

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	25-UFBGA, WLCSP
Supplier Device Package	25-WLCSP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f038e6y6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.16	Serial w	ire debug port (SW-DP) 22
4	Pinou	ts and p	oin description 23
5	Memo	ory map	ping
6	Electr	ical cha	aracteristics
	6.1	Parame	ter conditions
		6.1.1	Minimum and maximum values
		6.1.2	Typical values
		6.1.3	Typical curves
		6.1.4	Loading capacitor
		6.1.5	Pin input voltage
		6.1.6	Power supply scheme
		6.1.7	Current consumption measurement
	6.2	Absolute	e maximum ratings
	6.3	Operatir	ng conditions
		6.3.1	General operating conditions
		6.3.2	Operating conditions at power-up / power-down
		6.3.3	Embedded reference voltage
		6.3.4	Supply current characteristics
		6.3.5	Wakeup time from low-power mode
		6.3.6	External clock source characteristics
		6.3.7	Internal clock source characteristics
		6.3.8	PLL characteristics
		6.3.9	Memory characteristics
		6.3.10	EMC characteristics
		6.3.11	Electrical sensitivity characteristics
		6.3.12	I/O current injection characteristics
		6.3.13	I/O port characteristics
		6.3.14	NRST and NPOR pin characteristics
		6.3.15	12-bit ADC characteristics
		6.3.16	Temperature sensor characteristics
		6.3.17	V _{BAT} monitoring characteristics
		6.3.18	Timer characteristics
		6.3.19	Communication interfaces

3 Functional overview

Figure 1 shows the general block diagram of the STM32F038x6 devices.

3.1 ARM[®]-Cortex[®]-M0 core

The ARM[®] Cortex[®]-M0 is a generation of ARM 32-bit RISC processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M0 processors feature exceptional code-efficiency, delivering the high performance expected from an ARM core, with memory sizes usually associated with 8- and 16-bit devices.

The STM32F038x6 devices embed ARM core and are compatible with all ARM tools and software.

3.2 Memories

The device has the following features:

- 4 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications.
- The non-volatile memory is divided into two arrays:
 - 32 Kbytes of embedded Flash memory for programs and data
 - Option bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex[®]-M0 serial wire) and boot in RAM selection disabled

3.3 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of the three boot options:

- boot from User Flash memory
- boot from System Memory
- boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10.

DocID026079 Rev 4

3.8 Direct memory access controller (DMA)

The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14) and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

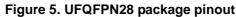
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M0) and 4 priority levels.

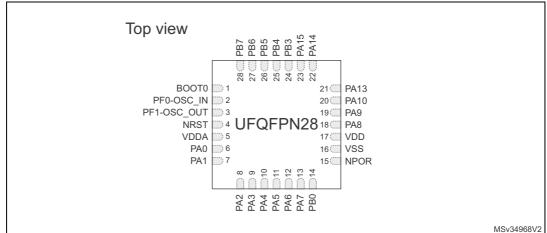
- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 38 GPIOs can be connected to the 16 external interrupt lines.


3.10 Analog-to-digital converter (ADC)


The 12-bit analog-to-digital converter has up to 10 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

DocID026079 Rev 4

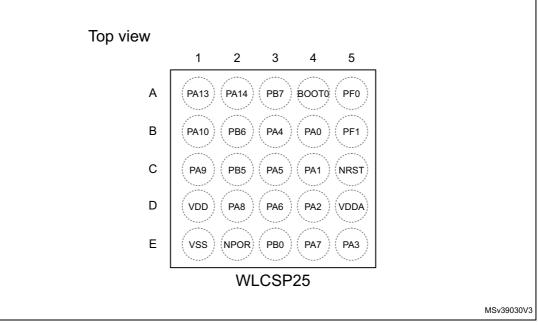


Figure 6. WLCSP25 package pinout

1. The above figure shows the package in top view, changing from bottom view in the previous document versions.

	Pin	num	ber		Table 11. Pin			-	Pin functions		
LQFP48	UFQFPN32	UFQFPN28	WLCSP25	TSSOP20	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
5	2	2	A5	2	PF0-OSC_IN (PF0)	I/O	FT	-	-	OSC_IN	
6	3	3	B5	3	PF1-OSC_OUT (PF1)	I/O	FT	-	-	OSC_OUT	
7	4	4	C5	4	NRST	I/O	RST	-	Device reset input / in (active		
8	0 (3)	16 (3)	E1 (3)	15 (3)	VSSA	S		-	Analog g	round	
9	5	5	D5	5	VDDA	S		-	Analog pow	er supply	
10	6	6	B4	6	PAO	I/O	ТТа	-	TIM2_CH1_ETR, USART1_CTS	ADC_IN0, RTC_TAMP2, WKUP1	
11	7	7	C4	7	PA1	I/O	ТТа	-	TIM2_CH2, EVENTOUT, USART1_RTS	ADC_IN1	
12	8	8	D4	8	PA2	I/O	ТТа	-	TIM2_CH3, USART1_TX	ADC_IN2	
13	9	9	E5	9	PA3	I/O	ТТа	-	TIM2_CH4, USART1_RX	ADC_IN3	
14	10	10	В3	10	PA4	I/O	ТТа	-	SPI1_NSS, I2S1_WS, TIM14_CH1, USART1_CK	ADC_IN4	
15	11	11	C3	11	PA5	I/O	ТТа	-	SPI1_SCK, I2S1_CK, TIM2_CH1_ETR	ADC_IN5	
16	12	12	D3	12	PA6	I/O	TTa	-	SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT	ADC_IN6	

Table 11. Pin definitions (continued)

Pin name	AF0	AF1	AF2	AF3
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	-
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	-
PB2	-	-	-	-
PB3	SPI1_SCK, I2S1_CK	EVENTOUT	TIM2_CH2	-
PB4	SPI1_MISO, I2S1_MCK	TIM3_CH1	EVENTOUT	-
PB5	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	-
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	-
PB8	-	I2C1_SCL	TIM16_CH1	-
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT
PB10	-	I2C1_SCL	TIM2_CH3	-
PB11	EVENTOUT	I2C1_SDA	TIM2_CH4	-
PB12	SPI1_NSS	EVENTOUT	TIM1_BKIN	-
PB13	SPI1_SCK	-	TIM1_CH1N	-
PB14	SPI1_MISO	-	TIM1_CH2N	-
PB15	SPI1_MOSI	-	TIM1_CH3N	-

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	48	MHz	
f _{PCLK}	Internal APB clock frequency	-	0	48		
V _{DD}	Standard operating voltage	-	1.65	1.95	V	
V	Analog operating voltage (ADC not used)	Must have a potential equal	V _{DD}	3.6	V	
V _{DDA}	Analog operating voltage (ADC used)	to or higher than V_{DD}	2.4	3.6	v	
V _{BAT}	Backup operating voltage	-	1.65	3.6	V	
	I/O input voltage	TC and RST I/O	-0.3	V _{DDIOx} +0.3		
V		TTa and POR I/O	-0.3	V _{DDA} +0.3 ⁽¹⁾	V	
V _{IN}		FT and FTf I/O	-0.3	5.2 ⁽¹⁾		
		BOOT0	0	5.2		
	Power dissipation at $T_A = 85 \ ^{\circ}C$	LQFP48	-	364	mW	
		UFQFPN32	-	526		
P _D	for suffix 6 or T_{Δ} = 105 °C for	UFQFPN28	-	169		
	suffix 7 ⁽²⁾	WLCSP25	-	267		
		TSSOP20	-	182		
	Ambient temperature for the	Maximum power dissipation	-40	85	°C	
Та	suffix 6 version	Low power dissipation ⁽³⁾	-40	105	U	
ΤΑ	Ambient temperature for the	Maximum power dissipation	-40	105		
	suffix 7 version	Low power dissipation ⁽³⁾	-40	125	°C	
т.	lunction tomporature range	Suffix 6 version	-40	105	°C	
TJ	Junction temperature range	Suffix 7 version	-40	125		

Table 18. General operating conditions

1. For operation with a voltage higher than V_{DDIOx} + 0.3 V, the internal pull-up resistor must be disabled.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} . See Section 7.6: Thermal characteristics.

3. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.6: *Thermal characteristics*).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 19* are derived from tests performed under the ambient temperature condition summarized in *Table 18*.

trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 27: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DDIOx} is the I/O supply voltage

 $\rm f_{SW}$ is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

 C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 27*. The MCU is placed under the following conditions:

- All I/O pins are in analog mode
- All peripherals are disabled unless otherwise mentioned
- The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- Ambient operating temperature and supply voltage conditions summarized in *Table 15: Voltage characteristics*
- The power consumption of the digital part of the on-chip peripherals is given in *Table 27*. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

	Peripheral	Typical consumption at 25 °C	Unit
	BusMatrix ⁽¹⁾	3.8	
	DMA1	6.3	
	SRAM	0.7	
	Flash memory interface	15.2	
AHB	CRC	1.61	
АПБ	GPIOA	9.4	µA/MHz
	GPIOB	11.6	
	GPIOC	1.9	
	GPIOF	0.8	
	All AHB peripherals	47.5	

Table 27. Peripheral current consumption

6.3.5 Wakeup time from low-power mode

The wakeup times given in *Table 28* are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture.

The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop mode, SYSCLK takes the default setting: HSI 8 MHz.

The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.

All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 18: General operating conditions*..

Symbol	Parameter		V _{DDA}	Мах	Unit
Symbol	ralameter	= 1.8 V	= 3.3 V	IVIAX	onin
t _{WUSTOP}	Wakeup from Stop mode	3.5	2.8	5.3	μs
t _{WUSLEEP}			K cycles	-	μs

Table 28. Low-power mode wakeup timings

6.3.6 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in *Figure 13: High-speed external clock source AC timing diagram*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	-	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	15	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time	-	-	20	115

Table 29. High-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Cumhal	Description	Func suscer	Unit	
Symbol	Description	Negative injection	-	Unit
	Injected current on BOOT0	-0	NA	
I _{INJ}	Injected current on all FT, FTf and POR pins	-5	NA	mA
	Injected current on all TTa, TC and RESET pins	-5	+5	

Table 43. I/O current injection susceptibility

6.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 44* are derived from tests performed under the conditions summarized in *Table 18: General operating conditions*. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		TC and TTa I/O	-	-	0.3 V _{DDIOx} +0.07 ⁽¹⁾		
	Low level input	FT and FTf I/O	-	-	0.475 V _{DDIOx} -0.2 ⁽¹⁾		
V _{IL}	voltage	BOOT0	-	-	0.3 V _{DDIOx} -0.3 ⁽¹⁾	V	
		All I/Os except BOOT0 pin	-	-	$\begin{array}{c c} 0.3 \ V_{DDIOx} + 0.07^{(1)} \\ \hline 0.475 \ V_{DDIOx} - 0.2^{(1)} \\ \hline 0.3 \ V_{DDIOx} - 0.3^{(1)} \\ \hline 0.3 \ V_{DDIOx} \\ \hline - \\ \hline \\ \hline \\ \hline \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		
		TC and TTa I/O	0.445 V _{DDIOx} +0.398 ⁽¹⁾	-	-		
	High level input	FT and FTf I/O	0.5 V _{DDIOx} +0.2 ⁽¹⁾	-	-		
V _{IH}	voltage	BOOT0	0.2 V _{DDIOx} +0.95 ⁽¹⁾	-	-	V	
		All I/Os except BOOT0 pin	0.7 V _{DDIOx}	-	-		
		TC and TTa I/O	-	200 ⁽¹⁾	-		
V _{hys}	Schmitt trigger hysteresis	FT and FTf I/O	-	100 ⁽¹⁾	-	mV	
		BOOT0	-	300 ⁽¹⁾	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		TC, FT and FTf I/O TTa in digital mode $V_{SS} \le V_{IN} \le V_{DDIOX}$	-	-	± 0.1		
I _{lkg}	Input leakage current ⁽²⁾	TTa in digital mode V _{DDIOx} ≤ V _{IN} ≤ V _{DDA}	-	-	1	μA	
		TTa in analog mode V _{SS} ≤ V _{IN} ≤ V _{DDA}	-	-	± 0.2		
		FT and FTf I/O $V_{DDIOx} \le V_{IN} \le 5 V$	-	-	10		

Table 44. I/O static characteristics

Electrical characteristics

	•			ucuj		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{PU}	Weak pull-up equivalent resistor (3)	V _{IN} = V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽³⁾	V _{IN} = - V _{DDIOx}	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 44. I/O static characteristics (continued)

1. Data based on design simulation only. Not tested in production.

2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 43: I/O current injection susceptibility.

3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 19* for standard I/Os, and in *Figure 20* for 5 V-tolerant I/Os. The following curves are design simulation results, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
W _{LATENCY} ⁽²⁾⁽⁴⁾		ADC clock = HSI14	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-
	ADC_DR register ready latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock = PCLK/4	-	8.5	1.5 ADC cycles + 3 f _{PCLK} cycles - - 0.250 - 17.1 239.5 18 ling +12.5 for	f _{PCLK} cycle
		$f_{ADC} = f_{PCLK}/2 = 14 \text{ MHz}$		0.196	•	μs
	Trigger conversion latency	f _{ADC} = f _{PCLK} /2	5.5			1/f _{PCLK}
t _{latr} (2)		$f_{ADC} = f_{PCLK}/4 = 12 \text{ MHz}$	0.219		μs	
		$f_{ADC} = f_{PCLK}/4$	10.5			1/f _{PCLK}
		f _{ADC} = f _{HSI14} = 14 MHz	0.179	-	1.5 ADC cycles + 3 f _{PCLK} cycles - - 1 0.250 - 1 0.250 - 1 17.1 239.5 - 18 ling +12.5 for	μs
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI14}	-	1	-	1/f _{HSI14}
ts ⁽²⁾	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
lS'-'	Sampling time	-	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Stabilization time	-	14		1/f _{ADC}	
	Total conversion time	f _{ADC} = 14 MHz, 12-bit resolution	1	-	18	μs
t _{CONV} ⁽²⁾	(including sampling time)	12-bit resolution	14 to 252 (t _S for sampling +12.5 for successive approximation)			1/f _{ADC}

 Table 49. ADC characteristics (continued)

1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μ A on I_{DDA} and 60 μ A on I_{DD} should be taken into account.

2. Guaranteed by design, not tested in production.

3. Specified value includes only ADC timing. It does not include the latency of the register access.

4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ) ⁽¹⁾
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4

Table 50. R_{AIN} max for $f_{ADC} = 14$ MHz

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit
/4	0	0.1	409.6	
/8	1	0.2	819.2	
/16	2	0.4	1638.4	
/32	3	0.8	3276.8	ms
/64	4	1.6	6553.6	
/128	5	3.2	13107.2	
/256	6 or 7	6.4	26214.4	

Table 55. IWDG min/max timeout period at 40 kHz (LSI)⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0853	5.4613	
2	1	0.1706	10.9226	ms
4	2	0.3413	21.8453	ms
8	3	0.6826	43.6906	

Table 56. WWDG min/max timeout value at 48 MHz (PCLK)

6.3.19 Communication interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I²C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.13: I/O port characteristics for the I²C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Symbol	Parameter	Min	Max	Unit
t _{AF}	Maximum width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

1. Guaranteed by design, not tested in production.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

3. Spikes with widths above $t_{AF(max)}$ are not filtered

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 58* for SPI or in *Table 59* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 18: General operating conditions*.

Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{SCK}	SPI clock frequency	Master mode	-	18	MHz	
1/t _{c(SCK)}	SPT Clock frequency	Slave mode	-	18		
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 15 pF	-	6	ns	
t _{su(NSS)}	NSS setup time	Slave mode	4Tpclk	-		
t _{h(NSS)}	NSS hold time	Slave mode	2Tpclk + 10	-		
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk/2 -2	Tpclk/2 + 1		
t _{su(MI)}	Data input setup time	Master mode	4	-		
t _{su(SI)}	Data input setup time	Slave mode	5	-		
t _{h(MI)}	Data input hold time	Master mode	4	-		
t _{h(SI)}		Slave mode	5	-	ns	
t _{a(SO)} ⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3Tpclk		
t _{dis(SO)} ⁽³⁾	Data output disable time	Slave mode	0	18		
t _{v(SO)}	Data output valid time	Slave mode (after enable edge)	-	22.5		
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	6		
t _{h(SO)}	Data output hold time	Slave mode (after enable edge)	11.5	-		
t _{h(MO)}		Master mode (after enable edge)	2	-		
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	25	75	%	

Table 58. SPI characteristics⁽¹⁾

1. Data based on characterization results, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

1. Values in inches are converted from mm and rounded to 4 decimal digits.

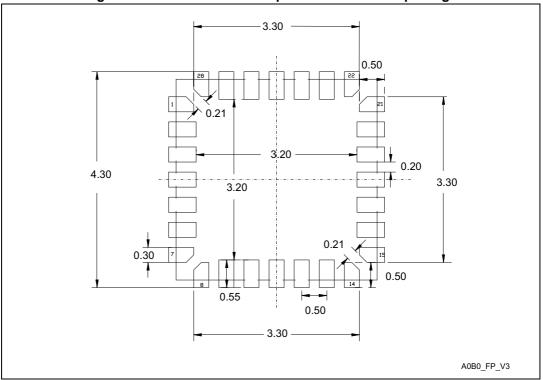
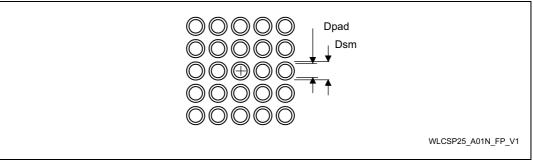


Figure 37. Recommended footprint for UFQFPN28 package

1. Dimensions are expressed in millimeters.

	rubie 66. Weber 26 paokage meenamear data (commuted)					
Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
aaa	-	0.100	-	-	0.0039	-
bbb	-	0.100	-	-	0.0039	-
CCC	-	0.100	-	-	0.0039	-
ddd	-	0.050	-	-	0.0020	-
eee	-	0.050	-	-	0.0020	-


Table 63. WLCSP25 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

4. Primary datum Z and seating plane are defined by the spherical crowns of the bump.

Figure 40. Recommended footprint for WLCSP25 package

5	
Dimension	Recommended values
Pitch	0.4 mm
Dpad	0.225 mm
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.250 mm
Stencil thickness	0.100 mm

Table 64. WLCSP25 recommended PCB design rules

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 100$ °C (measured according to JESD51-2), I_{DDmax} = 20 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V P_{INTmax} = 20 mA × 3.5 V= 70 mW

 $P_{IOmax = 20} \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$

This gives: P_{INTmax} = 70 mW and P_{IOmax} = 64 mW:

 $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

Using the values obtained in Table 66 T_{Jmax} is calculated as follows:

- For LQFP48, 55 °C/W
- T_{Jmax} = 100 °C + (55 °C/W × 134 mW) = 100 °C + 7.37 °C = 107.37 °C

This is above the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Ordering information*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

9 Revision history

Date	Revision	Changes
28-May-2014	1	Initial release.
24-Sep-2015	2	 Updated: Table 2: STM32F038x6 family device features and peripheral counts Figure 8: STM32F038x6 memory map AF1 alternate functions for PA0, PA1, PA2, PA3 and PA4 in Table 11: Alternate functions selected through GPIOA_AFR registers for port A the footnote for V_{IN} max value in Table 14: Voltage characteristics the footnote for max V_{IN} in Table 17: General operating conditions Table 20: Typical and maximum current consumption from VDD supply at VDD = 1.8 V Table 21: Typical and maximum current consumption from the VDDA supply Table 23: Typical and maximum current consumption from the VBAT supply Table 19: Embedded internal reference voltage with the addition of t_{START} parameter Table 51: TS characteristics Table 51: TS characteristics V_{ESD(CDM)} class and value in Table 40: ESD absolute maximum ratings the structure of Section 7: Package information Added: Figure 32: LQFP48 marking example (package top view) Figure 38: UFQFPN28 marking example (package top view).

Table 68. Document revision history

Date	Revision	Changes
		 Table 49: ADC characteristics - updated some parameter values, test conditions and added footnotes ⁽³⁾ and ⁽⁴⁾
		 Section 6.3.15: 12-bit ADC characteristics - changed introductory sentence
16-Dec-2015	3	 Table 59: I²S characteristics: table reorganized, t_{v(SD_ST)} max value updated
		Section 7: Package information:
		 Figure 37: Recommended footprint for UFQFPN28 package updated
		Section 8: Part numbering:
		 added tray packing to options
		Section 6: Electrical characteristics:
		 Table 32: LSE oscillator characteristics (f_{LSE} = 32.768 kHz) - information on configuring different drive capabilities removed. See the corresponding reference manual.
10-Jan-2017	4	 Table 20: Embedded internal reference voltage - V_{REFINT} values
		 Figure 25: SPI timing diagram - slave mode and CPHA = 0 and Figure 26: SPI timing diagram - slave mode and CPHA = 1 enhanced and corrected
		Section 8: Ordering information:
		 The name of the section changed from the previous "Part numbering"

Table 68. Document revision history (continued)

