

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	90
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LFBGA
Supplier Device Package	112-BGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g890f64-bga112t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.24 Advanced Encryption Standard Accelerator (AES)

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

3.1.25 General Purpose Input/Output (GPIO)

General Purpose Input/Output (GPIO) pins are organized into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

3.1.26 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 4x40 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

EFM32G Data Sheet System Overview

_		
0x400e0400	AES	0xffffffe
0x400e0000	AES	0xe0100000
0x400cc400	PRS	0xe00ffff
0x400cc000	FRS	CM3 Peripherals
0x400ca400	RMU	0xe0000000
0x400ca000	NH0	0xdfffffff
0x400c8400	СМИ	0.Aditititi
0x400c8000	6110	0×90000000
0x400c6400	EMU	0x8fffffff
0x400c6000		EBI Region 3
0x400c4000 0x400c2000	DMA	0×8c000000
0x400c2000		0x8bfffff
0x400c0400	MSC	EBI Region 2
0x4008a400		0×88000000
0x4008a000	LCD	0x87fffff
0x40088400		EBI Region 1
0x40088000	WDOG	0×84000000
0x40086c00	DONTO	0x83ffffff
0x40086800	PCNT2	EBI Region 0 0x80000000
0x40086400	PCNT1 PCNT0	
0x40086000	PCNTU	0x7fffffff
0x40084800	LEUART1	0×44000000
0x40084400	LEUARTO	0x43ffffff
0x40084000	LEGATIO	Peripherals (bit-band)
0x40082400	LETIMERO	0×42000000
0×40082000		0x41ffffff
0x40080400	RTC	
0×40080000		0×41000000
0x40010c00	TIMER2	0x40ffffff
0×40010800 0×40010400	TIMER1	Peripherals
0x40010400	TIMERO	0×40000000
0x4000e400		0x3ffffff
0x4000e000	UART0	
0x4000cc00		0×22200000
0x4000c800	USART2	0x221fffff
0x4000c400	USART1	SRAM (bit-band)
0x4000c000	USART0	0×22000000
0x4000a400	2C0	/ 0x21ffffff
0x4000a000	1200	0×20004000
0x40008400	EBI	CDAM (1C Hp) 0x20003fff
0x40008000	LDI	SRAM (16 KB)
0x40007000	GPIO	(data space) 0x20000000
0x40006000	GHO	0x1fffffff
0x40004400	DACO	
0x40004000		
0x40002400	ADC0	
0x40002000		/ Code
0×40001800 0×40001400	ACMP1	
0x40001400	ACMP0	
0x40001000		
0x40000400	VCMP	/ 0×0000000

Figure 3.3. System Address Space with Peripheral Listing

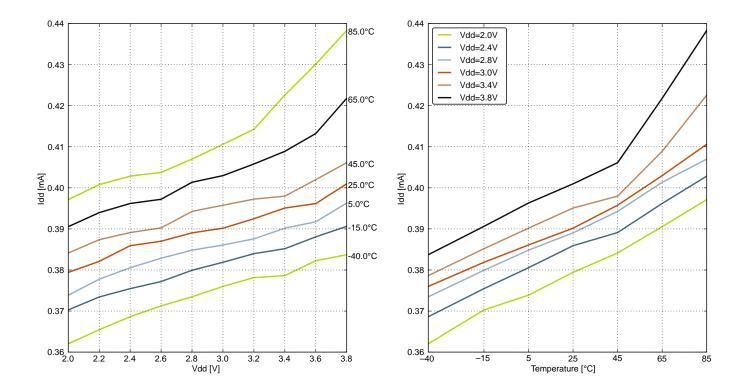


Figure 4.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 7 MHz

4.4.5 EM4 Current Consumption

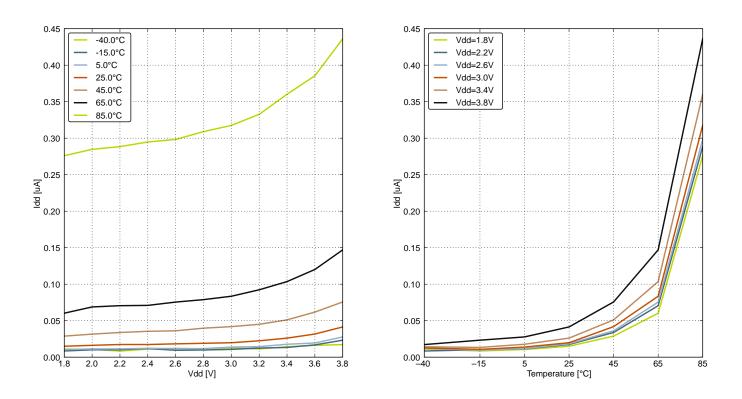


Figure 4.13. EM4 Current Consumption

4.5 Transition between Energy Modes

The transition times are measured from the trigger to the first clock edge in the CPU.

Table 4.4. Energy Modes Transitions

Parameter	Symbol	Min	Тур	Max	Unit
Transition time from EM1 to EM0	t _{EM10}	_	0	—	HFCORECLK cycles
Transition time from EM2 to EM0	t _{EM20}	_	2	—	μs
Transition time from EM3 to EM0	t _{EM30}	_	2	_	μs
Transition time from EM4 to EM0	t _{EM40}	_	163	_	μs

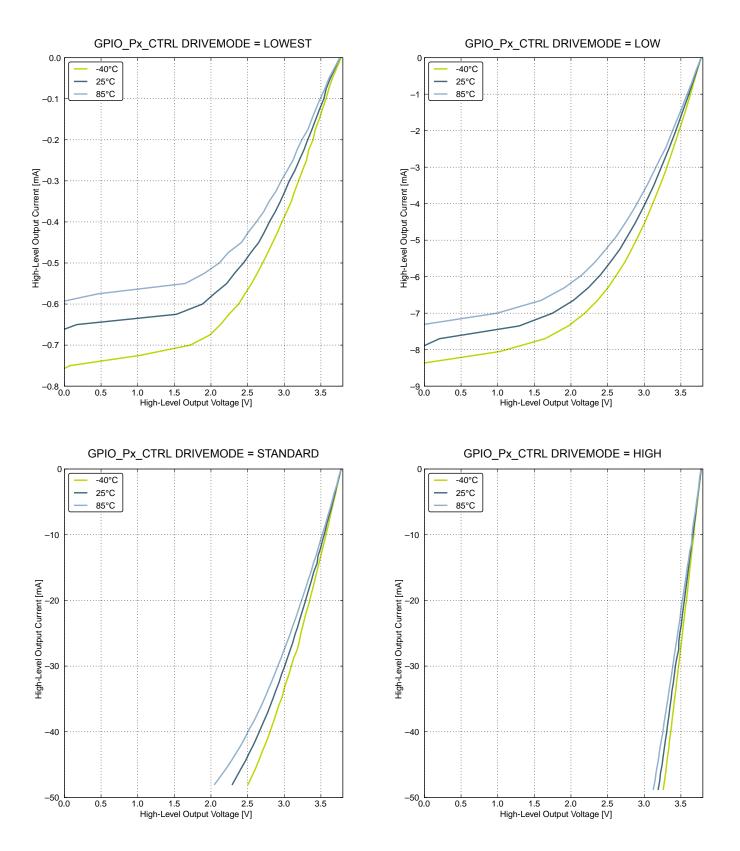


Figure 4.19. Typical High-Level Output Current, 3.8V Supply Voltage

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Signal-to-Noise And Distortion Ratio (SINAD)	SINAD _{ADC}	1 MSamples/s, 12 bit, single- ended, internal 1.25 V refer- ence, ADC_CLK = 13 MHz, BIASPROG = 0xF4B		58		dB		
		1 MSamples/s, 12 bit, single- ended, internal 2.5 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B		62	_	dB		
		1 MSamples/s, 12 bit, single- ended, V _{DD} reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	66	_	dB		
		1 MSamples/s, 12 bit, differen- tial, internal 1.25 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	63	_	dB		
		1 MSamples/s, 12 bit, differen- tial, internal 2.5 V reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B	_	66	_	dB		
		1 MSamples/s, 12 bit, differen- tial, 5 V reference, ADC_CLK = 13 MHz, BIASPROG = 0xF4B	—	66	_	dB		
		1 MSamples/s, 12 bit, differen- tial, V _{DD} reference, ADC_CLK = 13 MHz, BIASPROG = 0xF4B	62	68	_	dB		
		1 MSamples/s, 12 bit, differen- tial, 2xV _{DD} reference, ADC_CLK = 13 MHz, BIA- SPROG = 0xF4B		68		dB		
		200 kSamples/s, 12 bit, single- ended, internal 1.25 V refer- ence, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	61	_	dB		
				200 kSamples/s, 12 bit, single- ended, internal 2.5 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747		62	_	dB
		200 kSamples/s, 12 bit, single- ended, VDD reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	66		dB		
		200 kSamples/s, 12 bit, differen- tial, internal 1.25 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747	_	63	_	dB		
		200 kSamples/s, 12 bit, differen- tial, internal 2.5 V reference, ADC_CLK = 7 MHz, BIA- SPROG = 0x747		66	_	dB		
		200 kSamples/s, 12 bit, differen- tial, 5V reference, ADC_CLK= 7 MHz, BIASPROG = 0x747	—	66	—	dB		

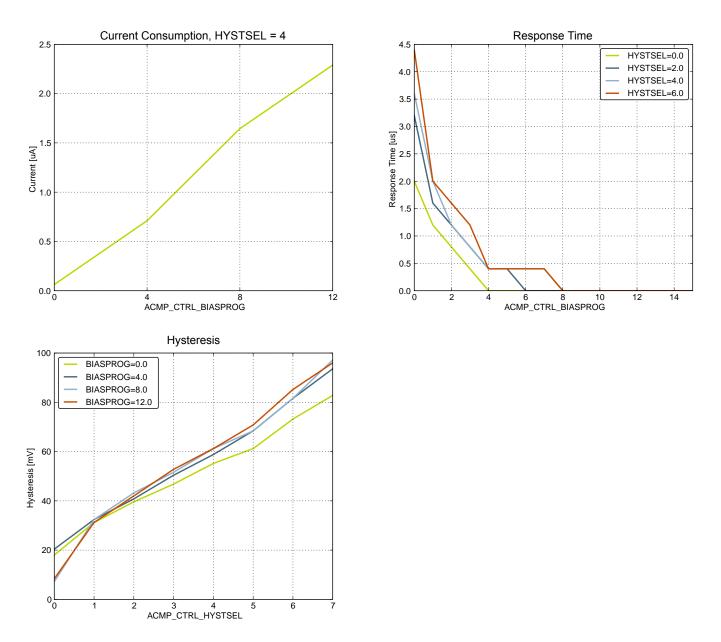


Figure 4.34. ACMP Characteristics, VDD = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1

Table 5.1. Device Pinout

QFN32 P	in# and Name		Pin Alternate	Functionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
0	VSS	Ground.			
1	PA0		TIM0_CC0 #0/1	I2C0_SDA #0	
2	PA1		TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0
4	IOVDD_1	Digital IO powe	er supply 1.		
5	PC0	ACMP0_CH0	PCNT0_S0IN #2	US1_TX #0	
6	PC1	ACMP0_CH1	PCNT0_S1IN #2	US1_RX #0	
7	PB7	LFXTAL_P		US1_CLK #0	
8	PB8	LFXTAL_N		US1_CS #0	
9	RESETn		tive low.To apply an external re nd let the internal pull-up ensure		uired to only drive this pin low
10	PB11	DAC0_OUT0	LETIM0_OUT0 #1		
11	AVDD_2	Analog power	supply 2.		
12	PB13	HFXTAL_P		LEU0_TX #1	
13	PB14	HFXTAL_N		LEU0_RX #1	
14	IOVDD_3	Digital IO powe	er supply 3.		
15	AVDD_0	Analog power	supply 0.		
16	PD4	ADC0_CH4		LEU0_TX #0	
17	PD5	ADC0_CH5		LEU0_RX #0	
18	PD6	ADC0_CH6	LETIM0_OUT0 #0	I2C0_SDA #1	
19	PD7	ADC0_CH7	LETIM0_OUT1 #0	I2C0_SCL #1	
20	VDD_DREG	Power supply f	or on-chip voltage regulator.		
21	DECOUPLE	Decouple outpo pin.	ut for on-chip voltage regulator.	An external capacitance of siz	$e C_{DECOUPLE}$ is required at this
22	PC13	ACMP1_CH5	TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0		
23	PC14	ACMP1_CH6	TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0		
24	PC15	ACMP1_CH7	TIM0_CDTI2 #1/3 TIM1_CC2 #0		DBG_SWO #1
25	PF0		LETIM0_OUT0 #2		DBG_SWCLK #0/1
26	PF1		LETIM0_OUT1 #2		DBG_SWDIO #0/1
27	PF2				ACMP1_O #0 DBG_SWO #0
28	IOVDD_5	Digital IO powe	er supply 5.		
29	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX
30	PE11		TIM1_CC1 #1	US0_RX #0	BOOT_RX

Alternate					LOCATION
Functionality	0	1	2	3	Description
LETIM0_OUT1	PD7		PF1		Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14			LEUART0 Receive input.
LEU0_TX	PD4	PB13			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13		PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1		Pulse Counter PCNT0 input number 1.
TIM0_CC0	PA0	PA0			Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1			Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2			Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0		PC13		PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1		PC14		PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2		PC15		PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12				USART0 clock input / output.
US0_CS	PE13				USART0 chip select input / output.
					USART0 Asynchronous Receive.
US0_RX	PE11				USART0 Synchronous mode Master Input / Slave Output (MI-SO).
	0540				USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX	PE10				USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7				USART1 clock input / output.
US1_CS	PB8				USART1 chip select input / output.
					USART1 Asynchronous Receive.
US1_RX	PC1				USART1 Synchronous mode Master Input / Slave Output (MI-SO).
	DC0				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX	PC0				USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.3.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G230 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15		_		_	PA10	PA8	PA8 —	_	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	_	PB14	PB13	PB12	PB11	_	_	PB8	PB7	_	_	_	_	_	_	—
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	_	_	_	_	_	_	_	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	—	_	—	—	_	_	—	—
Port F	_		_	_	_	_	_	_	_	_	PF5	PF4	PF3	PF2	PF1	PF0

Table 5.9. GPIO Pinout

	64 Pin# and Name		Pin Alternate	Functionality / Description						
Pin #	Pin Name	Analog	Timers	Communication	Other					
39	VDD_DREG	Power supply f	bly for on-chip voltage regulator.							
40	DECOUPLE	Decouple outpup	ut for on-chip voltage regulator.	An external capacitance of size	e C _{DECOUPLE} is required at this					
41	PC8	ACMP1_CH0	TIM2_CC0 #2	US0_CS #2						
42	PC9	ACMP1_CH1	TIM2_CC1 #2	US0_CLK #2						
43	PC10	ACMP1_CH2	TIM2_CC2 #2	US0_RX #2						
44	PC11	ACMP1_CH3		US0_TX #2						
45	PC12	ACMP1_CH4			CMU_CLK0 #1					
46	PC13	ACMP1_CH5	TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0							
47	PC14	ACMP1_CH6	TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0							
48	PC15	ACMP1_CH7	TIM0_CDTI2 #1/3 TIM1_CC2 #0		DBG_SWO #1					
49	PF0		LETIM0_OUT0 #2		DBG_SWCLK #0/1					
50	PF1		LETIM0_OUT1 #2		DBG_SWDIO #0/1					
51	PF2				ACMP1_O #0 DBG_SWO #0					
52	PF3		TIM0_CDTI0 #2							
53	PF4		TIM0_CDTI1 #2							
54	PF5		TIM0_CDTI2 #2							
55	IOVDD_5	Digital IO powe	er supply 5.							
56	VSS	Ground.								
57	PE8		PCNT2_S0IN #1							
58	PE9		PCNT2_S1IN #1							
59	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX					
60	PE11		TIM1_CC1 #1	US0_RX #0	BOOT_RX					
61	PE12		TIM1_CC2 #1	US0_CLK #0						
62	PE13			US0_CS #0	ACMP0_O #0					
63	PE14			LEU0_TX #2						
64	PE15			LEU0_RX #2						

5.5 EFM32G280 (LQFP100)

5.5.1 Pinout

The EFM32G280 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

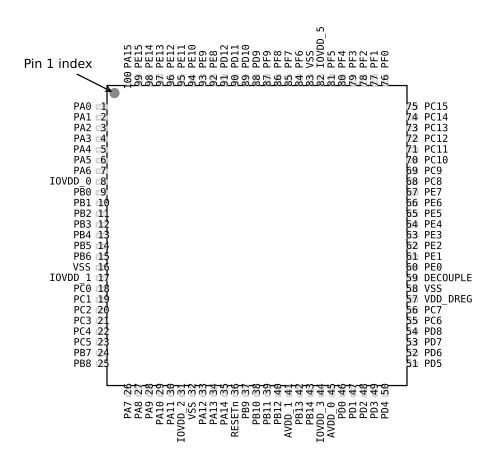


Figure 5.5. EFM32G280 Pinout (top view, not to scale)

Table 5.13. Device Pinout

	P100 Pin# d Name	Pin Alternate Functionality / Description							
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other			
1	PA0		EBI_AD09 #0	TIM0_CC0 #0/1	I2C0_SDA #0				
2	PA1		EBI_AD10 #0	AD10 #0 TIM0_CC1 #0/1 I2C0_S0		CMU_CLK1 #0			
3	PA2		EBI_AD11 #0	TIM0_CC2 #0/1		CMU_CLK0 #0			
4	PA3		EBI_AD12 #0	TIM0_CDTI0 #0	U0_TX #2				
5	PA4		EBI_AD13 #0	TIM0_CDTI1 #0	U0_RX #2				

	P100 Pin# d Name		Ρ	in Alternate Functionality	/ / Description	
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
6	PA5		EBI_AD14 #0	TIM0_CDTI2 #0	LEU1_TX #1	
7	PA6		EBI_AD15 #0		LEU1_RX #1	
8	IOVDD_0	Digital IO pov	wer supply 0.			
9	PB0			TIM1_CC0 #2		
10	PB1			TIM1_CC1 #2		
11	PB2			TIM1_CC2 #2		
12	PB3			PCNT1_S0IN #1	US2_TX #1	
13	PB4			PCNT1_S1IN #1	US2_RX #1	
14	PB5				US2_CLK #1	
15	PB6				US2_CS #1	
16	VSS	Ground.		1	1	
17	IOVDD_1	Digital IO pov	wer supply 1.			
18	PC0	ACMP0_C H0		PCNT0_S0IN #2	US1_TX #0	
19	PC1	ACMP0_C H1		PCNT0_S1IN #2	US1_RX #0	
20	PC2	ACMP0_C H2			US2_TX #0	
21	PC3	ACMP0_C H3			US2_RX #0	
22	PC4	ACMP0_C H4		LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0	
23	PC5	ACMP0_C H5		LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0	
24	PB7	LFXTAL_P			US1_CLK #0	
25	PB8	LFXTAL_N			US1_CS #0	
26	PA7					
27	PA8			TIM2_CC0 #0		
28	PA9			TIM2_CC1 #0		
29	PA10			TIM2_CC2 #0		
30	PA11					
31	IOVDD_2	Digital IO pov	wer supply 2.			
32	VSS	Ground.				
33	PA12			TIM2_CC0 #1		
34	PA13			TIM2_CC1 #1		
35	PA14			TIM2_CC2 #1		
36	RESETn			external reset source to this ure that reset is released.	pin, it is required to only c	Irive this pin low during

5.5.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION
Functionality	0	1	2	3	Description
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Table 5.14. Alternate functionality overview

	P100 Pin# d Name		Pi	n Alternate Functionalit	y / Description	
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other
4	PA3	LCD_SEG 16	EBI_AD12 #0	TIM0_CDTI0 #0	U0_TX #2	
5	PA4	LCD_SEG 17	EBI_AD13 #0	TIM0_CDTI1 #0	U0_RX #2	
6	PA5	LCD_SEG 18	EBI_AD14 #0	TIM0_CDTI2 #0	LEU1_TX #1	
7	PA6	LCD_SEG 19	EBI_AD15 #0		LEU1_RX #1	
8	IOVDD_0	Digital IO po	ower supply 0.		1	
9	PB0	LCD_SEG 32		TIM1_CC0 #2		
10	PB1	LCD_SEG 33		TIM1_CC1 #2		
11	PB2	LCD_SEG 34		TIM1_CC2 #2		
12	PB3	LCD_SEG 20		PCNT1_S0IN #1	US2_TX #1	
13	PB4	LCD_SEG 21		PCNT1_S1IN #1	US2_RX #1	
14	PB5	LCD_SEG 22			US2_CLK #1	
15	PB6	LCD_SEG 23			US2_CS #1	
16	VSS	Ground.				
17	IOVDD_1	Digital IO po	ower supply 1.			
18	PC0	ACMP0_C H0		PCNT0_S0IN #2	US1_TX #0	
19	PC1	ACMP0_C H1		PCNT0_S1IN #2	US1_RX #0	
20	PC2	ACMP0_C H2			US2_TX #0	
21	PC3	ACMP0_C H3			US2_RX #0	
22	PC4	ACMP0_C H4		LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0	
23	PC5	ACMP0_C H5		LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0	
24	PB7	LFXTAL_P			US1_CLK #0	
25	PB8	LFXTAL_N			US1_CS #0	
26	PA7	LCD_SEG 35				
27	PA8	LCD_SEG 36		TIM2_CC0 #0		

5.9.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate					LOCATION		
Functionality	0	1	2	3	Description		
ACMP0_CH0	PC0				Analog comparator ACMP0, channel 0.		
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.		
ACMP0_CH2	PC2				Analog comparator ACMP0, channel 2.		
ACMP0_CH3	PC3				Analog comparator ACMP0, channel 3.		
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.		
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.		
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.		
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.		
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.		
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.		
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.		
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.		
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.		
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.		
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.		
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.		
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.		
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.		
ADC0_CH0	PD0				Analog to digital converter ADC0, input channel number 0.		
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.		
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.		
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.		
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.		
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.		
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.		
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.		
BOOT_RX	PE11				Bootloader RX.		
BOOT_TX	PE10				Bootloader TX.		
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.		
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.		

Table 5.26. Alternate functionality overview

Alternate					LOCATION	
Functionality	0	1	2	3	Description	
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.	
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.	
TIM1_CC0	PC13	PE10	PB0		Timer 1 Capture Compare input / output channel 0.	
TIM1_CC1	PC14	PE11	PB1		Timer 1 Capture Compare input / output channel 1.	
TIM1_CC2	PC15	PE12	PB2		Timer 1 Capture Compare input / output channel 2.	
TIM2_CC0	PA8	PA12	PC8		Timer 2 Capture Compare input / output channel 0.	
TIM2_CC1	PA9	PA13	PC9		Timer 2 Capture Compare input / output channel 1.	
TIM2_CC2	PA10	PA14	PC10		Timer 2 Capture Compare input / output channel 2.	
U0_RX	PF7	PE1	PA4	PC15	UART0 Receive input.	
U0_TX	PF6	PE0	PA3	PC14	UART0 Transmit output. Also used as receive input in half duplex communication.	
US0_CLK	PE12	PE5	PC9		USART0 clock input / output.	
US0_CS	PE13	PE4	PC8		USART0 chip select input / output.	
		PE6	PC10		USART0 Asynchronous Receive.	
US0_RX	PE11				USART0 Synchronous mode Master Input / Slave Output (MI-SO).	
US0_TX	PE10	PE7	PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).	
US1_CLK	PB7	PD2			USART1 clock input / output.	
US1_CS	PB8	PD3			USART1 chip select input / output.	
US1_RX	PC1	PD1			USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MI- SO).	
US1_TX	PC0	PD0			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).	
US2_CLK	PC4	PB5			USART2 clock input / output.	
US2_CS	PC5	PB6			USART2 chip select input / output.	
US2_RX	PC3	PB4			USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MI- SO).	
US2_TX	PC2	PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).	

8.2 TQFP64 PCB Layout

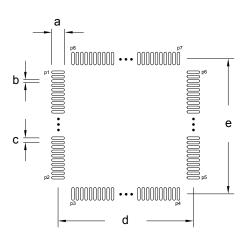


Figure 8.2. TQFP64 PCB Land Pattern

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	1.60	P1	1	P6	48
b	0.30	P2	16	P7	49
С	0.50	P3	17	P8	64
d	11.50	P4	32		
е	11.50	P5	33		

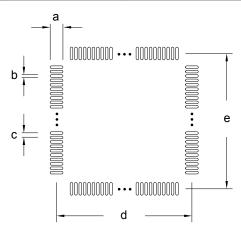


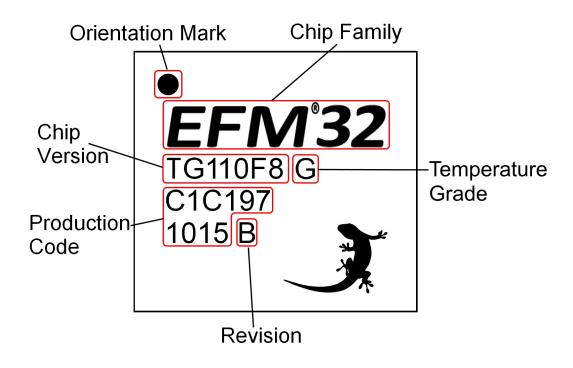
Figure 8.3. TQFP64 PCB Solder Mask

Table 8.3. TQFP64 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.72
b	0.42
с	0.50
d	11.50
e	11.50

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX
D	0.170	—	0.270	S1	_	4.500 BSC	—
E	0.950	—	1.050	V		9.000 BSC	—
F	0.170	—	0.230	V1	_	4.5000 BSC	—
G	—	0.500 BSC		W	_	0.200 BSC	—
Н	0.050	_	0.150	AA	_	1.000BSC	—
J	0.090	—	0.200				
К	0.500	_	0.700				
L	0DE G	_	7DEG				

The TQFP48 Package is 7 by 7 mm in size and has a 0.5 mm pin pitch.


The TQFP48 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

11.3 QFN32 Package Marking

In the illustration below package fields and position are shown.

