E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SAI, SPDIF, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f777zit6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Perij	pherals	STM32	F77xVx	STM32	F77xZx	STM32	F779Ax	STM32F778Ax	STM32	2F77xlx	STM32	F77xBx	STM32	F77xNx
Flash memory in Kby	/tes	1024	2048	1024	2048	1024	2048	2048	1024	2048	1024	2048	1024	2048
	System				•		1	512(368+16+128)	1	1	•		1	
SRAM in Kbytes	Instruction							16						
							4							
FMC memory contro	ller							Yes ⁽¹⁾						
Quad-SPI								Yes						
Ethernet			Ye	es			Ν	lo			Ye	es		
	General-purpose					1		10	1					
_	Advanced-control							2						
limers	Basic							2						
	Low-power		1											
Random number ger	nerator							Yes						
	SPI / I ² S	4/3 (sin	nplex) ⁽²⁾					6/3 (sim	plex) ⁽²⁾					
	l ² C							4						
	USART/UART							4/4						
	USB OTG FS							Yes						
Communication	USB OTG HS							Yes						
interfaces	CAN							3						
	SAI							2						
	SPDIFRX							4 inputs						
	SDMMC1							Yes						
	SDMMC2							Yes ⁽³⁾						
Camera interface	1							Yes						
MIPI-DSI Host ⁽⁴⁾			N	0					Ye	es				
LCD-TFT						1		Yes						
Chrom-ART Accelera	ator™ (DMA2D)							Yes						
JPEG codec								Yes						
Cryptography								Yes						

16/255

DocID028294 Rev 4

STM32F777xx STM32F778Ax STM32F779xx

Description

2.8 Flexible memory controller (FMC)

The Flexible memory controller (FMC) includes three memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller
- The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR Flash memory/OneNAND Flash memory
 - PSRAM (4 memory banks)
 - NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
- Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
- 8-,16-,32-bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- Read FIFO for SDRAM controller
- The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is HCLK/2

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

2.9 Quad-SPI memory interface (QUADSPI)

All the devices embed a Quad-SPI memory interface, which is a specialized communication interface targetting Single, Dual or Quad-SPI Flash memories. It can work in:

- Direct mode through registers
- External Flash status register polling mode
- Memory mapped mode.

Up to 256 Mbytes external Flash are memory mapped, supporting 8, 16 and 32-bit access. Code execution is supported.

The opcode and the frame format are fully programmable. The communication can be either in Single Data Rate or Dual Data Rate.

SAI1 and SAI2 can be served by the DMA controller

2.28 SPDIFRX Receiver Interface (SPDIFRX)

The SPDIFRX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1).

The main features of the SPDIFRX are the following:

- Up to 4 inputs available
- Automatic symbol rate detection
- Maximum symbol rate: 12.288 MHz
- Stereo stream from 32 to 192 kHz supported
- Supports Audio IEC-60958 and IEC-61937, consumer applications
- Parity bit management
- Communication using DMA for audio samples
- Communication using DMA for control and user channel information
- Interrupt capabilities

The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags.

The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.

2.29 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I^2S/SAI flow with an external PLL (or Codec output).

2.30 Audio and LCD PLL (PLLSAI)

An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the LCD-TFT clock.

DocID028294 Rev 4

- Automatic data offset correction (offset stored in register by user)
- Continuous or single conversion
- Start-of-conversion triggered by:
 - Software trigger
 - Internal timers
 - External events
 - Start-of-conversion synchronously with first digital filter module (DFSDM0)
- Analog watchdog feature:
 - Low value and high value data threshold registers
 - Dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
 - Input from final output data or from selected input digital serial channels
 - Continuous monitoring independently from standard conversion
- Short circuit detector to detect saturated analog input values (bottom and top range):
 - Up to 8-bit counter to detect 1..256 consecutive 0's or 1's on serial data stream
 - Monitoring continuously each input serial channel
- Break signal generation on analog watchdog event or on short circuit detector event
- Extremes detector:
 - Storage of minimum and maximum values of final conversion data
 - Refreshed by software
- DMA capability to read the final conversion data
- Interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence
- "regular" or "injected" conversions:
 - "regular" conversions can be requested at any time or even in continuous mode without having any impact on the timing of "injected" conversions
 - "injected" conversions for precise timing and with high conversion priority

2.44 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with the temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT}, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

- 16-bit RGB, configurations 1, 2, and 3
- 18-bit RGB, configurations 1 and 2
- 24-bit RGB
- Programmable polarity of all LTDC interface signals
- Extended resolutions beyond the DPI standard
- Maximum resolution of 800x480 pixels:
- Maximum resolution is limited by available DSI physical link bandwidth:
 - Number of lanes: 2
 - Maximum speed per lane: 500 Mbps1Gbps

Adapted interface features

Support for sending large amounts of data through the memory_write_start(WMS) and memory_write_continue(WMC) DCS commands

- LTDC interface color coding mappings into 24-bit interface:
 - 16-bit RGB, configurations 1, 2, and 3
 - 18-bit RGB, configurations 1 and 2
 - 24-bit RGB

Video mode pattern generator:

- Vertical and horizontal color bar generation without LTDC stimuli
- BER pattern without LTDC stimuli

Figure 19. STM32F77xxx TFBGA216 ballout

1. The above figure shows the package top view.

100/255

DocID028294 Rev 4

PG6

PG7

-

-

-

-

-

-

-

			1/2		1/CEC	1/CEC
	PF12	-	-	-	-	-
Port F	PF13	-	-	-	-	I2C4_SM BA
	PF14	-	-	-	-	l2C4_SC L
	PF15	-	-	-	-	I2C4_SD A
	PG0	-	-	-	-	-
	PG1	-	-	-	-	-
	PG2	-	-	-	-	-
	PG3	-	-	-	-	-
Port G	PG4	-	-	-	-	-
	PG5	-	_	-	-	-

AF0

SYS

Port

AF1

I2C4/UA

RT5/TIM

1/2

AF2

TIM3/4/5

AF3

TIM8/9/10/

11/LPTIM

1/DFSDM

AF4

I2C1/2/3/

4/USART

1/CEC

-

-

AF5

SPI1/I2S

1/SPI2/I2

S2/SPI3/

I2S3/SPI

4/5/6

.

-

.

-

-

-

-

-

-

-

-

Table 12. STM32F777xx, STM32F778Ax and STM32F779xx alternate function mapping (continued)

AF7

SPI2/I2S

2/SPI3/I2

S3/SPI6/

USART1/

2/3/UART

5/DFSDM

1/SPDIF

-

-

_

-

-

-

_

_

-

-

-

AF8

SPI6/SAI

2/USART

6/UART4/

5/7/8/OT

G FS/SP

DIF

.

-

-

-

-

-

-

-

-

-

-

USART6

CK

AF9

CAN1/2/T

IM12/13/

14/QUAD

SPI/FMC/

LCD

-

-

-

-

-

-

-

-

-

-

-

-

AF10

SAI2/QU

ADSPI/S

DMMC2/D

FSDM1/O

TG2_HS/

OTG1_FS

/LCD

-

-

_

-

_

-

-

-

-

-

-

-

AF11

I2C4/CAN

3/SDMM

C2/ETH

-

-

-

-

-

-

-

-

-

-

-

-

AF12

UART7/

FMC/SD

MMC1/M

DIOS/OT

G2_FS

FMC_A6

FMC A7

FMC A8

FMC_A9

FMC_A1

0 FMC_A1

1

FMC_A1

2 FMC_A1 3

FMC_A1

4/FMC_

BA0 FMC A1 5/FMC

BA1 FMC_NE

3

FMC_IN

Т

AF13

DCMI/L

CD/DSI

-

-

-

-

-

_

-

-

-

DCMI_D

12

DCMI D

13

AF14

LCD

-

AF15

SYS

EVEN

TOUT

AF6

SPI2/I2S

2/SPI3/I2

S3/SAI1/

I2C4/UA

RT4/DF

SDM1

-

DFSDM1

DATAIN

6

DFSDM1

CKIN6

-

-

-

-

-

-

-

-

SAI1_M

CLK_A

STM32F777xx STM32F778Ax STM32F779xx

-	EVEN TOUT	
-	EVEN TOUT	
LCD_R7	EVEN TOUT	
LCD_CL K	EVEN TOUT	

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_Amax$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V (for the 1.7 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 22*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 23*.

Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Dual bank mode) on ITCM interface (ART disabled), regulator ON

Symbol	Deremeter	arameter Conditions f _{HCLK} (MHz) Typ		Turn		Max ⁽¹⁾		Ilmit
Symbol	Parameter			тур	TA= 25 °C	TA=85 °C	TA=105 °C	Unit
			216	191	218	255	-	
			200	178	195	241	269	
			180	164	179	214	236	
		All peripherals enabled ⁽²⁾⁽³⁾	168	147	160	192	212	
			144	121	130	157	175	
		60	60	66	93	111		
	Supply		25	28	33	59	77	mΔ
'DD	RUN mode	n	216	93	104	150	-	
			200	87	97	144	171	
			180	83	92	126	148	
		All peripherals disabled ⁽³⁾	168	75	82	114	134	
			144	65	71	97	115	-
			60	35	40	66	84	
			25	16	20	47	64	

1. Guaranteed by characterization results, unless otherwise specified.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

If $f_{PLL_IN} = 1$ MHz, and $f_{MOD} = 1$ kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round
$$[10^{6}/(4 \times 10^{3})] = 250$$

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

INCSTEP = round[
$$((2^{15}-1) \times md \times PLLN)/(100 \times 5 \times MODEPER)$$
]

 $f_{VCO OUT}$ must be expressed in MHz.

With a modulation depth (md) = ± 2 % (4 % peak to peak), and PLLN = 240 (in MHz):

INCSTEP = round[$((2^{15}-1) \times 2 \times 240)/(100 \times 5 \times 250)$] = 126md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{quantized}$$
% = (MODEPER × INCSTEP × 100 × 5)/((2¹⁵ - 1) × PLLN)

As a result:

$$md_{quantized}$$
% = $(250 \times 126 \times 100 \times 5)/((2^{15} - 1) \times 240)$ = 2.002%(peak)

Figure 34 and *Figure 35* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal. T_{mode} is the modulation period. md is the modulation depth.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
	t _{BE} Bank erase time	Program/erase parallelism (PSIZE) = x 8	-	16	32	
t _{BE}		Program/erase parallelism (PSIZE) = x 16	-	11	22	S
		Program/erase parallelism (PSIZE) = x 32	-	8	16	
		32-bit program operation	2.7	-	3	V
V _{prog}	Programming voltage	16-bit program operation	2.1	-	3.6	V
		8-bit program operation	1.7	-	3.6	V

Table 57. Flash memory programming (dual bank configurationnDBANK=0) (continued)

1. Guaranteed by characterization results.

2. The maximum programming time is measured after 100K erase operations.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit		
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs		
t _{ERASE32KB}	Sector (32 KB) erase time	T _A = 0 to +40 °C	-	180	-			
t _{ERASE128KB}	Sector (128 KB) erase time	V _{DD} = 3.3 V	-	450	-	ms		
t _{ERASE256KB}	Sector (256 KB) erase time	V _{PP} = 8.5 V	-	900	-			
t _{ME}	Mass erase time		-	6.9	-	s		
V _{prog}	Programming voltage	-	2.7	-	3.6	V		
V _{PP}	V _{PP} voltage range	-	7	-	9	V		
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin	-	10	-	-	mA		
t _{VPP} ⁽³⁾	Cumulative time during which V_{PP} is applied	-	-	-	1	hour		

Table 58. Flash memory programming with V_{PP}

1. Guaranteed by design.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Table 59. Flash memory endurance and data retention

Symbol	Doromotor	Conditions	Value	Unit
Symbol	Farameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

DocID028294 Rev 4

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25$ °C conforming to ANSI/ESDA/JEDEC JS-001-2012	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C conforming to ANSI/ESD S5.3.1-2009, all the packages	3	250	v

 Table 62. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

Table 63. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

5.3.19 I/O current injection characteristics

As a general rule, a current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during the normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when an abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during the device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of – 5 μ A/+0 μ A range), or other functional failure (for example reset, oscillator frequency deviation).

A negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 64.

5.3.21 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 65: I/O static characteristics*).

Unless otherwise specified, the parameters given in *Table 68* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 68. NRST pin characteristic	Table 6	8. NRST	pin charad	cteristics
-----------------------------------	---------	---------	------------	------------

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

2. Guaranteed by design.

1. The reset network protects the device against parasitic resets.

2. The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in *Table 68.* Otherwise the reset is not taken into account by the device.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
tsu(MI)	Data input setup time	Master mode	4 9 ⁽⁴⁾	-	-	
tsu(SI)		Slave mode	4.5	-	-	
th(MI)	Data input hold time	Master mode	3 0 ⁽⁴⁾	-	-	
th(SI)		Slave mode	2	-	-	
ta(SO)	Data output access time	Slave mode	7	-	21	
tdis(SO)	Data output disable time	Slave mode	5	-	12	ns
tv(SO)	Data output valid time	Slave mode 2.7≤VDD≤3.6V	-	6.5	10	
		Slave mode 1.71≤VDD≤3.6V	-	6.5	13.5	
tv(MO)		Master mode	-	2	6	
th(SO)	Data output hold time	Slave mode 1.71≤VDD≤3.6V	4.5	-	-	
th(MO)		Master mode	0	-	-	

Table 85. SPI dynamic characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

2. Excepting SPI1 with SCK IO pin mapped on PA5. In this configuration, Maximum achievable frequency is 40MHz.

 Maximum Frequency of Slave Transmitter is determined by sum of Tv(SO) and Tsu(MI) intervals which has to fit into SCK level phase preceding the SCK sampling edge. This value can be achieved when it communicates with a Master having Tsu(MI)=0 while signal Duty(SCK)=50%.

4. Only for SPI6.

Figure 46. SPI timing diagram - slave mode and CPHA = 0

Figure 52. SWD timing diagram

SAI characteristics:

Unless otherwise specified, the parameters given in *Table 89* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and VDD supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C=30 pF
- Measurement points are performed at CMOS levels: 0.5V_{DD}

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	SAI Main clock output	-	256 x 8K	256xFs	MHz
F	SAI clock frequency ⁽²⁾	Master data: 32 bits	-	128xFs ⁽³⁾	MHz
L CK		Slave data: 32 bits	-	128xFs	
t _{v(FS)}	ES valid time	Master mode 2.7≤VDD≤3.6V	-	15	
		Master mode 1.71≤VDD≤3.6V	-	20	
t _{su(FS)}	FS setup time	Slave mode	7	-	
t _{h(FS)}	FS hold time	Master mode	1	-	ns
		Slave mode	1	-	
t _{su(SD_A_MR)}	Data input satur timo	Master receiver	3	-	
t _{su(SD_B_SR)}	Data input setup time	Slave receiver	3.5	-	
t _{h(SD_A_MR)}	Data input hold time	Master receiver	5	-	
t _{h(SD_B_SR)}		Slave receiver	1	-	

Table	89.	SAI	characteristics ⁽	1)
-------	-----	-----	------------------------------	----

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} – 1	8T _{HCLK} + 1	
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} – 1.5	6T _{HCLK} + 0.5	ne
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} – 1	-	115
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} + 2	-	

Table 103. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings⁽¹⁾

1. Guaranteed by characterization results.

Figure 63. Asynchronous multiplexed PSRAM/NOR read waveforms

Symbol	Parameter	Min Max		Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} + 0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	2.5	
t _{h(SDCLKL} _Data)	Data output hold time	0	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	2.5	
t _{d(SDCLKL-SDNWE)}	SDNWE valid time	-	2.5	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	0	-	ne
$t_{d(SDCLKL-SDNE)}$	Chip select valid time	-	0.5	115
t _{h(SDCLKL-SDNE)}	Chip select hold time	0	-	
t _{d(SDCLKL-SDNRAS)}	SDNRAS valid time	-	1.5	
t _{h(SDCLKL-SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL-SDNCAS)}	SDNCAS valid time	-	1.5	
t _{d(SDCLKL-SDNCAS)}	SDNCAS hold time	0	-	

Table 117. LPSDR SDRAM write timings⁽¹⁾

1. Guaranteed by characterization results.

5.3.31 Quad-SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 118* and *Table 119* for Quad-SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 17: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 20 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Fck1/t(CK)	Quad-SPI clock frequency	2.7 V≤ V _{DD} <3.6 V CL=20 pF	-	-	108	MHz
		1.71 V <v<sub>DD<3.6 V CL=15 pF</v<sub>	-	-	100	

Table 118. Quad-SPI characteristics in SDR mode⁽¹⁾

LQFP176 device marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

LQFP208 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.5 WLCSP 180-bump, 5.5 x 6 mm, wafer level chip scale package information

e1 A1 BALL LOCATION // bbb Z D G -DETAIL A e2 F A1 ORIENTATION REFERENCE -▶lel A2 -A3 TOP VIEW BOTTOM VIEW SIDE VIEW BUMP 🛆 eee Z Ż Notes 1&2 øb(180x) Øccc@ZXY Øddd@Z SEATING PLANE DETAIL A ROTATED 90° A05G_WLCSP180_ME_V1

Figure 95. WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

