E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

PC ~200~2
, 32-Bit
lz
)/1000Mbps (3)
0 (1)
2.5V, 3.3V
105°C (TA)
BGA
APBGA (19x19)
/www.e-xfl.com/product-detail/nxp-semiconductors/mpc8308zqafd

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power Characteristics

The I/O power supply ramp-up slew rate should be slower than $4V/100 \ \mu s$, this requirement is for ESD circuit. Note that there is no specific power down sequence requirement for the device. I/O voltage supplies (GV_{DD}, LV_{DD}, and NV_{DD}) do not have any ordering requirements with respect to one another.

Figure 3. Power-Up Sequencing Example

3 Power Characteristics

The estimated typical power dissipation, not including I/O supply power for the device is shown in this table. Table 5 shows the estimated typical I/O power dissipation.

Core Frequency (MHz)	CSB Frequency (MHz)	Typical ²	Maximum ³	Unit
266	133	530	900	mW
333	133	565	950	mW
400	133	600	1000	mW

Table 4. MPC8308 Power Dissipation¹

Note:

- 1 The values do not include I/O supply power but do include core (V_DD) and PLL (AV_DD1, AV_DD2, XCOREV_DD, XPADV_DD, and SDAV_DD)
- ² Typical power is based on best process, a voltage of $V_{DD} = 1.0$ V and ambient temperature of $T_A = 25^{\circ}$ C and an artificial smoker test.
- $^3\,$ Maximum power is estimated based on best process, a voltage of V_{DD} = 1.05 V, a junction temperature of T_J = 105° C

5.2 **RESET AC Electrical Characteristics**

This table provides the reset initialization AC timing specifications.

Table 11. RESET Initialization Timing Specifications

Parameter/Condition	Min	Max	Unit	Notes
Required assertion time of HRESET (input) to activate reset flow	32	_	t _{SYS_CLK_IN}	1
Required assertion time of PORESET with stable power and clock applied to SYS_CLK_IN	32		t _{SYS_CLK_IN}	
HRESET assertion (output)	512		t _{SYS_CLK_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:3]) with respect to negation of PORESET	4		t _{SYS_CLK_IN}	
Input hold time for POR configuration signals with respect to negation of HRESET	0		ns	_
Time for the device to turn off POR configuration signal drivers with respect to the assertion of HRESET	—	4	ns	2
Time for the device to turn on POR configuration signal drivers with respect to the negation of HRESET	1		ns	1, 2

Notes:

1. $t_{SYS_CLK_IN}$ is the clock period of the input clock applied to SYS_CLK_IN.

2. POR configuration signals consists of CFG_RESET_SOURCE[0:3].

This table provides the PLL lock times.

Table 12. PLL Lock Times

Parameter/Condition	Min	Мах	Unit	Note
System PLL lock time	_	100	μs	—
e300 core PLL lock time		100	μs	—

DDR2 SDRAM

This figure illustrates the DDR2 input timing diagram showing the t_{DISKEW} timing parameter.

Figure 4. Timing Diagram for t_{DISKEW}

6.2.2 DDR2 SDRAM Output AC Timing Specifications

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time, MCK[n]/MCK[n] crossing	t _{MCK}	7.5	10	ns	2
ADDR/CMD output setup with respect to MCK	t _{DDKHAS}		—	ns	3
266 MHz		2.9			
ADDR/CMD output hold with respect to MCK	t _{DDKHAX}		—	ns	3
266 MHz		2.33			
MCS[n] output setup with respect to MCK	t _{DDKHCS}		_	ns	3
266 MHz		2.5			
MCS[n] output hold with respect to MCK	t _{DDKHCX}		—	ns	3
266 MHz		3.15			
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4

Table 18. DDR2 SDRAM Output AC Timing Specifications

DDR2 SDRAM

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MDQ//MDM/MECC output setup with respect to MDQS	t _{DDKHDS,} t _{DDKLDS}			ps	5
266 MHz		900			
MDQ//MDM/MECC output hold with respect to MDQS	t _{DDKHDX,} t _{DDKLDX}		_	ps	5
266 MHz		1100			
MDQS preamble start	t _{DDKHMP}	0.75 x t _{MCK}		ns	6
MDQS epilogue end	t _{DDKHME}	0.4 x t _{MCK}	0.6 x t _{MCK}	ns	6

Table 18. DDR2 SDRAM Output AC Timing Specifications (continued)

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
 </sub>
- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
- 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS.
- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. For a description and understanding of the timing modifications enabled by use of these bits, see the MPC8308 PowerQUICC II Pro Processor Reference Manual.
- 5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- 6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that t_{DDKHMP} follows the symbol conventions described in note 1.

Parameters	Symbol	Conditions		Min	Мах	Unit
Supply voltage 2.5 V	LV _{DD}		—	2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	LV _{DD} = Min	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	VSS - 0.3	0.40	V
Input high voltage	V _{IH}	_	LV _{DD} = Min	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	LV _{DD} = Min	-0.3	0.70	V
Input high current	IIH	$V_{IN}^{1} = LV_{DD}$		—	15	μΑ
Input low current	IIL	V _{IN} ¹ = VSS		-15	_	μA

Table 22. RGMII DC Electrical Characteristics

Note:

1. V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2 MII and RGMII AC Timing Specifications

The AC timing specifications for MII and RGMII are presented in this section.

8.2.1 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.1.1 MII Transmit AC Timing Specifications

This table provides the MII transmit AC timing specifications.

Table 23. MII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DDA}/LV_{DDB} /NV_{DD} of 3.3 V ± 0.3V.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	_	400	—	ns
TX_CLK clock period 100 Mbps	t _{MTX}	_	40	—	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	_	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise VIL(min) to VIH(max)	t _{MTXR}	1.0	_	4.0	ns
TX_CLK data clock fall $V_{IH}(max)$ to $V_{IL}(min)$	t _{MTXF}	1.0	_	4.0	ns

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

Ethernet: Three-Speed Ethernet, MII Management

This figure shows the MII transmit AC timing diagram.

Figure 8. MII Transmit AC Timing Diagram

8.2.1.2 **MII Receive AC Timing Specifications**

This table provides the MII receive AC timing specifications.

Table 24. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD} /NV_{DD} of 3.3 V ± 0.3V.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise V _{IL} (min) to V _{IH} (max)	t _{MRXR}	1.0	—	4.0	ns
RX_CLK clock fall time $V_{IH}(max)$ to $V_{IL}(min)$	t _{MRXF}	1.0		4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference} (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

This figure shows the MII receive AC timing diagram.

Figure 9. MII Receive AC Timing Diagram RMII AC Timing Specifications

This figure provides the AC test load.

Figure 10. AC Test Load

8.2.2 RGMII AC Timing Specifications

This table presents the RGMII AC timing specifications.

Table 25. RGMII AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
Data to clock output skew (at transmitter)	t _{SKRGT}	-0.6	—	0.6	ns
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0	—	2.6	ns
Clock cycle duration ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ^{4, 5}	t _{RGTH} /t _{RGT}	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 5}	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{RGTR}	—	—	0.75	ns
Fall time (20%–80%)	t _{RGTF}	—	—	0.75	ns

Ethernet: Three-Speed Ethernet, MII Management

Table 27. MII Management AC Timing Specifications (continued)

At recommended operating conditions with LV_{DDA}/LV_{DDB} is 3.3 V \pm 0.3V

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
MDC fall time	t _{MDHF}	_	_	10	ns	_

Notes:

The symbols used for timing specifications Follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

- 2. This parameter is dependent on the csb_clk speed. (The MIIMCFG[Mgmt Clock Select] field determines the clock frequency of the Mgmt Clock EC_MDC.)
- 3. This parameter is dependent on the cbs_clk speed (that is, for a csb_clk of 133 MHz, the delay is 60 ns).

This figure shows the MII management AC timing diagram.

Figure 12. MII Management Interface Timing Diagram

8.4 IEEE Std 1588[™] Timer Specifications

This section describes the DC and AC electrical specifications for the 1588 timer.

8.4.1 IEEE 1588 Timer DC Specifications

This table provides the IEEE 1588 timer DC specifications.

Table 28. GPIO DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	l _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V
Input high voltage	V _{IH}	—	2.0	NVDD + 0.3	V

USB

Table 28. GPIO DC Electrical Characteristics (continued)

Characteristic	Symbol	Condition	Min	Мах	Unit
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0 \text{ V} \leq \text{V}_{IN} \leq \text{NVDD}$	-	± 5	μA

8.4.2 IEEE 1588 Timer AC Specifications

This table provides the IEEE 1588 timer AC specifications.

Table 29. IEEE 1588 Timer AC Specifications

Parameter	Symbol	Min	Max	Unit	Notes
Timer clock cycle time	t _{TMRCK}	0	70	MHz	1
Input setup to timer clock	t _{TMRCKS}	_	_	_	2, 3
Input hold from timer clock	t _{TMRCKH}	_		-	2, 3
Output clock to output valid	t _{GCLKNV}	0	6	ns	_
Timer alarm to output valid	t _{TMRAL}				2

Note:

1. The timer can operate on rtc_clock or tmr_clock. These clocks get muxed and any one of them can be selected.

2. Asynchronous signals.

3. Inputs need to be stable at least one TMR clock.

9 USB

9.1 USB Dual-Role Controllers

This section provides the AC and DC electrical specifications for the USB-ULPI interface.

9.1.1 USB DC Electrical Characteristics

This table lists the DC electrical characteristics for the USB interface.

Table 30. USB DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	LVDD + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current	I _{IN}	_	±5	μA
High-level output voltage, I _{OH} = -100 μA	V _{OH}	LVDD – 0.2	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	_	0.2	V

Note:

1. The symbol V_{IN} , in this case, represents the NV_{IN} symbol referenced in Table 1 and Table 2.

High-Speed Serial Interfaces (HSSI)

Figure 19. Single-Ended Reference Clock Input DC Requirements

10.2.3 Interfacing with Other Differential Signaling Levels

With on-chip termination to XCOREVSS, the differential reference clocks inputs are high-speed current steering logic (HCSL) compatible and DC coupled.

Many other low voltage differential type outputs like low-voltage differential signaling (LVDS) can be used but may need to be AC-coupled due to the limited common mode input range allowed (100–400 mV) for DC-coupled connection.

LVPECL outputs can produce signal with too large amplitude and may need to be DC-biased at clock driver output first, then followed with series attenuation resistor to reduce the amplitude, in addition to AC-coupling.

Table 32. SerDes Reference Clock AC Parameters (continued)

At recommended operating conditions with XCOREVDD= 1.0V \pm 5%

Parameter	Symbol	Min	Max	Unit	Notes
Rising edge rate (SD_REF_CLK) to falling edge rate (SD_REF_CLK) matching	Rise-Fall Matching	—	20	%	1, 4

Notes:

1. Measurement taken from single ended waveform.

2. Measurement taken from differential waveform.

3. Measured from –200 mV to +200 mV on the differential waveform (derived from SD_REF_CLK minus SD_REF_CLK). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing (Figure 24).

4. Matching applies to rising edge rate for SD_REF_CLK and falling edge rate for SD_REF_CLK. It is measured using a 200 mV window centered on the median cross point where SD_REF_CLK rising meets SD_REF_CLK falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of SD_REF_CLK should be compared to the Fall Edge Rate of SD_REF_CLK, the maximum allowed difference should not exceed 20% of the slowest edge rate (See Figure 25).

Figure 25. Single-Ended Measurement Points for Rise and Fall Time Matching

The other detailed AC requirements of the SerDes reference clocks is defined by each interface protocol based on application usage. For detailed information, see the following sections:

• Section 11.2, "AC Requirements for PCI Express SerDes Clocks"

11.3 Clocking Dependencies

The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm) of each other at all times. This is specified to allow bit rate clock sources with a ± 300 ppm tolerance.

11.4 Physical Layer Specifications

Following is a summary of the specifications for the physical layer of PCI Express on this device. For further details as well as the specifications of the transport and data link layer please use the *PCI Express Base Specification*, Rev. 1.0a.

11.4.1 Differential Transmitter (TX) Output

This table defines the specifications for the differential output at all transmitters (TXs). The parameters are specified at the component pins.

Parameter	Symbol	Comments	Min	Typical	Max	Units	Note
Unit interval	UI	Each U_{PETX} is 400 ps ± 300 ppm. U_{PETX} does not account for Spread Spectrum Clock dictated variations.	399.88	400	400.12	ps	1
Differential peak-to-peak output voltage	V _{TX-DIFFp-p}	$V_{PEDPPTX} = 2^* V_{TX-D+} - V_{TX-D-} $	0.8	_	1.2	V	2
De-Emphasized differential output voltage (ratio)	V _{TX-DE} -RATIO	Ratio of the $V_{PEDPPTX}$ of the second and following bits after a transition divided by the $V_{PEDPPTX}$ of the first bit after a transition.		-3.5	-4.0	dB	2
Minimum TX eye width	T _{TX-EYE}	The maximum Transmitter jitter can be derived as $T_{TX-MAX-JITTER} = 1 - U_{PEEWTX} = 0.3 UI.$	0.70	—		UI	2, 3
Maximum time between the jitter median and maximum deviation from the median	T _{TX-EYE-MEDIAN-to-} MAX-JITTER	Jitter is defined as the measurement variation of the crossing points $(V_{PEDPPTX} = 0 V)$ in relation to a recovered TX UI. A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.		_	0.15	UI	2, 3
D+/D- TX output rise/fall time	T _{TX-RISE} , T _{TX-FALL}	_	0.125	—	_	UI	2, 5
RMS AC peak common mode output voltage	V _{TX-CM-ACp}	$V_{PEACPCMTX} = RMS(V_{TXD+} + V_{TXD-} /2 - V_{TX-CM-DC})$ $V_{TX-CM-DC} = DC_{(avg)} \text{ of } V_{TX-D+} + V_{TX-D-} /2$			20	mV	2

Table 34. Differential Transmitter (TX) Output Specifications

PCI Express

Parameter	Symbol	Comments	Min	Typical	Max	Units	Note
Absolute delta of DC common mode voltage during L0 and electrical idle	VTX-CM-DC-ACTIVE- IDLE-DELTA	$\frac{ V_{TX-CM-DC (during L0)} - V_{TX-CM-Idle-DC}}{ During Electrical Idle) <= 100 mV}$ $\frac{V_{TX-CM-DC} = DC_{(avg)} \text{ of } V_{TX-D+} + V_{TX-D-} /2 [L0]}{ V_{TX-CM-Idle-DC} = DC_{(avg)} \text{ of } V_{TX-D+} + V_{TX-D} /2 [Electrical Idle]}$			100	mV	2
Absolute delta of DC common mode between D+ and D–	V _{TX-CM-DC-LINE-} DELTA	$\begin{array}{l} V_{TX-CM-DC-D+} - V_{TX-CM-DC-D-} <= 25 \text{ mV} \\ V_{TX-CM-DC-D+} = DC_{(avg)} \text{ of } V_{TX-D+} \\ V_{TX-CM-DC-D-} = DC_{(avg)} \text{ of } V_{TX-D-} \end{array}$	0	—	25	mV	2
Electrical idle differential peak output voltage	V _{TX-IDLE} -DIFFp	$V_{PEEIDPTX} = V_{TX-IDLE-D+} - V_{TX-IDLE-D-} $ <= 20 mV	0	—	20	mV	2
Amount of voltage change allowed during receiver detection	V _{TX-RCV-DETECT}	The total amount of voltage change that a transmitter can apply to sense whether a low impedance Receiver is present.	_	600	_	mV	6
TX DC common mode voltage	V _{TX-DC-CM}	The allowed DC Common Mode voltage under any conditions.		3.6	—	V	6
TX short circuit current limit	I _{TX-SHORT}	The total current the Transmitter can provide when shorted to its ground		—	90	mA	_
Minimum time spent in electrical idle	T _{TX-IDLE-MIN}	Minimum time a Transmitter must be in Electrical Idle Utilized by the Receiver to start looking for an Electrical Idle Exit after successfully receiving an Electrical Idle ordered set			_	UI	_
Maximum time to transition to a valid electrical idle after sending an electrical idle ordered set	T _{TX} -IDLE-SET-TO-ID LE	After sending an Electrical Idle ordered set, the Transmitter must meet all Electrical Idle Specifications within this time. This is considered a debounce time for the Transmitter to meet Electrical Idle after transitioning from L0.			20	UI	_
Maximum time to transition to valid TX specifications after leaving an electrical idle condition	T _{TX} -IDLE-TO-DIFF-D ATA	Maximum time to meet all TX specifications when transitioning from Electrical Idle to sending differential data. This is considered a debounce time for the TX to meet all TX specifications after leaving Electrical Idle			20	UI	
Differential return loss	RL _{TX-DIFF}	Measured over 50 MHz to 1.25 GHz.	12	_		dB	4
Common mode return loss	RL _{TX-CM}	Measured over 50 MHz to 1.25 GHz.	6	_	—	dB	4
DC differential TX impedance	Z _{TX-DIFF-DC}	TX DC Differential mode Low Impedance	80	100	120	Ω	—
Transmitter DC impedance	Z _{TX-DC}	Required TX D+ as well as D- DC Impedance during all states	40	_	—	Ω	—
Lane-to-Lane output skew	L _{TX-SKEW}	Static skew between any two Transmitter Lanes within a single Link	_	_	500 + 2 UI	ps	—

Enhanced Secure Digital Host Controller (eSDHC)

Table 40. eSDHC AC Timing Specifications for High Speed Mode (continued)

At recommended operating conditions NV_{DD} = $3.3 \text{ V} \pm 300 \text{ mV}$.

Parameter	Symbol ¹	Min	Max	Unit	Notes
SD Card Output Valid	t _{ODLY}	_	14	ns	3
SD Card Output Hold	t _{OH}	2.5	_	ns	3

Notes:

The symbols used for timing specifications herein follow the pattern of t_{(first three letters of functional block)(signal)(state) (reference)(state)} for inputs and t_{(first three letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{SFSIXKH} symbolizes eSDHC full mode speed device timing (SFS) input (I) to go invalid (X) with respect to the clock reference (K) going to high (H). Also t_{SFSKHOV} symbolizes eSDHC full speed timing (SFS) for the clock reference (K) to go high (H), with respect to the output (O) going valid (V) or data output valid time. Note that, in general, the clock reference symbol representation is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

- ² Measured at capacitive load of 40 pF.
- ³ For reference only, according to the SD card specifications.

This figure provides the eSDHC clock input timing diagram.

Figure 37. eSDHC Clock Input Timing Diagram

Table 53.	MPC8308	Pinout	Listing	(continued)
-----------	---------	---------------	---------	-------------

Signal	Package Pin Number	Pin Type	Power Supply	Note
MEMC_MDQ[27]	M6	I/O	GV _{DDB}	—
MEMC_MDQ[28]	M2	I/O	GV _{DDB}	—
MEMC_MDQ[29]	M3	I/O	GV _{DDB}	—
MEMC_MDQ[30]	L2	I/O	GV _{DDB}	—
MEMC_MDQ[31]	L3	I/O	GV _{DDB}	—
MEMC_MDM[0]	AB2	0	GV _{DDA}	—
MEMC_MDM[1]	V3	0	GV _{DDA}	—
MEMC_MDM[2]	P3	0	GV _{DDB}	—
MEMC_MDM[3]	M7	0	GV _{DDB}	—
MEMC_MDM[8]	K2	0	GV _{DDB}	[—
MEMC_MDQS[0]	AC3	I/O	GV _{DDA}	—
MEMC_MDQS[1]	V1	I/O	GV _{DDA}	—
MEMC_MDQS[2]	R1	I/O	GV _{DDB}	[—
MEMC_MDQS[3]	M1	I/O	GV _{DDB}	—
MEMC_MDQS[8]	K1	I/O	GV _{DDB}	—
MEMC_MBA[0]	C3	0	GV _{DDB}	—
MEMC_MBA[1]	B2	0	GV _{DDB}	—
MEMC_MBA[2]	H4	0	GV _{DDB}	_
MEMC_MA0	C2	0	GV _{DDB}	—
MEMC_MA1	D2	0	GV _{DDB}	_
MEMC_MA2	D3	0	GV _{DDB}	—
MEMC_MA3	D4	0	GV _{DDB}	_
MEMC_MA4	E4	0	GV _{DDB}	—
MEMC_MA5	F4	0	GV _{DDB}	—
MEMC_MA6	E2	0	GV _{DDB}	—
MEMC_MA7	E1	0	GV _{DDB}	—
MEMC_MA8	F2	0	GV _{DDB}	—
MEMC_MA9	F3	0	GV _{DDB}	—
MEMC_MA10	C1	0	GV _{DDB}	—
MEMC_MA11	F7	0	GV _{DDB}	—
MEMC_MA12	G2	0	GV _{DDB}	—
MEMC_MA13	G3	0	GV _{DDB}	_
MEMC_MWE	D5	0	GV _{DDB}	_
MEMC_MRAS	B4	0	GV _{DDB}	—

Package and Pin Listings

Table 53	B. MPC8308	Pinout	Listing	(continued)
10010 00				

Signal	Package Pin Number	Pin Type	Power Supply	Note
USBDR_PCTL1	U20	0	NV _{DDH}	—
USBDR_STP	V21	0	NV _{DDH}	—
TSEC_TMR_CLK/ GPIO[8]	W23	I	NV _{DDH}	—
GTM1_TOUT3/ GPIO[9]	T18	0	NV _{DDH}	—
GTM1_TOUT4/ GPIO[10]	V20	0	NV _{DDH}	
TSEC_TMR_TRIG1/ GPIO[11]	W21	I	NV _{DDH}	_
TSEC_TMR_TRIG2/ GPIO[12]	Y21	I	NV _{DDH}	_
TSEC_TMR_GCLK	L17	0	NV _{DDG}	—
TSEC_TMR_PP1	L18	0	NV _{DDG}	—
TSEC_TMR_PP2	L21	0	NV _{DDG}	—
TSEC_TMR_PP3/ GPIO[13]	L22	0	NV _{DDG}	—
TSEC_TMR_ALARM1	L23	0	NV _{DDG}	—
TSEC_TMR_ALARM2/ GPIO[14]	M23	0	NV_{DDG}	—
GPIO[7]	M22	10		—
TSEC2_CRS/ GPIO[0]	M21	10	NV _{DDG}	—
TSEC2_TMR_RX_ESFD/ GPIO[1]	M18	0	NV _{DDG}	—
TSEC2_TMR_TX_ESFD/ GPIO[2]	M20	0	NV_{DDG}	—
TSEC1_TMR_RX_ESFD/ GPIO[3]	N23	0	NV_{DDG}	—
TSEC1_TMR_TX_ESFD/ GPIO[4]	N21	0	NV_{DDG}	-
GTM1_TGATE3	N20	I	NV _{DDG}	_
GTM1_TIN4	N18	I	NV _{DDG}	_
GTM1_TGATE4/ GPIO[15]	P23	I	NV _{DDG}	—
GTM1_TIN3	P22	I	NV _{DDG}	—
GPIO[5]	N17	10	NV _{DDH}	_
GPIO[6]	P21	10	NV _{DDH}	_
	Power and Ground Supplies			
AV _{DD1}	R6	I		
AV _{DD2}	V10	I		_
NC, No Connection	B11, B16, D16	_		

Signal	Package Pin Number		Power Supply	Note
V _{DD}	Y23, H8, H9, H10, H14, H15, H16, J8, J16, K8, K16, L8, L16, M8, M16, N8, N16, P8, P16, R8, R16, T8, T9, T10, T11, T12, T13, T14, T15, T16			
VSS	 A2, A21, B1, B19, B23, C4, C16, D6, D19, E3, F8, F15, F17, F23, G7, G8, G10, G15, G16, G17, G20, H2, H6, H7, H17, H23, J7, J9, J10, J11, J12, J13, J14, J15, K9, K10, K11, K12, K13, K14, K15, L1, L7, L9, L10, L11, L12, L13, L14, L15, L20, M4, M9, M10, M11, M12, M13, M14, M15, N9, N10, N11, N12, N13, N14, N15, P6, P7, P9, P10, P11, P12, P13, P14, P15, R2, R7, R9, R10, R11, R12, R13, R14, R15, R22, T6, T7, U8, U17, U21, V2, V7, V9, V11, W20, Y8, Y15, AA4, AB1, AB6, AB12, AB19, AC2, AC9, AC23 		_	
NV _{DDA}	B7, B10, C7, D9, F9		_	_
NV _{DDB}	A16, A19, C18		—	
NV _{DDC}	A23, B22, D23, E20, G18		_	
NV _{DDF}	G22, J22, K17		_	
NV _{DDG}	M17, N22		_	
NV _{DDH}	P17, R20, T17, T23, W22, Y22		_	
NV _{DDJ}	AB23, AA22		_	
NV _{DDP_K}	U10, U14, Y5, Y18, AA11, AB8, AB16, AB22, AC4, AC13		_	—
GV _{DD}	A1, A6, B3, D1, F1, F6, G4, J1, J4, K7, N1, N7, T1, T4, U7, Y3, AC1		_	
XPADVDD	D15, F10, F14			—
XPADVSS	A10, B15, D14, G13, G14, H12		_	—
XCOREVDD	A14, B12, C13		_	
XCOREVSS	A12, B14, C11, D11, D13, G11, H11, H13			

Table 53. MPC8308 Pinout Listing (continued)

Notes:

1. This pin is an open drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to NV_{DD}

2. This pin is an open drain signal. A weak pull-up resistor (2-10 kΩ) should be placed on this pin to NV_{DD}.

3. This output is actively driven during reset rather than being three-stated during reset.

4. This pin has weak internal pull-up that is always enabled. 5. This pin must always be tied to VSS.

6. Internal thermally sensitive resistor, resistor value varies linearly with temperature. Useful for determining the junction temperature.

7. The LB_POR_CFG_BOOT_ECC is sampled only during the PORESET negation. This pin with an internal pull down resistor enables the ECC by default. To disable the ECC an external strong pull up resistor or a buffer released to high impedance is needed.

8. This pin has weak internal pull-down that is always enabled

This table provides the operating frequencies for the device under recommended operating conditions (Table 2).

Characteristic ¹	Maximum Operating Frequency	Unit
e300 core frequency (<i>core_clk</i>)	400	MHz
Coherent system bus frequency (<i>csb_clk</i>)	133	MHz
DDR2 memory bus frequency (MCK) ²	133	MHz
Local bus frequency (LCLK0) ³	66	MHz

Table 55. Operating Frequencies for MPC8308

Notes:

1. The SYS_CLK_IN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen such that the resulting *csb_clk*, MCK, LCLK0, and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies.

2. The DDR data rate is 2x the DDR memory bus frequency.

3. The local bus frequency is 1/2, 1/4, or 1/8 of the *lbc_clk* frequency (depending on LCCR[CLKDIV]) which is in turn, 1x or 2x the *csb_clk* frequency (depending on RCWL[LBCM]).

21.2 System PLL Configuration

The system PLL is controlled by the RCWL[SPMF] parameter. This table shows the multiplication factor encodings for the system PLL.

RCWL[SPMF]	csb_clk: SYS_CLK_IN		
0000	Reserved		
0001	Reserved		
0010	2:1		
0011	3 : 1		
0100	4 : 1		
0101	5 : 1		
0110–1111	Reserved		

Table 56. System PLL Ratio

As described in Section 21, "Clocking," the LBCM, DDRCM, and SPMF parameters in the reset configuration word low select the ratio between the primary clock input (SYS_CLK_IN) and the internal coherent system bus clock (*csb_clk*). This table shows the expected frequency values for the CSB frequency for select *csb_clk* to SYS_CLK_IN ratios.

Table 57. CSB Frequency Options

SPMF <i>csb_clk</i> :Input Clock Ratio		Input Clock Frequency (MHz)		
		25	33.33	66.67
0010	2:1			133
0100	4:1		133	
0101	5:1	125	167	

Thermal

21.3 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). This table shows the encodings for RCWL[COREPLL]. COREPLL values that are not listed in this table should be considered as reserved.

NOTE

Core VCO frequency = core frequency \times VCO divider. The VCO divider, which is determined by RCWLR[COREPLL], must be set properly so that the core VCO frequency is in the range of 400–800 MHz.

RCWL[COREPLL]		PLL]	core clk: csh clk Ratio ¹	VCO Divider (VCOD) ²		
0–1	2–5	6				
nn	0000	0	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)		
11	nnnn	n	n/a	n/a		
00	0001	0	1:1	2		
01	0001	0	1:1	4		
10	0001	0	1:1	8		
00	0001	1	1.5:1	2		
01	0001	1	1.5:1	4		
10	0001	1	1.5:1	8		
00	0010	0	2:1	2		
01	0010	0	2:1	4		
10	0010	0	2:1	8		
00	0010	1	2.5:1	2		
01	0010	1	2.5:1	4		
10	0010	1	2.5:1	8		
00	0011	0	3:1	2		
01	0011	0	3:1	4		
10	0011	0	3:1	8		

Table 58. e300 Core PLL Configuration

Note:

¹ For any *core_clk:csb_clk* ratios, the *core_clk* must not exceed its maximum operating frequency of 400 MHz.

² Core VCO frequency = core frequency × VCO divider. Note that VCO divider has to be set properly so that the core VCO frequency is in the range of 400–800 MHz.

22 Thermal

This section describes the thermal specifications of the device.

24.2 Part Marking

Parts are marked as in the example shown in this figure.

CCCCC is the country code. MMMMM is the mask number. YWWLAZ is the assembly traceability code.

Figure 56. Freescale Part Marking for PBGA Devices

This table lists the SVR settings.

Table 62. SVR Settings

Device	Package	SVR
MPC8308	MAPBGA	0x8101 _0110

Note: PVR = 8085_0020 for the device.