

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SAI, SPDIF, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	159
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	216-TFBGA
Supplier Device Package	216-TFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f777nih7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		5.3.23	RTC characteristics	9
		5.3.24	12-bit ADC characteristics	9
		5.3.25	Temperature sensor characteristics	5
		5.3.26	V _{BAT} monitoring characteristics	5
		5.3.27	Reference voltage	5
		5.3.28	DAC electrical characteristics	6
		5.3.29	Communications interfaces	B
		5.3.30	FMC characteristics	5
		5.3.31	Quad-SPI interface characteristics	5
		5.3.32	Camera interface (DCMI) timing specifications	7
		5.3.33	LCD-TFT controller (LTDC) characteristics	8
		5.3.34	Digital filter for Sigma-Delta Modulators (DFSDM) characteristics 220	C
		5.3.35	DFSDM timing diagrams	2
		5.3.36	SD/SDIO MMC card host interface (SDMMC) characteristics 223	3
6	Pack	age info	ormation	5
	6.1	LQFP1	00 14x 14 mm, low-profile quad flat package information 225	5
	6.2	LQFP1	44 20 x 20 mm, low-profile quad flat package information 229	9
	6.3	LQFP1	76 24 x 24 mm, low-profile quad flat package information 233	3
	6.4	LQFP2	08 28 x 28 mm low-profile quad flat package information 237	7
	6.5	WLCSI packag	P 180-bump, 5.5 x 6 mm, wafer level chip scale	1
	6.6	UFBGA array p	A176+25, 10 x 10, 0.65 mm ultra thin fine-pitch ball grid	5
	6.7	TFBGA array p	216, 13 x 13 x 0.8 mm thin fine-pitch ball grid ackage information	3
	6.8	Therma	al characteristics	1
7	Orde	ering inf	ormation	2
Apper	ndix A F	Recomm	endations when using internal reset OFF	3
	A.1	Operat	ing conditions	3
Revis	ion histo	ry		4

Figure 46. Figure 47. Figure 48. Figure 49.	SPI timing diagram - slave mode and CPHA = 0	181 182 182 184
Figure 50.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	184
Figure 51.	JTAG timing diagram	186
Figure 52	SWD timing diagram	187
Figure 53	SAI master timing waveforms	188
Figure 54	SAL slave timing waveforms	189
Figure 55	USB OTG full speed timings: definition of data signal rise and fall time	190
Figure 56		192
Figure 57	Ethernet SMI timing diagram	193
Figure 58	Ethernet RMII timing diagram	193
Figure 59	Ethernet MII timing diagram	104
Figure 60	MDIO Slave timing diagram	105
Figure 61	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	106
Figure 62	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	108
Figure 63		100
Figure 64		201
Figure 65	Synchronous multiplexed I SIXAW/NOR while wavelonns	201
Figure 66	Synchronous multiplexed DSDAM write timings	205
Figure 67	Synchronous non multiplexed NOP/DSPAM read timings	203
Figure 68	Synchronous non-multiplexed NOIAT SIXAW read timings	201
Figure 60	NAND controller waveforms for road access	200
Figure 09.	NAND controller waveforms for write access	210
Figure 70.		210
Figure 71.	NAND controller waveforms for common memory write access	211
Figure 72.	SDRAM read access waveforms (CL = 1)	211
Figure 73.	SDRAW Teau access waveforms (CL = 1)	212
Figure 74.	SDRAW while access wavelonns	214
Figure 75.	Quad-SPI timing diagram - SDR mode.	217
Figure 76.		217
Figure 77.		210
Figure 78.		219
Figure 79.		219
Figure 80.		222
Figure 81.		223
Figure 82.		223
Figure 83.	LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline	225
Figure 84.	LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package	~~-
		227
Figure 85.	LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package	~~~
_ ; _ _ _ _ _ _ _ _ _ _		228
Figure 86.	LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline	229
Figure 87.	LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package	
	recommended footprint.	231
Figure 88.	LQFP144, 20 x 20mm, 144-pin low-profile quad flat package	
	top view example	232
Figure 89.	LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline	233
Figure 90.	LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package	
	recommended footprint	235
Figure 91.	LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package	
	top view example	236

2.3 Embedded Flash memory

The STM32F777xx, STM32F778Ax and STM32F779xx devices embed a Flash memory of up to 2 Mbytes available for storing programs and data. The Flash interface features:

- Single /or Dual bank operating modes,
- Read-While-Write (RWW) in Dual bank mode.

2.4 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.5 Embedded SRAM

All the devices feature:

- System SRAM up to 512 Kbytes:
 - SRAM1 on AHB bus Matrix: 368 Kbytes
 - SRAM2 on AHB bus Matrix: 16 Kbytes
 - DTCM-RAM on TCM interface (Tighly Coupled Memory interface): 128 Kbytes for critical real-time data.
- Instruction RAM (ITCM-RAM) 16 Kbytes:
 - It is mapped on TCM interface and reserved only for CPU Execution/Instruction useful for critical real-time routines.

The Data TCM RAM is accessible by the GP-DMAs and peripherals DMAs through specific AHB slave of the CPU. The instruction TCM RAM is reserved only for CPU. It is accessed at CPU clock speed with 0 wait states.

• 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

2.6 AXI-AHB bus matrix

The STM32F777xx, STM32F778Ax and STM32F779xx system architecture is based on 2 sub-systems:

- An AXI to multi AHB bridge converting AXI4 protocol to AHB-Lite protocol:
 - 3x AXI to 32-bit AHB bridges connected to AHB bus matrix
 - 1x AXI to 64-bit AHB bridge connected to the embedded Flash memory
- A multi-AHB Bus-Matrix
 - The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM,

2.7 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. The configuration is made by software and the transfer sizes between the source and the destination are independent.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDMMC
- Cryptographic acceleration
- Camera interface (DCMI)
- ADC
- SAI
- SPDIFRX
- Quad-SPI
- HDMI-CEC
- JPEG codec
- DFSDM1

The devices embed two dedicated PLL (PLLI2S and PLLSAI) which allow to achieve audio class performance. In this case, the I²S and SAI master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

2.16 Boot modes

At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF which includes:

- All Flash address space mapped on ITCM or AXIM interface
- All RAM address space: ITCM, DTCM RAMs and SRAMs mapped on AXIM interface
- The System memory bootloader

The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial interface. Refer to *STM32 microcontroller system memory boot mode* application note (AN2606) for details.

2.17 Power supply schemes

- V_{DD} = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Note: V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.18.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option.

- V_{DDSDMMC} can be connected either to V_{DD} or an external independent power supply (1.8 to 3.6V) for SDMMC2 pins (clock, command, and 4-bit data). For example, when the device is powered at 1.8V, an independent power supply 2.7V can be connected to V_{DDSDMMC} . When the V_{DDSDMMC} is connected to a separated power supply, it is independent from V_{DD} or V_{DDA} but it must be the last supply to be provided and the first to disappear. The following conditions V_{DDSDMMC} must be respected:
 - During the power-on phase ($V_{DD} < V_{DD_MIN}$), $V_{DDSDMMC}$ should be always lower than V_{DD}
 - During the power-down phase (V_{DD} < V_{DD_MIN}), V_{DDSDMMC} should be always lower than V_{DD}
 - The V_{DDSDMMC} rising and falling time rate specifications must be respected (see Table 20 and Table 21)
 - In operating mode phase, V_{DDSDMMC} could be lower or higher than V_{DD}: All associated GPIOs powered by V_{DDSDMMC} are operating between V_{DDSDMMC_MIN} and V_{DDSDMMC_MAX}.
- V_{DDUSB} can be connected either to V_{DD} or an external independent power supply (3.0 to 3.6V) for USB transceivers (refer to *Figure 4* and *Figure 5*). For example, when the device is powered at 1.8V, an independent power supply 3.3V can be connected to V_{DDUSB}. When the V_{DDUSB} is connected to a separated power supply, it is independent from V_{DD} or V_{DDA} but it must be the last supply to be provided and the first to

Figure 9. Startup in regulator OFF: slow V_{DD} slope - power-down reset risen after V_{CAP_1}, V_{CAP_2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

Figure 10. Startup in regulator OFF mode: fast V_{DD} slope - power-down reset risen before V_{CAP_1}, V_{CAP_2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator(LSE)
- The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32

The RTC is functional in V_{BAT} mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in V_{BAT} mode, but is functional in all low-power modes.

All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

2.21 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5: Voltage regulator modes in stop mode*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup and LPTIM1 asynchronous interrupt).

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)		
Normal mode	MR ON	LPR ON		
Under-drive mode	MR in under-drive mode	LPR in under-drive mode		

Table 5. Voltage regulator modes in stop mode

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering

- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Battery Charging Specification Revision 1.2 support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

2.36 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The devices embed a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC controller to wakeup the MCU from Stop mode on data reception.

2.37 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbytes/s in 8-bit mode at 54 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

Name	Abbreviation	Definition
Pin name	Unless otherwise reset is the same	specified in brackets below the pin name, the pin function during and after as the actual pin name
	S	Supply pin
Pin type	I	Input only pin
	I/O	Input / output pin
	FT	5 V tolerant I/O
	TTa	3.3 V tolerant I/O directly connected to ADC
NO structure	В	Dedicated BOOT pin
	RST	Bidirectional reset pin with weak pull-up resistor
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset
Alternate functions	Functions selected	d through GPIOx_AFR registers
Additional functions	Functions directly	selected/enabled through peripheral registers

Table 9. Legend/abbreviations used in the pinout table

Table 10. STM32F777xx, STM32F778Ax and STM32F779xx pin andball definitions

				Pin N	lumb	er									
	S	TM32	2F777	'xx		ST ST	ГМ32 ГМ32	F778/ F779:	Ax xx	reset					
LQFP100	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	WLCSP180 ⁽¹⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after	Pin type	I/O structure	Notes	Alternate functions	Additional functions
1	1	A2	1	1	A3	E10	1	1	A3	PE2	I/O	FT	-	TRACECLK, SPI4_SCK, SAI1_MCLK_A, QUADSPI_BK1_IO2, ETH_MII_TXD3, FMC_A23, EVENTOUT	-
2	2	A1	2	2	A2	F10	2	2	A2	PE3	I/O	FT	-	TRACED0, SAI1_SD_B, FMC_A19, EVENTOUT	-

Bus	Boundary address	Peripheral
	0x4000 8000- 0x4000 FFFF	Reserved
	0x4000 7C00 - 0x4000 7FFF	UART8
	0x4000 7800 - 0x4000 7BFF	UART7
	0x4000 7400 - 0x4000 77FF	DAC
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6C00 - 0x4000 6FFF	HDMI-CEC
	0x4000 6800 - 0x4000 6BFF	CAN2
	0x4000 6400 - 0x4000 67FF	CAN1
	0x4000 6000 - 0x4000 63FF	I2C4
	0x4000 5C00 - 0x4000 5FFF	12C3
	0x4000 5800 - 0x4000 5BFF	I2C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 5000 - 0x4000 53FF	UART5
	0x4000 4C00 - 0x4000 4FFF	UART4
	0x4000 4800 - 0x4000 4BFF	USART3
	0x4000 4400 - 0x4000 47FF	USART2
	0x4000 4000 - 0x4000 43FF	SPDIFRX
	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	CAN3
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 2400 - 0x4000 27FF	LPTIM1
	0x4000 2000 - 0x4000 23FF	TIM14
	0x4000 1C00 - 0x4000 1FFF	TIM13
	0x4000 1800 - 0x4000 1BFF	TIM12
	0x4000 1400 - 0x4000 17FF	TIM7
	0x4000 1000 - 0x4000 13FF	TIM6
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

Table 13. STM32F777xx, STM32F778Ax and STM32F779xx register boundary addresses⁽¹⁾ (continued)

1. The gray color is used for reserved Flash memory addresses.

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_Amax$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V (for the 1.7 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 22*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 23*.

5.3 Operating conditions

5.3.1 General operating conditions

Symbol	Parameter	Conditions ⁽¹⁾			Тур	Max	Unit
f _{HCLK}		Power Scale 3 (VOS[1:0] bits ir PWR_CR register = 0x01), Reg ON, over-drive OFF	ı julator	0	-	144	
	Internal AHB clock frequency	Power Scale 2 (VOS[1:0] bits	Over- drive OFF	0	-	168	
		Regulator ON	Over- drive ON	U	-	180	
		Power Scale 1 (VOS[1:0] bits	Over- drive OFF	0	-	180	MHz
		Regulator ON	Over- drive ON	0	-	216 ⁽²⁾	
f	Internal APP1 clock frequency	Over-drive OFF	0	-	45		
'PCLK1	Internal AFBT Clock frequency	Over-drive ON	0	-	54		
fraues	Internal APB2 clock frequency	Over-drive OFF		0	-	90	
PCLK2		Over-drive ON	0	-	108		
V _{DD}	Standard operating voltage	-		1.7 ⁽³⁾	-	3.6	
V (4)(5)	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as)	<i>(</i> 6)	1.7 ⁽³⁾	-	2.4	
V DDA	Analog operating voltage (ADC limited to 2.4 M samples)	must be the same potential as	VDD`	2.4	-	3.6	
	USB supply voltage (supply	USB not used		1.7	3.3	3.6	
V _{DDUSB}	voltage for PA11,PA12, PB14 and PB15 pins)	USB used		3.0	-	3.6	
V _{BAT}	Backup operating voltage	-	1.65	-	3.6		
V _{DDSDMMC}	SDMMC2 supply voltage (supply voltage for PG[12:9] and PD6 pins)	It can be different from VDD		1.7	-	3.6	
V _{DDDSI}	DSI system operating	-		1.7	-	3.6	

Table 17. General operating conditions

-) - winds a wall		l _{DD} (Typ) ⁽¹⁾		Unit	
F	ripneral	Scale 1	Scale 2	Scale 3	Unit	
	TIM2	19.1	18.7	14.7		
	TIM3	14.6	14.0	10.6		
	TIM4	15.4	14.7	11.4		
	TIM5	18.1	17.6	13.6		
	TIM6	3.1	2.7	1.4		
	TIM7	3.0	2.7	1.1		
	TIM12	8.1	7.8	5.6		
	TIM13	5.4	5.1	3.1		
	TIM14	5.6	5.3	3.3		
	LPTIM1	9.8	9.6	6.9		
	WWDG	1.9	1.6	1,4		
	SPI2/I2S2 ⁽³⁾	3.0	2.9	1.4		
	SPI3/I2S3 ⁽³⁾	3.0	3.3	1.4		
	SPDIFRX	2.4	2.0	1.7		
APB1	USART2	12.6	12.7	9.2		
(up to 54 MHz)	USART3	12.4	12.4	9.4		
	UART4	10.7	10.9	8.1		
	UART5	10.7	10.7	8.1		
	I2C1	8.9	8.9	6.4		
	I2C2	8.3	8.2	6.1		
	I2C3	8.1	8.2	6.1		
	I2C4	8.0	8.2	5.8		
	CAN1	6.3	6.4	4.4		
	CAN2	5.7	5.8	3.9		
	CAN3	7.4	7.1	5.6		
	HDMI-CEC	2.2	1.8	1.4		
	PWR	1.3	0.9	0.8	1	
	DAC ⁽⁴⁾	4.8	4.2	3.6	1	
	UART7	UART7 10.4 10.4		7.8		
-	UART8	11.1	11.3	8.3		

 Table 39. Peripheral current consumption (continued)

5.3.10 Internal clock source characteristics

The parameters given in *Table 45* and *Table 46* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
100	HSI user trimming step ⁽²⁾	-	-	-	1	%
		$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
ACCHSI	Accuracy of the HSI oscillator	$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	- 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

Table 45	HSI	oscillator	characteristics	(1))
Table 45.	пэі	OSCIIIALOI	Characteristics	• •	'

1. V_{DD} = 3.3 V, T_A = –40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

4. Factory calibrated, parts not soldered.

Figure 32. ACCHSI versus temperature

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10		
f _{PLLI2SP_OUT}	PLLI2S multiplier output clock for SPDIFRX	-	-			216	
f _{PLLI2SQ_OUT}	PLLI2S multiplier output clock for SAI	-		-	-	216	MHz
fplli2sr_out	PLLI2S multiplier output clock for I2S	-		-	-	216	
f _{VCO_OUT}	PLLI2S VCO output	-	-			432	
+	DI LI2S lock time	VCO freq = 192 MHz	75	-	200		
LOCK		VCO freq = 432 MHz	100	-	300	μο	
		Cycle to cycle at	RMS	-	90	-	
	Maatar I2S alaak jittar	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
Jitter ⁽³⁾		Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples		-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 ł on 1000 samples	〈Hz	-	400	-	ps
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 192 MHz VCO freq = 432 MHz	<u>.</u>	0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DDA}	VCO freq = 192 MHz VCO freq = 432 MHz	: :	0.30 0.55	-	0.40 0.85	mA

Table 48. PLLI2S characteristics

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

Table 49. PLLISAI characteristic	Table 49	9. PLLISA	I characterist	tics
----------------------------------	----------	-----------	----------------	------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLSAI_IN}	PLLSAI input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10	
f _{PLLSAIP_OUT}	PLLSAI multiplier output clock for 48 MHz	-	-	48	75	
f _{PLLSAIQ_OUT}	PLLSAI multiplier output clock for SAI	-	-	-	216	MHz
f _{PLLSAIR_OUT}	PLLSAI multiplier output clock for LCD-TFT	-	-	-	216	
f _{VCO_OUT}	PLLSAI VCO output	-	100	-	432	1

If $f_{PLL_IN} = 1$ MHz, and $f_{MOD} = 1$ kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round
$$[10^{6}/(4 \times 10^{3})] = 250$$

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

INCSTEP = round[
$$((2^{15}-1) \times md \times PLLN)/(100 \times 5 \times MODEPER)$$
]

 $f_{VCO OUT}$ must be expressed in MHz.

With a modulation depth (md) = ± 2 % (4 % peak to peak), and PLLN = 240 (in MHz):

INCSTEP = round[$((2^{15}-1) \times 2 \times 240)/(100 \times 5 \times 250)$] = 126md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{nuantized}$$
% = (MODEPER × INCSTEP × 100 × 5)/((2¹⁵ - 1) × PLLN)

As a result:

$$md_{quantized}$$
% = $(250 \times 126 \times 100 \times 5)/((2^{15} - 1) \times 240)$ = 2.002%(peak)

Figure 34 and *Figure 35* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal. T_{mode} is the modulation period. md is the modulation depth.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 30 MHz, 12-bit resolution	-	-	1764	kHz
		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	v
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> for details	-	-	50	kΩ
R _{ADC} ⁽²⁾⁽⁴⁾	Sampling switch resistance	-	-	-	6	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	4	7	pF
+ (2)	Injection trigger conversion	f _{ADC} = 30 MHz	-	-	0.100	μs
"Iat"	latency		-	-	3 ⁽⁵⁾	1/f _{ADC}
t ₁₋₁ (2)	Regular trigger conversion	f _{ADC} = 30 MHz	-	-	0.067	μs
Patr	latency		-	-	2 ⁽⁵⁾	1/f _{ADC}
te ⁽²⁾	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
.5		-	3	-	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	-	2	3	μs
	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	μs
		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
t _{CONV} ⁽²⁾		f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	μs
		9 to 492 (t _S for sampling approximation)	+n-bit resolution f	or succe	ssive	1/f _{ADC}
		12-bit resolution Single ADC	-	-	2.4	Msps
f _S ⁽²⁾	Sampling rate (f _{ADC} = 36 MHz, and to = 3 ADC cycles)	12-bit resolution Interleave Dual ADC mode	-	-	4.5	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	7.2	Msps

Table 71. ADC characteristics (continued)

Symbol	Parameter	Min	Max	Unit			
t _{w(NE)}	FMC_NE low time	3T _{HCLK} – 1	3T _{HCLK} + 1				
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	2T _{HCLK}	2T _{HCLK} + 0.5				
t _{tw(NOE)}	FMC_NOE low time	T _{HCLK} – 1	T _{HCLK} + 1				
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-				
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0.5				
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	0.5				
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} – 0.5	T _{HCLK} +1				
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV high)	T _{HCLK} + 0.5	-	ns			
t _{h(A_NOE)}	Address hold time after FMC_NOE high	T _{HCLK} – 0.5	-				
t _{h(BL_NOE)}	FMC_BL time after FMC_NOE high	0	-				
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5				
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} – 1	-				
t _{su(Data_NOE)}	Data to FMC_NOE high setup time	T _{HCLK} – 1	-				
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-				
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-				

Table 104. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾

1. Guaranteed by characterization results.

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} – 1	8T _{HCLK} + 1	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} – 1.5	5T _{HCLK} + 0.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} + 1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} + 1	_	

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
tw(CKH)	Quad-SPI clock high and		t(CK)/2 - 1	-	t(CK)/2	
tw(CKL)	low time	-	t(CK)/2	-	t(CK)/2 + 1	
ts(IN)	Data input setup time		0.5	-	-	
th(IN)	Data input hold time	-	3	-	-	ns
tv(OUT)	Data output valid time	2.7 V <v<sub>DD<3.6 V</v<sub>	-	1.5	3.5	
		1.71 V <v<sub>DD<3.6 V</v<sub>	-	1.5	2	
th(OUT)	Data output hold time	-	0.5	-	-	

Table 118. Quad-SPI characteristics (continued)in SDR mode⁽¹⁾ (continued)

1. Guaranteed by characterization results.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		2.7 V <v<sub>DD<3.6 V CL=20 pF</v<sub>	-	-	80	
Fck1/t(CK)	Quad-SPI clock frequency	1.8 V <v<sub>DD<3.6 V CL=15 pF</v<sub>	-	-	80	MH z
		1.71 V <v<sub>DD<3.6 V CL=10 pF</v<sub>	-	-	80	
tw(CKH)	Quad SPI clock high		t(CK)/2 - 1	-	t(CK)/2	
tw(CKL)	and low time	-	t(CK)/2	-	t(CK)/2 + 1	
ts(IN), tsf(IN)	Data input setup time	2.7 V <v<sub>DD<3.6 V</v<sub>	0.75	-	-	
		1.71 V <v<sub>DD<2 V</v<sub>	0.5	-	-	
thr(IN),	Data input hold time	2.7 V <v<sub>DD<3.6 V</v<sub>	2	-	-	
thf(IN)		1.71 V <v<sub>DD<2 V</v<sub>	3	-	-	
		2.7 V <v<sub>DD<3.6 V</v<sub>	-	8.5	10	ns
tvr(OUT), tvf(OUT)	Data output valid time	1.71 V <v<sub>DD<3.6 V DHHC=0</v<sub>	-	8	12	
		DHHC=1 Pres=1, 2	-	T _{HCLK} /2 + 1.5	T _{HCLK} /2 + 2.5	
thr(OUT)		DHHC=0	7.5	-	-]
thr(OUT), thf(OUT)	Data output hold time	DHHC=1 Pres=1, 2	T _{HCLK} /2 + 0.5	-	-	

Table 119	Quad SPI	characteristics in	າ DDR mode ⁽¹⁾
-----------	----------	--------------------	---------------------------

Revision history

Date	Revision	Changes
21-Mar-2016	1	Initial release.
26-Apr-2016	2	 DFSDM replaced by DFSDM1 in: Table 10: STM32F777xx, STM32F778Ax and STM32F779xx pin and ball definitions. Table 12: STM32F777xx, STM32F778Ax and STM32F779xx alternate function mapping. Table 13: STM32F777xx, STM32F778Ax and STM32F779xx register boundary addresses. Section 5.3.34: Digital filter for Sigma-Delta Modulators (DFSDM) characteristics. Updated Table 2: STM32F777xx, STM32F778Ax and STM32F779xx features and peripheral counts adding DFSDM1 features. Updated Table 39: Peripheral current consumption adding DFSDM1 current consumption. Updated cover in 2 pages. Updated cover replacing for SPI 'up to 50 Mbit/s' by 'up to 54 Mbit/s'.
06-May-2016	3	Updated Table 2: STM32F777xx, STM32F778Ax and STM32F779xx features and peripheral counts GPIO number. Updated Table 12: STM32F777xx, STM32F778Ax and STM32F779xx alternate function mapping adding CAN3_RX alternate function on PA8/AF11.
22-Dec-2016	4	Updated Table 97: Dynamics characteristics: Ethernet MAC signals for <i>RMII</i> . Updated Table 71: ADC characteristics sampling rate. Updated all the notes removing 'not tested in production'. Updated <i>Figure 46: SPI timing diagram - slave mode and CPHA = 0</i> and <i>Figure 47: SPI timing diagram - slave mode and CPHA = 1(1)</i> with modified NSS timing waveforms (among other changes). Updated Table 121: LTDC characteristics clock output frequency at 65 MHz. Updated <i>Section 5.2: Absolute maximum ratings</i> . Updated <i>Section 6: Package information</i> adding information about other optional marking or inset/upset marks.

Table	138.	Document	revision	historv

