

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	90
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LFBGA
Supplier Device Package	112-BGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g890f64-bga112

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.24 Advanced Encryption Standard Accelerator (AES)

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

3.1.25 General Purpose Input/Output (GPIO)

General Purpose Input/Output (GPIO) pins are organized into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

3.1.26 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 4x40 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

3.2.3 EFM32G222

The features of the EFM32G222 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
12C0	Full configuration	12C0_SDA, 12C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
ACMP0	Full configuration	ACMP0_CH[4:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:4]
DAC0	Full configuration	DAC0_OUT[1]
AES	Full configuration	NA
GPIO	37 pins	Available pins are shown in Table 4.3 (p. 57)

Table 3.3. EFM32G222 Configuration Summary

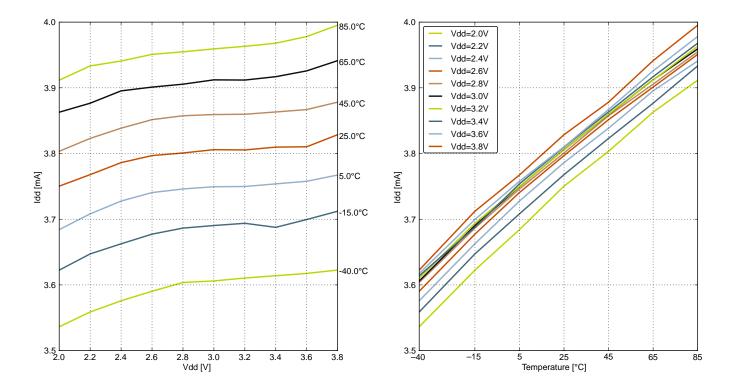


Figure 4.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21 MHz

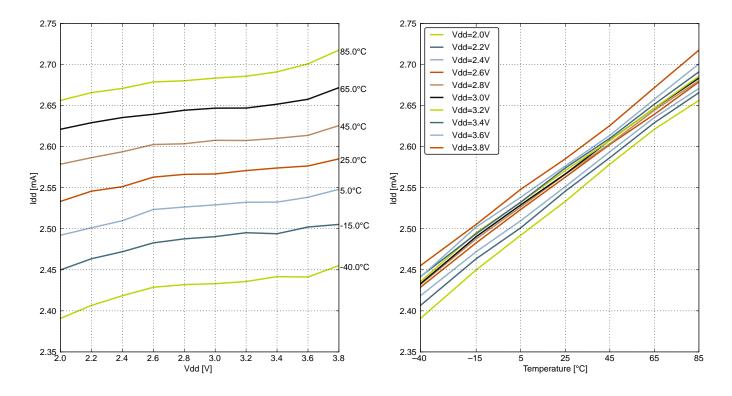


Figure 4.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14 MHz

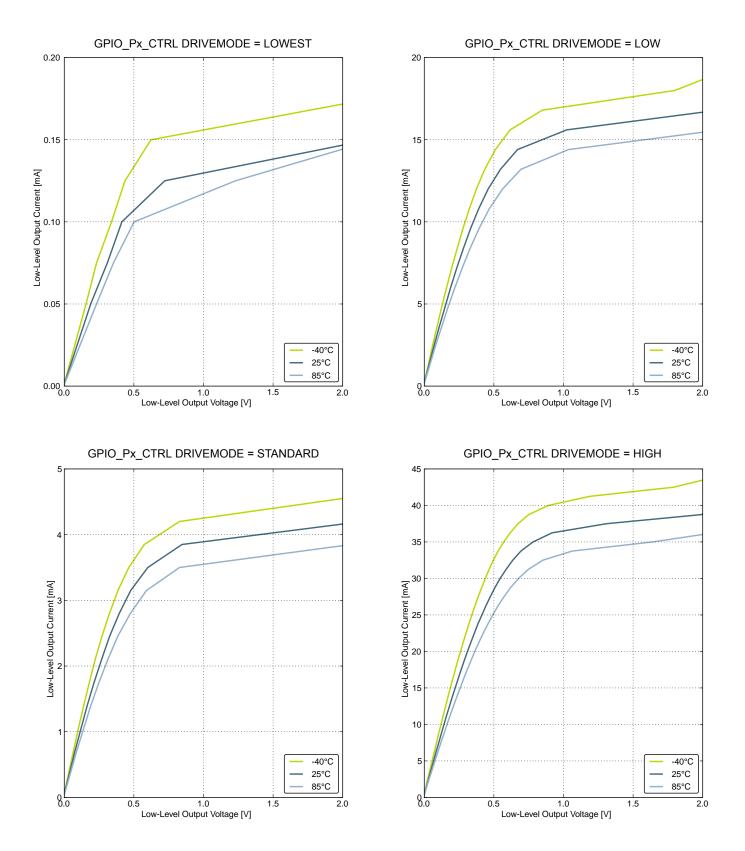


Figure 4.14. Typical Low-Level Output Current, 2V Supply Voltage

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
		28 MHz frequency band	27.16	28	28.84	MHz
		21 MHz frequency band	20.37	21	21.63	MHz
Oscillation frequency, V _{DD} = 3.0	£	14 MHz frequency band	13.58	14	14.42	MHz
V, T _{AMB} =25 °C	fHFRCO	11 MHz frequency band	10.67	11	11.33	MHz
		7 MHz frequency band	6.402	6.6 ¹	6.798	MHz
		1 MHz frequency band	1.164	1.2 ²	28.84 MHz 21.63 MHz 14.42 MHz 11.33 MHz	
Sottling time	turnee w	After start-up, f _{HFRCO} = 14 MHz	—	0.6	—	Cycles
	tHFRCO_settling	After band switch	_	25	—	Cycles
		f _{HFRCO} = 28 MHz	_	158	190	μA
/, T _{AMB} =25 °C Settling time Current consumption (Produc- ion test condition = 14 MHz) Duty cycle Frequency step for LSB change		f _{HFRCO} = 21 MHz		125	155	μA
	1	f _{HFRCO} = 14 MHz	—	99	120	μA
tion test condition = 14 MHz)	I _{HFRCO}	f _{HFRCO} = 11 MHz	—	88	110	μA
		f _{HFRCO} = 6.6 MHz	—	72	90	μA
		f _{HFRCO} = 1.2 MHz	—	24	32	μA
Duty cycle	DC _{HFRCO}	f _{HFRCO} = 14 MHz	48.5	50	51	%
Frequency step for LSB change in TUNING value	TUNESTEP _{HFRCO}		—	0.3 ³	—	%

Table 4.11. HFRCO

Note:

1. For devices with prod. rev. < 19, Typ = 7 MHz and Min/Max values not applicable.

2. For devices with prod. rev. < 19, Typ = 1 MHz and Min/Max values not applicable.

3. The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Signal-to-Noise And Distortion Ratio (SINAD)	SINAD _{ADC}	1 MSamples/s, 12 bit, single- ended, internal 1.25 V refer- ence, ADC_CLK = 13 MHz, BIASPROG = 0xF4B		58		dB
		1 MSamples/s, 12 bit, single- ended, internal 2.5 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B		62	_	dB
		1 MSamples/s, 12 bit, single- ended, V _{DD} reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	66	_	dB
		1 MSamples/s, 12 bit, differen- tial, internal 1.25 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	63	_	dB
		1 MSamples/s, 12 bit, differen- tial, internal 2.5 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	66	_	dB
		1 MSamples/s, 12 bit, differen- tial, 5 V reference, ADC_CLK = 13 MHz, BIASPROG = 0xF4B	—	66	_	dB
		1 MSamples/s, 12 bit, differen- tial, V _{DD} reference, ADC_CLK = 13 MHz, BIASPROG = 0xF4B	62	68	_	dB
		1 MSamples/s, 12 bit, differen- tial, 2xV _{DD} reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B		68		dB
		200 kSamples/s, 12 bit, single- ended, internal 1.25 V refer- ence, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	61	_	dB
		200 kSamples/s, 12 bit, single- ended, internal 2.5 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747		62	_	dB
		200 kSamples/s, 12 bit, single- ended, VDD reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	66		dB
		200 kSamples/s, 12 bit, differen- tial, internal 1.25 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	63	_	dB
		200 kSamples/s, 12 bit, differen- tial, internal 2.5 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747		66	_	dB
		200 kSamples/s, 12 bit, differen- tial, 5V reference, ADC_CLK= 7 MHz, BIASPROG = 0x747	—	66	—	dB

Parameter	Symbol	Min	Тур	Мах	Unit
SCL clock frequency	f _{SCL}	0	_	1000 ¹	kHz
SCL clock low time	t _{LOW}	0.5	_		μs
SCL clock high time	t _{ніGн}	0.26	_	_	μs
SDA set-up time	t _{SU,DAT}	50	_		ns
SDA hold time	t _{HD,DAT}	8	_		ns
Repeated START condition set-up time	t _{SU,STA}	0.26	_	_	μs
(Repeated) START condition hold time	t _{HD,STA}	0.26	_		μs
STOP condition set-up time	t _{SU,STO}	0.26	_		μs
Bus free time between a STOP and a START condition	t _{BUF}	0.5	_	_	μs
Ne4e.	1	1	1	1	1

Table 4.21. I2C Fast-mode Plus (Fm+)

Note:

1. For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32G Reference Manual.

4.16 Digital Peripherals

Table 4.22. Digital Peripherals

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
USART current	IUSART	USART idle current, clock enabled	—	7.5	_	µA/MHz
UART current	I _{UART}	UART idle current, clock enabled	—	5.63	_	µA/MHz
LEUART current	I _{LEUART}	LEUART idle current, clock enabled	—	150	—	nA
I2C current	I _{I2C}	I2C idle current, clock enabled	—	6.25	_	µA/MHz
TIMER current	I _{TIMER}	TIMER_0 idle current, clock enabled	—	8.75	_	µA/MHz
LETIMER current	ILETIMER	LETIMER idle current, clock enabled	—	150	—	nA
PCNT current	I _{PCNT}	PCNT idle current, clock enabled	_	100	_	nA
RTC current	I _{RTC}	RTC idle current, clock enabled	_	100	_	nA
LCD current	I _{LCD}	LCD idle current, clock enabled	_	100		nA
AES current	I _{AES}	AES idle current, clock enabled	—	2.5	—	µA/MHz
GPIO current	I _{GPIO}	GPIO idle current, clock enabled	—	5.31	_	µA/MHz
EBI current	I _{EBI}	EBI idle current, clock enabled	—	1.56	_	µA/MHz
PRS current	I _{PRS}	PRS idle current	—	2.81	_	µA/MHz
DMA current	I _{DMA}	Clock enable	—	8.12		µA/MHz

Note: Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" forguidelines on designing Printed Circuit Boards (PCB's) for the EFM32G.

Alternate					LOCATION
Functionality	0	1	2	3	Description
					Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7			I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6			I2C0 Serial Data input / output.
LETIM0_OUT0	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1		Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14			LEUART0 Receive input.
LEU0_TX	PD4	PB13			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13		PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1		Pulse Counter PCNT0 input number 1.
PCNT1_S0IN	PC4				Pulse Counter PCNT1 input number 0.
TIM0_CC0	PA0	PA0			Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1			Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2			Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0		PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1		PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2		PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
TIM2_CC0	PA8		PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9		PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10		PC10		Timer 2 Capture Compare input / output channel 2.
US0_CLK	PE12		PC9		USART0 clock input / output.
US0_CS	PE13		PC8		USART0 chip select input / output.
US0_RX	PE11		PC10		USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MI- SO).

5.3 EFM32G230 (QFN64)

5.3.1 Pinout

The EFM32G230 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

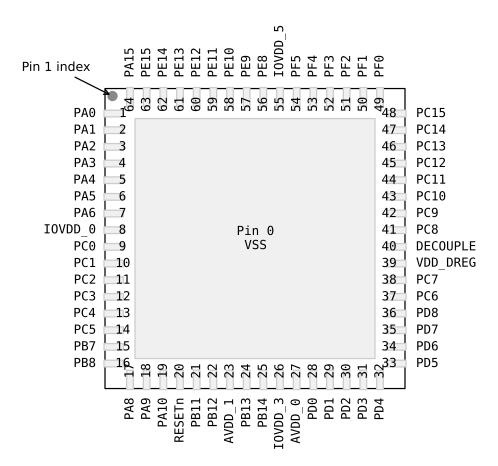


Figure 5.3. EFM32G230 Pinout (top view, not to scale)

Table 5.7. Device Pinout

QFN64 P	in# and Name		Pin Alternate	Functionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
0	VSS	Ground.			
1	PA0		TIM0_CC0 #0/1	I2C0_SDA #0	
2	PA1		TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0
4	PA3		TIM0_CDTI0 #0		
5	PA4		TIM0_CDTI1 #0		

5.3.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G230 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15		_		_	PA10	PA8	PA8 —	_	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	_	PB14	PB13	PB12	PB11	_	_	PB8	PB7	_	_	_	_	_	_	—
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	_		_	_	_	_	_	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	—	_	—	—	_	_	—	—
Port F	_		_	_	_	_	_	_	_	_	PF5	PF4	PF3	PF2	PF1	PF0

Table 5.9. GPIO Pinout

Alternate					LOCATION
Functionality	0	1	2	3	Description
US0_CS	PE13		PC8		USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11		PC10		USART0 Synchronous mode Master Input / Slave Output (MI-SO).
	PE10		PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX	PEIU		PCIT		USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX	PC1	PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).
	500				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX	PC0	PD0			USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4				USART2 clock input / output.
US2_CS	PC5				USART2 chip select input / output.
					USART2 Asynchronous Receive.
US2_RX	PC3				USART2 Synchronous mode Master Input / Slave Output (MI-SO).
	DC2				USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.
US2_TX	PC2				USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.4.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G2322 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	_	_	—	—	_	PA10	PA9	PA8	—	_	PA5	PA4	PA3	PA2	PA1	PA0
Port B	_	PB14	PB13	—	PB11	_	—	PB8	PB7	—	—	—	—	—	—	—
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	_	—	_	_	_	_	_	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	_	—	_	_	_	—	—	_
Port F	_	—	_	_			_	_	_	—	PF5	PF4	PF3	PF2	PF1	PF0

	P100 Pin# d Name		Pi	n Alternate Functionalit	y / Description				
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other			
37	PB9								
38	PB10								
39	PB11	DAC0_OU T0		LETIM0_OUT0 #1					
40	PB12	DAC0_OU T1		LETIM0_OUT1 #1					
41	AVDD_1	Analog pow	er supply 1.						
42	PB13	HFXTAL_ P			LEU0_TX #1				
43	PB14	HFXTAL_ N			LEU0_RX #1				
44	IOVDD_3	Digital IO po	ower supply 3.						
45	AVDD_0	Analog pow	er supply 0.						
46	PD0	ADC0_CH 0		PCNT2_S0IN #0	US1_TX #1				
47	PD1	ADC0_CH 1		TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1				
48	PD2	ADC0_CH 2		TIM0_CC1 #3	US1_CLK #1				
49	PD3	ADC0_CH 3		TIM0_CC2 #3	US1_CS #1				
50	PD4	ADC0_CH 4			LEU0_TX #0				
51	PD5	ADC0_CH 5			LEU0_RX #0				
52	PD6	ADC0_CH 6		LETIM0_OUT0 #0	I2C0_SDA #1				
53	PD7	ADC0_CH 7		LETIM0_OUT1 #0	I2C0_SCL #1				
54	PD8					CMU_CLK1 #1			
55	PC6	ACMP0_C H6			LEU1_TX #0 I2C0_SDA #2				
56	PC7	ACMP0_C H7			LEU1_RX #0 I2C0_SCL #2				
57	VDD_DRE G	Power supply for on-chip voltage regulator.							
58	VSS	Ground.							
59	DECOU- PLE	Decouple or	Decouple output for on-chip voltage regulator. An external capacitance of size C _{DECOUPLE} is required at this pin.						
60	PE0			PCNT0_S0IN #1	U0_TX #1				
61	PE1			PCNT0_S1IN #1	U0_RX #1				
62	PE2					ACMP0_O #1			

Alternate LOCATION					LOCATION
Functionality	0	1	2	3	Description
TIM2_CC0	PA8	PA12	PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9	PA13	PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10	PA14	PC10		Timer 2 Capture Compare input / output channel 2.
U0_RX	PF7	PE1	PA4	PC15	UART0 Receive input.
U0_TX	PF6	PE0	PA3	PC14	UART0 Transmit output. Also used as receive input in half duplex communication.
US0_CLK	PE12	PE5	PC9		USART0 clock input / output.
US0_CS	PE13	PE4	PC8		USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11	PE6	PC10		USART0 Synchronous mode Master Input / Slave Output (MI-SO).
	PE10	057	PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX		PE7			USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX	PC1	PD1			USART1 Synchronous mode Master Input / Slave Output (MI-SO).
	500				USART1 Asynchronous Transmit. Also used as receive input in half duplex communication.
US1_TX	PC0	PD0			USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
					USART2 Asynchronous Receive.
US2_RX	PC3	PB4			USART2 Synchronous mode Master Input / Slave Output (MI-SO).
	DC2				USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.
US2_TX	PC2	PB3			USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.8.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.

Table 5.23. Alternate functionality overview

Alternate LOCATION					LOCATION
Functionality	0	1	2	3	Description
					Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7	PC7		I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6	PC6		I2C0 Serial Data input / output.
LCD_BCAP_N	PA13				LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BCAP_P	PA12				LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
					LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS.
LCD_BEXT	PA14				An external LCD voltage may also be applied to this pin if the booster is not enabled.
					If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.
LCD_COM0	PE4				LCD driver common line number 0.
LCD_COM1	PE5				LCD driver common line number 1.
LCD_COM2	PE6				LCD driver common line number 2.
LCD_COM3	PE7				LCD driver common line number 3.
LCD_SEG0	PF2				LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG1	PF3				LCD segment line 1. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG2	PF4				LCD segment line 2. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG3	PF5				LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG4	PE8				LCD segment line 4. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG5	PE9				LCD segment line 5. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG6	PE10				LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG7	PE11				LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG8	PE12				LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.

	P100 Pin# d Name		Pi	n Alternate Functionalit	y / Description	
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
28	PA9	LCD_SEG 37		TIM2_CC1 #0		
29	PA10	LCD_SEG 38		TIM2_CC2 #0		
30	PA11	LCD_SEG 39				
31	IOVDD_2	Digital IO po	ower supply 2.		-	
32	VSS	Ground.				
33	PA12	LCD_BCA P_P		TIM2_CC0 #1		
34	PA13	LCD_BCA P_N		TIM2_CC1 #1		
35	PA14	LCD_BEX T		TIM2_CC2 #1		
36	RESETn		active low.To apply an electric the internal pull-up ensu	xternal reset source to this ure that reset is released.	s pin, it is required to only	drive this pin low during
37	PB9					
38	PB10					
39	PB11	DAC0_OU T0		LETIM0_OUT0 #1		
40	PB12	DAC0_OU T1		LETIM0_OUT1 #1		
41	AVDD_1	Analog pow	er supply 1.	•		
42	PB13	HFXTAL_ P			LEU0_TX #1	
43	PB14	HFXTAL_ N			LEU0_RX #1	
44	IOVDD_3	Digital IO po	ower supply 3.			
45	AVDD_0	Analog pow	er supply 0.			
46	PD0	ADC0_CH 0		PCNT2_S0IN #0	US1_TX #1	
47	PD1	ADC0_CH 1		TIM0_CC0 #3 PCNT2_S1IN #0	US1_RX #1	
48	PD2	ADC0_CH 2		TIM0_CC1 #3	US1_CLK #1	
49	PD3	ADC0_CH 3		TIM0_CC2 #3	US1_CS #1	
50	PD4	ADC0_CH 4			LEU0_TX #0	
51	PD5	ADC0_CH 5			LEU0_RX #0	
52	PD6	ADC0_CH 6		LETIM0_OUT0 #0	I2C0_SDA #1	

Alternate					LOCATION
Functionality	0	1	2	3	Description
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
					Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0			Note that this function is enabled to pin out of reset, and has a built-in pull down.
					Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1			Note that this function is enabled to pin out of reset, and has a built-in pull up.
					Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15			Note that this function is not enabled after reset, and must be enabled by software to be used.
EBI_AD00	PE8				External Bus Interface (EBI) address and data input / output pin 00.
EBI_AD01	PE9				External Bus Interface (EBI) address and data input / output pin 01.
EBI_AD02	PE10				External Bus Interface (EBI) address and data input / output pin 02.
EBI_AD03	PE11				External Bus Interface (EBI) address and data input / output pin 03.
EBI_AD04	PE12				External Bus Interface (EBI) address and data input / output pin 04.
EBI_AD05	PE13				External Bus Interface (EBI) address and data input / output pin 05.
EBI_AD06	PE14				External Bus Interface (EBI) address and data input / output pin 06.
EBI_AD07	PE15				External Bus Interface (EBI) address and data input / output pin 07.
EBI_AD08	PA15				External Bus Interface (EBI) address and data input / output pin 08.
EBI_AD09	PA0				External Bus Interface (EBI) address and data input / output pin 09.
EBI_AD10	PA1				External Bus Interface (EBI) address and data input / output pin 10.
EBI_AD11	PA2				External Bus Interface (EBI) address and data input / output pin 11.
EBI_AD12	PA3				External Bus Interface (EBI) address and data input / output pin 12.
EBI_AD13	PA4				External Bus Interface (EBI) address and data input / output pin 13.
EBI_AD14	PA5				External Bus Interface (EBI) address and data input / output pin 14.
EBI_AD15	PA6				External Bus Interface (EBI) address and data input / output pin 15.
EBI_ALE	PF3				External Bus Interface (EBI) Address Latch Enable output.

	l2 Pin# and Name		Pi	n Alternate Functionality	y / Description	
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
A4	PE9	LCD_SEG 5	EBI_AD01 #0	PCNT2_S1IN #1		
A5	PD10	LCD_SEG 29	EBI_CS1 #0			
A6	PF7	LCD_SEG 25		TIM0_CC1 #2	U0_RX #0	
A7	PF5	LCD_SEG 3	EBI_REn #0	TIM0_CDTI2 #2		
A8	PF4	LCD_SEG 2	EBI_WEn #0	TIM0_CDTI1 #2		
A9	PE4	LCD_COM 0			US0_CS #1	
A10	PC14	ACMP1_C H6		TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0	U0_TX #3	
A11	PC15	ACMP1_C H7		TIM0_CDTI2 #1/3 TIM1_CC2 #0	U0_RX #3	DBG_SWO #1
B1	PA15	LCD_SEG 12	EBI_AD08 #0			
B2	PE13	LCD_SEG 9	EBI_AD05 #0		US0_CS #0	ACMP0_O #0
В3	PE11	LCD_SEG 7	EBI_AD03 #0	TIM1_CC1 #1	US0_RX #0	BOOT_RX
B4	PE8	LCD_SEG 4	EBI_AD00 #0	PCNT2_S0IN #1		
B5	PD11	LCD_SEG 30	EBI_CS2 #0			
B6	PF8	LCD_SEG 26		TIM0_CC2 #2		
B7	PF6	LCD_SEG 24		TIM0_CC0 #2	U0_TX #0	
B8	PF3	LCD_SEG 1	EBI_ALE #0	TIM0_CDTI0 #2		
В9	PE5	LCD_COM 1			US0_CLK #1	
B10	PC12	ACMP1_C H4				CMU_CLK0 #1
B11	PC13	ACMP1_C H5		TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0		
C1	PA1	LCD_SEG 14	EBI_AD10 #0	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0
C2	PA0	LCD_SEG 13	EBI_AD09 #0	TIM0_CC0 #0/1	I2C0_SDA #0	

Symbol	Min	Nom	Мах		
e					
L	0.40	0.45	0.50		
L1	0.00	_	0.10		
ааа	0.10				
bbb					
ССС	0.10				
ddd		0.05	0.05		
eee		0.08			

The QFN64 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx.

13.21 Revision 0.80

October 19th, 2009

This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Initial preliminary revision