ACMP1, channel 0. ACMP1_CH1 PC9 Analog comparator ACMP1, channel 1. ACMP1_CH2 PC10 Analog comparator ACMP1, channel 1. ACMP1_CH3 PC11 Analog comparator ACMP1, channel 3. ACMP1_CH4 PC12 Analog comparator ACMP1, channel 4. ACMP1_CH4 PC12 Analog comparator ACMP1, channel 5. ACMP1_CH4 PC14 Analog comparator ACMP1, channel 6. ACMP1_CH5 PC13 Analog comparator ACMP1, channel 7. ACMP1_CH6 PC14 Analog comparator ACMP1, channel 7. ACMP1_O PF2 PE3 Anal	ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_CH4 PC4 Analog comparator ACMP0, channel 4. ACMP0_CH5 PC5 Analog comparator ACMP0, channel 5. ACMP0_CH6 PC6 Analog comparator ACMP0, channel 6. ACMP0_CH7 PC7 Analog comparator ACMP0, channel 6. ACMP0_CH7 PC7 Analog comparator ACMP0, digital output. ACMP1_CH0 PE3 PE2 Analog comparator ACMP1, dhannel 0. ACMP1_CH1 PC9 Analog comparator ACMP1, channel 0. ACMP1_CH2 PC10 Analog comparator ACMP1, channel 1. ACMP1_CH3 PC11 Analog comparator ACMP1, channel 3. ACMP1_CH4 PC12 Analog comparator ACMP1, channel 3. ACMP1_CH4 PC12 Analog comparator ACMP1, channel 4. ACMP1_CH4 PC12 Analog comparator ACMP1, channel 5. ACMP1_CH5 PC13 Analog comparator ACMP1, channel 6. ACMP1_CH6 PC14 Analog comparator ACMP1, channel 7. ACMP1_O PF2 PE3 Analog comparator ACMP1, digital output. ADC0_CH1 PD1 Analog to digital converter ADC0, input channel number 0. ADC0_CH4 <td< td=""><td>ACMP0_CH2</td><td>PC2</td><td></td><td></td><td></td><td>Analog comparator ACMP0, channel 2.</td></td<>	ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.
KCMP0_CH5 PC5 Analog comparator ACMP0, channel 5. KCMP0_CH6 PC6 Analog comparator ACMP0, channel 5. KCMP0_CH7 PC7 Analog comparator ACMP0, channel 6. KCMP0_CH7 PC7 Analog comparator ACMP0, channel 6. KCMP0_CH7 PC7 Analog comparator ACMP0, digital output. KCMP1_CH0 PC8 Analog comparator ACMP1, channel 0. KCMP1_CH1 PC9 Analog comparator ACMP1, channel 1. KCMP1_CH2 PC10 Analog comparator ACMP1, channel 1. KCMP1_CH2 PC10 Analog comparator ACMP1, channel 2. KCMP1_CH2 PC10 Analog comparator ACMP1, channel 3. KCMP1_CH4 PC12 Analog comparator ACMP1, channel 5. KCMP1_CH5 PC13 Analog comparator ACMP1, channel 5. KCMP1_CH4 PC12 Analog comparator ACMP1, channel 6. KCMP1_CH7 PC15 Analog comparator ACMP1, channel 7. KCM10_CH6 PC14 Analog comparator ACMP1, digital output. NDC0_CH1 PD1 Analog comparator ACMP1, channel 7. KCM1_CH7 PC15 Analog comparator ACMP1, digital outpu	ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH6PC6Analog comparator ACMP0, channel 6.ACMP0_CH7PC7Analog comparator ACMP0, digital output.ACMP0_OPE13PE2Analog comparator ACMP0, digital output.ACMP1_CH0PC8Analog comparator ACMP1, channel 0.ACMP1_CH1PC9Analog comparator ACMP1, channel 1.ACMP1_CH2PC10Analog comparator ACMP1, channel 1.ACMP1_CH2PC10Analog comparator ACMP1, channel 2.ACMP1_CH2PC10Analog comparator ACMP1, channel 3.ACMP1_CH3PC11Analog comparator ACMP1, channel 4.ACMP1_CH4PC12Analog comparator ACMP1, channel 5.ACMP1_CH4PC12Analog comparator ACMP1, channel 5.ACMP1_CH4PC13Analog comparator ACMP1, channel 6.ACMP1_CH4PC15Analog comparator ACMP1, channel 7.ACMP1_CH7PC15Analog comparator ACMP1, channel 7.ACMP1_OPF2PE3Analog comparator ACMP1, digital output.ADC0_CH0PD0Analog to digital converter ADC0, input channel number 0.ADC0_CH1PD1Analog to digital converter ADC0, input channel number 1.ADC0_CH3PD3Analog to digital converter ADC0, input channel number 4.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 7.BOOT_RXPE10Boottoader RX.BOOT_RXPE10Boottoader TX. <t< td=""><td>ACMP0_CH4</td><td>PC4</td><td></td><td></td><td></td><td>Analog comparator ACMP0, channel 4.</td></t<>	ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH7PC7PC7Analog comparator ACMP0, channel 7.ACMP0_OPE13PE2Analog comparator ACMP0, digital output.ACMP1_CH0PC8Analog comparator ACMP1, channel 0.ACMP1_CH1PC9Analog comparator ACMP1, channel 1.ACMP1_CH2PC10Analog comparator ACMP1, channel 1.ACMP1_CH3PC11Analog comparator ACMP1, channel 3.ACMP1_CH4PC12Analog comparator ACMP1, channel 4.ACMP1_CH4PC12Analog comparator ACMP1, channel 5.ACMP1_CH5PC13Analog comparator ACMP1, channel 6.ACMP1_CH6PC14Analog comparator ACMP1, channel 6.ACMP1_CH6PC14Analog comparator ACMP1, channel 7.ACMP1_CH6PC14Analog comparator ACMP1, channel 6.ACMP1_CH7PC15Analog comparator ACMP1, channel 7.ACMP1_CH7PC15Analog comparator ACMP1, channel number 0.ADC0_CH0PD0Analog to digital converter ADC0, input channel number 1.ADC0_CH1PD1Analog to digital converter ADC0, input channel number 3.ADC0_CH2PD2Analog to digital converter ADC0, input channel number 4.ADC0_CH4PD4Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input ch	ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_OPE13PE2Analog comparator ACMP0, digital output.ACMP1_CH0PC8Analog comparator ACMP1, channel 0.ACMP1_CH1PC9Analog comparator ACMP1, channel 1.ACMP1_CH2PC10Analog comparator ACMP1, channel 1.ACMP1_CH3PC11Analog comparator ACMP1, channel 2.ACMP1_CH4PC12Analog comparator ACMP1, channel 3.ACMP1_CH4PC12Analog comparator ACMP1, channel 4.ACMP1_CH5PC13Analog comparator ACMP1, channel 5.ACMP1_CH6PC14Analog comparator ACMP1, channel 6.ACMP1_CH6PC14Analog comparator ACMP1, channel 7.ACMP1_CH7PC15Analog comparator ACMP1, channel 7.ACMP1_CH7PC15Analog comparator ACMP1, digital output.ADC0_CH0PD0Analog comparator ACMP1, digital output.ADC0_CH1PD1Analog to digital converter ADC0, input channel number 0.ADC0_CH2PD2Analog to digital converter ADC0, input channel number 4.ADC0_CH4PD4Analog to digital converter ADC0, input channel number 4.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.ABOC1_CH4PD4Boottoader RX.ADC0_CH4PD7Boottoader RX.ADC0_CH4PD6Analog to digital converter ADC0, input channel number 7.ADC0_CH6PD6Analog to digital converter ADC0, inp	ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP1_CH0PC8Analog comparator ACMP1, channel 0.ACMP1_CH1PC9Analog comparator ACMP1, channel 1.ACMP1_CH2PC10Analog comparator ACMP1, channel 1.ACMP1_CH3PC11Analog comparator ACMP1, channel 2.ACMP1_CH3PC11Analog comparator ACMP1, channel 3.ACMP1_CH4PC12Analog comparator ACMP1, channel 4.ACMP1_CH5PC13Analog comparator ACMP1, channel 5.ACMP1_CH6PC14Analog comparator ACMP1, channel 6.ACMP1_CH7PC15Analog comparator ACMP1, channel 7.ACMP1_OPF2PE3Analog comparator ACMP1, digital output.ADC0_CH0PD0Analog to digital converter ADC0, input channel number 0.ADC0_CH1PD1Analog to digital converter ADC0, input channel number 1.ADC0_CH2PD2Analog to digital converter ADC0, input channel number 2.ADC0_CH3PD3Analog to digital converter ADC0, input channel number 4.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE11Boottoader RX.BOOT_TXPE10Boottoader TX.ZMU_CLK0PA2PC12Clock Management Unit, clock output number 0.	ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP1_CH1PC9Analog comparator ACMP1, channel 1.ACMP1_CH2PC10Analog comparator ACMP1, channel 2.ACMP1_CH3PC11Analog comparator ACMP1, channel 2.ACMP1_CH3PC12Analog comparator ACMP1, channel 3.ACMP1_CH4PC12Analog comparator ACMP1, channel 4.ACMP1_CH5PC13Analog comparator ACMP1, channel 5.ACMP1_CH6PC14Analog comparator ACMP1, channel 6.ACMP1_CH7PC15Analog comparator ACMP1, channel 7.ACMP1_OPF2PE3Analog comparator ACMP1, digital output.ADC0_CH0PD0Analog to digital converter ADC0, input channel number 0.ADC0_CH1PD1Analog to digital converter ADC0, input channel number 1.ADC0_CH2PD2Analog to digital converter ADC0, input channel number 3.ADC0_CH4PD4Analog to digital converter ADC0, input channel number 4.ADC0_CH5PD5Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE11Boottoader RX.BOOT_TXPE10Boottoader TX.CMU_CLK0PA2PC12Clock Management Unit, clock output number 0.	ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.
ACMP1_CH2PC10Analog comparator ACMP1, channel 2.ACMP1_CH3PC11Analog comparator ACMP1, channel 3.ACMP1_CH4PC12Analog comparator ACMP1, channel 4.ACMP1_CH5PC13Analog comparator ACMP1, channel 5.ACMP1_CH6PC14Analog comparator ACMP1, channel 6.ACMP1_CH7PC15Analog comparator ACMP1, channel 7.ACMP1_OPF2PE3Analog comparator ACMP1, digital output.ADC0_CH0PD0Analog to digital converter ADC0, input channel number 0.ADC0_CH1PD1Analog to digital converter ADC0, input channel number 1.ADC0_CH3PD3Analog to digital converter ADC0, input channel number 3.ADC0_CH4PD4Analog to digital converter ADC0, input channel number 4.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 6.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 7.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.ADC0_CL70PA2PC12Clock Management Unit, clock output number 0.	ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH3PC11Analog comparator ACMP1, channel 3.ACMP1_CH4PC12Analog comparator ACMP1, channel 4.ACMP1_CH5PC13Analog comparator ACMP1, channel 4.ACMP1_CH5PC13Analog comparator ACMP1, channel 5.ACMP1_CH6PC14Analog comparator ACMP1, channel 6.ACMP1_CH7PC15Analog comparator ACMP1, channel 7.ACMP1_OPF2PE3ACMP1_OPF2PE3Analog comparator ACMP1, digital output.ADC0_CH0PD0ADC0_CH1PD1ADC0_CH2PD2PD2Analog to digital converter ADC0, input channel number 0.ADC0_CH3PD3ADC0_CH4PD4Analog to digital converter ADC0, input channel number 4.ADC0_CH5PD5Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 5.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE10Bootloader RX.BOOT_CK0PA2PC12Clock Management Unit, clock output number 0.	ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH4PC12Analog comparator ACMP1, channel 4.ACMP1_CH5PC13Analog comparator ACMP1, channel 5.ACMP1_CH6PC14Analog comparator ACMP1, channel 6.ACMP1_CH7PC15Analog comparator ACMP1, channel 7.ACMP1_OPF2PE3Analog comparator ACMP1, digital output.ADC0_CH0PD0Analog to digital converter ADC0, input channel number 0.ADC0_CH1PD1Analog to digital converter ADC0, input channel number 1.ADC0_CH2PD2Analog to digital converter ADC0, input channel number 2.ADC0_CH3PD3Analog to digital converter ADC0, input channel number 4.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 4.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.30OT_RXPE10Bootloader RX.30OT_TXPE10Clock Management Unit, clock output number 0.	ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH5PC13PC13Analog comparator ACMP1, channel 5.ACMP1_CH6PC14Analog comparator ACMP1, channel 6.ACMP1_CH7PC15Analog comparator ACMP1, channel 7.ACMP1_OPF2PE3Analog comparator ACMP1, digital output.ADC0_CH0PD0Analog to digital converter ADC0, input channel number 0.ADC0_CH1PD1Analog to digital converter ADC0, input channel number 1.ADC0_CH2PD2Analog to digital converter ADC0, input channel number 2.ADC0_CH3PD3Analog to digital converter ADC0, input channel number 3.ADC0_CH4PD4Analog to digital converter ADC0, input channel number 4.ADC0_CH5PD5Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.300T_TXPE10Bootloader RX.2MU_CLK0PA2PC12CMU_CLK0PA2PC12CMU_CLK0PA2PC12	ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH6PC14Analog comparator ACMP1, channel 6.ACMP1_CH7PC15Analog comparator ACMP1, channel 7.ACMP1_OPF2PE3Analog comparator ACMP1, digital output.ADC0_CH0PD0Analog to digital converter ADC0, input channel number 0.ADC0_CH1PD1Analog to digital converter ADC0, input channel number 1.ADC0_CH2PD2Analog to digital converter ADC0, input channel number 2.ADC0_CH3PD3Analog to digital converter ADC0, input channel number 3.ADC0_CH4PD4Analog to digital converter ADC0, input channel number 4.ADC0_CH5PD5Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE10Bootloader RX.BOUL_CLK0PA2PC12PC12Clock Management Unit, clock output number 0.	ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH7PC15Analog comparator ACMP1, channel 7.ACMP1_OPF2PE3Analog comparator ACMP1, digital output.ADC0_CH0PD0Analog to digital converter ADC0, input channel number 0.ADC0_CH1PD1Analog to digital converter ADC0, input channel number 1.ADC0_CH2PD2Analog to digital converter ADC0, input channel number 2.ADC0_CH3PD3Analog to digital converter ADC0, input channel number 3.ADC0_CH4PD4Analog to digital converter ADC0, input channel number 4.ADC0_CH5PD5Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE11Bootloader RX.BOOT_TXPE10Clock Management Unit, clock output number 0.	ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_OPF2PE3Analog comparator ACMP1, digital output.ADC0_CH0PD0Analog to digital converter ADC0, input channel number 0.ADC0_CH1PD1Analog to digital converter ADC0, input channel number 1.ADC0_CH2PD2Analog to digital converter ADC0, input channel number 2.ADC0_CH3PD3Analog to digital converter ADC0, input channel number 3.ADC0_CH4PD4Analog to digital converter ADC0, input channel number 4.ADC0_CH5PD5Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE11Bootloader RX.BOOT_TXPE10Clock Management Unit, clock output number 0.	ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ADC0_CH0PD0Analog to digital converter ADC0, input channel number 0.ADC0_CH1PD1Analog to digital converter ADC0, input channel number 1.ADC0_CH2PD2Analog to digital converter ADC0, input channel number 2.ADC0_CH3PD3Analog to digital converter ADC0, input channel number 3.ADC0_CH4PD4Analog to digital converter ADC0, input channel number 4.ADC0_CH5PD5Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE11Bootloader RX.BOOT_TXPE10Clock Management Unit, clock output number 0.	ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ADC0_CH1PD1Analog to digital converter ADC0, input channel number 1.ADC0_CH2PD2Analog to digital converter ADC0, input channel number 2.ADC0_CH3PD3Analog to digital converter ADC0, input channel number 3.ADC0_CH4PD4Analog to digital converter ADC0, input channel number 4.ADC0_CH5PD5Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE11Bootloader RX.BOOT_TXPE10Clock Management Unit, clock output number 0.	ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.
ADC0_CH2PD2Analog to digital converter ADC0, input channel number 2.ADC0_CH3PD3Analog to digital converter ADC0, input channel number 3.ADC0_CH4PD4Analog to digital converter ADC0, input channel number 4.ADC0_CH5PD5Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE11Bootloader RX.BOOT_TXPE10Clock Management Unit, clock output number 0.	ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH3PD3Analog to digital converter ADC0, input channel number 3.ADC0_CH4PD4Analog to digital converter ADC0, input channel number 4.ADC0_CH5PD5Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE11Bootloader RX.BOOT_TXPE10Clock Management Unit, clock output number 0.	ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH4PD4Analog to digital converter ADC0, input channel number 4.ADC0_CH5PD5Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE11Bootloader RX.BOOT_TXPE10Bootloader TX.CMU_CLK0PA2PC12Clock Management Unit, clock output number 0.	ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH5PD5Analog to digital converter ADC0, input channel number 5.ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE11Bootloader RX.BOOT_TXPE10Bootloader TX.CMU_CLK0PA2PC12Clock Management Unit, clock output number 0.	ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH6PD6Analog to digital converter ADC0, input channel number 6.ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE11Bootloader RX.BOOT_TXPE10Bootloader TX.CMU_CLK0PA2PC12Clock Management Unit, clock output number 0.	ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH7PD7Analog to digital converter ADC0, input channel number 7.BOOT_RXPE11Bootloader RX.BOOT_TXPE10Bootloader TX.CMU_CLK0PA2PC12Clock Management Unit, clock output number 0.	ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
BOOT_RX PE11 Bootloader RX. BOOT_TX PE10 Bootloader TX. CMU_CLK0 PA2 PC12 Clock Management Unit, clock output number 0.	ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
BOOT_TX PE10 Bootloader TX. CMU_CLK0 PA2 PC12 Clock Management Unit, clock output number 0.	ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
CMU_CLK0 PA2 PC12 Clock Management Unit, clock output number 0.	BOOT_RX	PE11				Bootloader RX.
	BOOT_TX	PE10				Bootloader TX.
CMU_CLK1 PA1 PD8 Clock Management Unit, clock output number 1.	CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
	CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Table 5.17. Alternate functionality overview

LQFP100 Pin# and Name			Pi	n Alternate Functionalit	y / Description	
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
4	PA3	LCD_SEG 16	EBI_AD12 #0	TIM0_CDTI0 #0	U0_TX #2	
5	PA4	LCD_SEG 17	EBI_AD13 #0	TIM0_CDTI1 #0	U0_RX #2	
6	PA5	LCD_SEG 18	EBI_AD14 #0	TIM0_CDTI2 #0	LEU1_TX #1	
7	PA6	LCD_SEG 19	EBI_AD15 #0		LEU1_RX #1	
8	IOVDD_0	Digital IO po	ower supply 0.		1	
9	PB0	LCD_SEG 32		TIM1_CC0 #2		
10	PB1	LCD_SEG 33		TIM1_CC1 #2		
11	PB2	LCD_SEG 34		TIM1_CC2 #2		
12	PB3	LCD_SEG 20		PCNT1_S0IN #1	US2_TX #1	
13	PB4	LCD_SEG 21		PCNT1_S1IN #1	US2_RX #1	
14	PB5	LCD_SEG 22			US2_CLK #1	
15	PB6	LCD_SEG 23			US2_CS #1	
16	VSS	Ground.				
17	IOVDD_1	Digital IO po	ower supply 1.			
18	PC0	ACMP0_C H0		PCNT0_S0IN #2	US1_TX #0	
19	PC1	ACMP0_C H1		PCNT0_S1IN #2	US1_RX #0	
20	PC2	ACMP0_C H2			US2_TX #0	
21	PC3	ACMP0_C H3			US2_RX #0	
22	PC4	ACMP0_C H4		LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0	
23	PC5	ACMP0_C H5		LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0	
24	PB7	LFXTAL_P			US1_CLK #0	
25	PB8	LFXTAL_N			US1_CS #0	
26	PA7	LCD_SEG 35				
27	PA8	LCD_SEG 36		TIM2_CC0 #0		

LQFP100 Pin# Pin Alternate Functionality / Description and Name						
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
77	PF1			LETIM0_OUT1 #2		DBG_SWDIO #0/1
78	PF2	LCD_SEG	EBI_ARDY #0			ACMP1_O #0 DBG_SWO #0
79	PF3	LCD_SEG 1	EBI_ALE #0	TIM0_CDTI0 #2		
80	PF4	LCD_SEG 2	EBI_WEn #0	TIM0_CDTI1 #2		
81	PF5	LCD_SEG 3	EBI_REn #0	TIM0_CDTI2 #2		
82	IOVDD_5	Digital IO po	wer supply 5.			
83	VSS	Ground.				
84	PF6	LCD_SEG 24		TIM0_CC0 #2	U0_TX #0	
85	PF7	LCD_SEG 25		TIM0_CC1 #2	U0_RX #0	
86	PF8	LCD_SEG 26		TIM0_CC2 #2		
87	PF9	LCD_SEG 27				
88	PD9	LCD_SEG 28	EBI_CS0 #0			
89	PD10	LCD_SEG 29	EBI_CS1 #0			
90	PD11	LCD_SEG 30	EBI_CS2 #0			
91	PD12	LCD_SEG 31	EBI_CS3 #0			
92	PE8	LCD_SEG 4	EBI_AD00 #0	PCNT2_S0IN #1		
93	PE9	LCD_SEG 5	EBI_AD01 #0	PCNT2_S1IN #1		
94	PE10	LCD_SEG 6	EBI_AD02 #0	TIM1_CC0 #1	US0_TX #0	BOOT_TX
95	PE11	LCD_SEG 7	EBI_AD03 #0	TIM1_CC1 #1	US0_RX #0	BOOT_RX
96	PE12	LCD_SEG 8	EBI_AD04 #0	TIM1_CC2 #1	US0_CLK #0	
97	PE13	LCD_SEG 9	EBI_AD05 #0		US0_CS #0	ACMP0_O #0
98	PE14	LCD_SEG 10	EBI_AD06 #0		LEU0_TX #2	
99	PE15	LCD_SEG 11	EBI_AD07 #0		LEU0_RX #2	

		SYMBOL	MIN	NOM	МАХ			
	x	D		16 BSC				
	у	E		16 BSC				
body size	x	D1		14 BSC				
body size	у	E1		14 BSC				
lead pitcl	ו	e		0.5 BSC				
		L	0.45	0.6	0.75			
footprint		L1		1 REF				
		θ	0°	3.5°	7°			
		θ1	0°	—	—			
		θ2	11º	12º	13°			
		θ3	11°	12°	13°			
		R1	0.08	_	—			
		R1	0.08	_	0.2			
		S	0.2	—	—			
package edge to	olerance	aaa	0.2					
lead edge tolerance		bbb	0.2					
coplanarity		ссс	0.08					
lead offset		ddd	0.08					
mold flatne	SS	eee	0.05					

The LQFP100 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

8.3 TQFP64 Package Marking

In the illustration below package fields and position are shown.

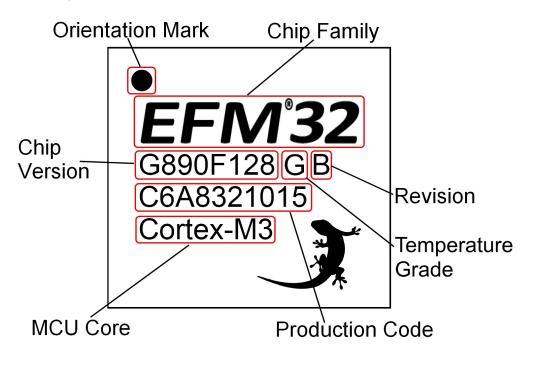


Figure 8.5. Example Chip Marking (Top View)

10.2 QFN64 PCB Layout

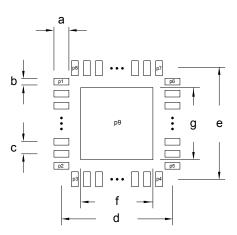


Figure 10.2. QFN64 PCB Land Pattern

Table 10.2. QFN64 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	0.85	P1	1	P8	64
b	0.30	P2	16	P9	65
с	0.50	P3	17		
d	8.90	P4	32		
e	8.90	P5	33		
f	7.20	P6	48		
g	7.20	P7	49		

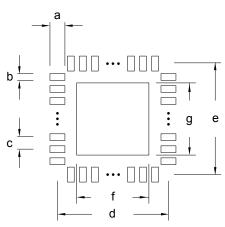


Figure 10.3. QFN64 PCB Solder Mask

Table 10.3. QFN64 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Dim. (mm)
а	0.97	e	8.90
b	0.42	f	7.32
с	0.50	g	7.32

Symbol	Dim. (mm)
d	6.00
e	6.00
f	4.52
g	4.52

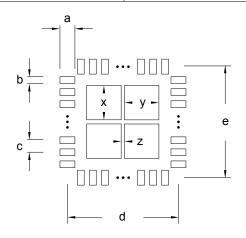


Figure 11.4. QFN32 PCB Stencil Design

Table 11.4. QFN32 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.70
b	0.25
с	0.65
d	6.00
e	6.00
x	1.30
у	1.30
Z	0.50

Note:

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see 5. Pin Definitions.