


#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

## Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Obsolete                                                                   |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | 8051                                                                       |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 48MHz                                                                      |
| Connectivity               | CANbus, EBI/EMI, I <sup>2</sup> C, LINbus, SPI, UART/USART, USB            |
| Peripherals                | CapSense, DMA, LCD, POR, PWM, WDT                                          |
| Number of I/O              | 62                                                                         |
| Program Memory Size        | 64KB (64K x 8)                                                             |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 2K x 8                                                                     |
| RAM Size                   | 8K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 5.5V                                                               |
| Data Converters            | A/D 16x20b; D/A 4x8b                                                       |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 100-LQFP                                                                   |
| Supplier Device Package    | 100-TQFP (14x14)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3846axe-176 |
|                            |                                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



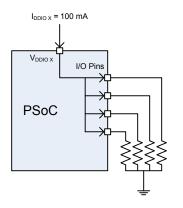
It also contains a separate, very low-power internal low-speed oscillator (ILO) for the sleep and watchdog timers. A 32.768-kHz external watch crystal is also supported for use in real-time clock (RTC) applications. The clocks, together with programmable clock dividers, provide the flexibility to integrate most timing requirements.

The CY8C38 family supports a wide supply operating range from 1.71 V to 5.5 V. This allows operation from regulated supplies such as 1.8 V  $\pm$  5%, 2.5 V  $\pm$ 10%, 3.3 V  $\pm$  10%, or 5.0 V  $\pm$  10%, or directly from a wide range of battery types.

PSoC supports a wide range of low-power modes. These include a 200-nA hibernate mode with RAM retention and a 1- $\mu$ A sleep mode with RTC. In the second mode, the optional 32.768-kHz watch crystal runs continuously and maintains an accurate RTC.

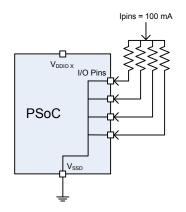
Power to all major functional blocks, including the programmable digital and analog peripherals, can be controlled independently by firmware. This allows low-power background processing when some peripherals are not in use. This, in turn, provides a total device current of only 1.2 mA when the CPU is running at 6 MHz, or 0.8 mA running at 3 MHz.

The details of the PSoC power modes are covered in the "Power System" section on page 29 of this data sheet.


PSoC uses JTAG (4-wire) or SWD (2-wire) interfaces for programming, debug, and test. The 1-wire SWV may also be used for 'printf' style debugging. By combining SWD and SWV, you can implement a full debugging interface with just three pins. Using these standard interfaces you can debug or program the PSoC with a variety of hardware solutions from Cypress or third party vendors. PSoC supports on-chip break points and 4-KB instruction and data race memory for debug. Details of the programming, test, and debugging interfaces are discussed in the "Programming, Debug Interfaces, Resources" section on page 60 of this data sheet.

## 2. Pinouts

Each VDDIO pin powers a specific set of I/O pins. (The USBIOs are powered from VDDD.) Using the VDDIO pins, a single PSoC can support multiple voltage levels, reducing the need for off-chip level shifters. The black lines drawn on the pinout diagrams in Figure 2-3 through Figure 2-4 show the pins that are powered by each VDDIO.


Each VDDIO may source up to 100 mA <sup>[8]</sup> total to its associated I/O pins, as shown in Figure 2-1.

#### Figure 2-1. VDDIO Current Limit



Conversely, for the 100-pin and 68-pin devices, the set of I/O pins associated with any VDDIO may sink up to 100 mA  $^{[8]}$  total, as shown in Figure 2-2.

#### Figure 2-2. I/O Pins Current Limit



For the 48-pin devices, the set of I/O pins associated with VDDIO0 plus VDDIO2 may sink up to 100 mA<sup>[8]</sup> total. The set of I/O pins associated with VDDIO1 plus VDDIO3 may sink up to a total of 100 mA.

Note

The 100 mA source/ sink current per Vddio is valid only for temperature range of -40 °C to +85 °C. For extended temperature range of -40 °C to +125 °C, the maximum source or sink current per Vddio is 40 mA.



#### Figure 2-4. 100-pin TQFP Part Pinout

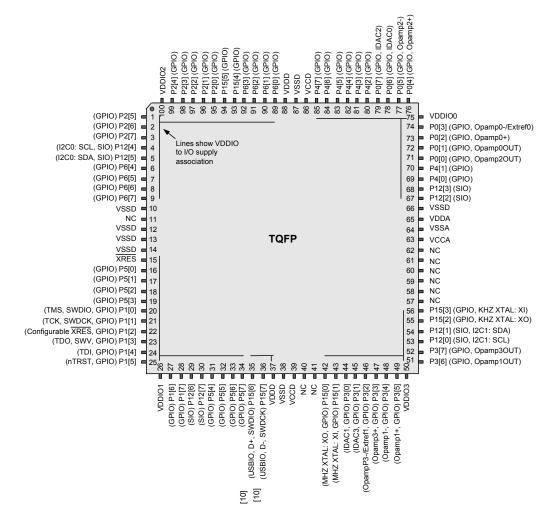



Figure 2-5 and Figure 2-6 show an example schematic and an example PCB layout, for the 100-pin TQFP part, for optimal analog performance on a two-layer board.

- The two pins labeled VDDD must be connected together.
- The two pins labeled VCCD must be connected together, with capacitance added, as shown in Figure 2-5 and Power System on page 29. The trace between the two VCCD pins should be as short as possible.
- The two pins labeled Vssd must be connected together.

For information on circuit board layout issues for mixed signals, refer to the application note, AN57821 - Mixed Signal Circuit Board Layout Considerations for PSoC® 3 and PSoC 5.



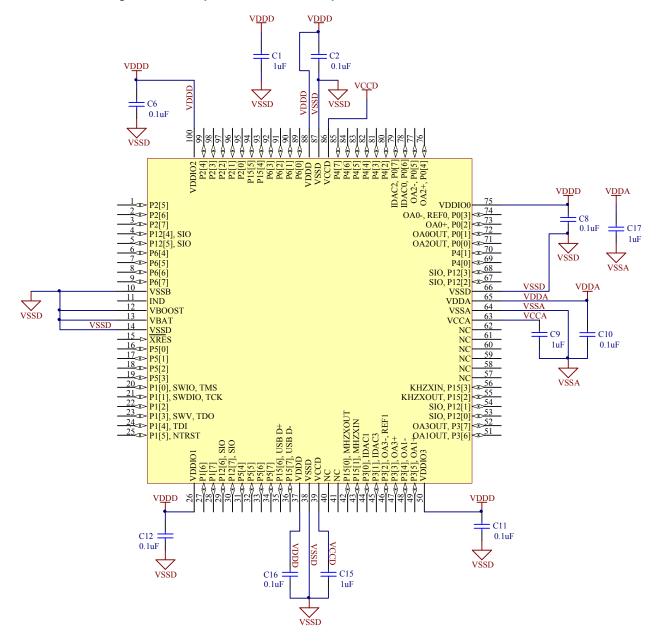



Figure 2-5. Example Schematic for 100-pin TQFP Part with Power Connections

**Note** The two Vccd pins must be connected together with as short a trace as possible. A trace under the device is recommended, as shown in Figure 2-6 on page 9.

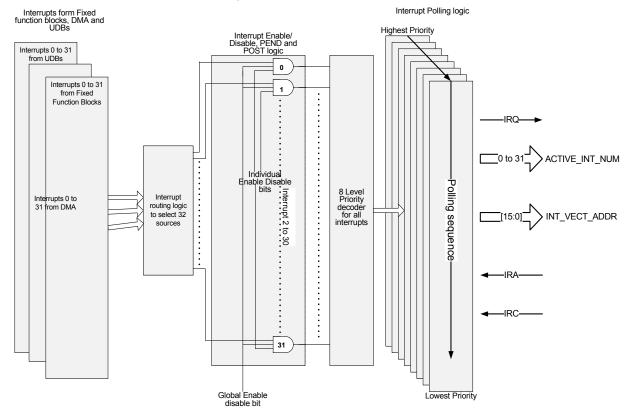


#### Program branching instructions

#### 4.3.1 Instruction Set Summary

#### 4.3.1.1 Arithmetic Instructions

Arithmetic instructions support the direct, indirect, register, immediate constant, and register-specific instructions. Arithmetic modes are used for addition, subtraction, multiplication, division, increment, and decrement operations. Table 4-1 lists the different arithmetic instructions.


| Mnemonic       | Description                                          | Bytes | Cycles |
|----------------|------------------------------------------------------|-------|--------|
| ADD A,Rn       | Add register to accumulator                          | 1     | 1      |
| ADD A,Direct   | Add direct byte to accumulator                       | 2     | 2      |
| ADD A,@Ri      | Add indirect RAM to accumulator                      | 1     | 2      |
| ADD A,#data    | Add immediate data to accumulator                    | 2     | 2      |
| ADDC A,Rn      | Add register to accumulator with carry               | 1     | 1      |
| ADDC A, Direct | Add direct byte to accumulator with carry            | 2     | 2      |
| ADDC A,@Ri     | Add indirect RAM to accumulator with carry           | 1     | 2      |
| ADDC A,#data   | Add immediate data to accumulator with carry         | 2     | 2      |
| SUBB A,Rn      | Subtract register from accumulator with borrow       | 1     | 1      |
| SUBB A, Direct | Subtract direct byte from accumulator with borrow    | 2     | 2      |
| SUBB A,@Ri     | Subtract indirect RAM from accumulator with borrow   | 1     | 2      |
| SUBB A,#data   | Subtract immediate data from accumulator with borrow | 2     | 2      |
| INC A          | Increment accumulator                                | 1     | 1      |
| INC Rn         | Increment register                                   | 1     | 2      |
| INC Direct     | Increment direct byte                                | 2     | 3      |
| INC @Ri        | Increment indirect RAM                               | 1     | 3      |
| DEC A          | Decrement accumulator                                | 1     | 1      |
| DEC Rn         | Decrement register                                   | 1     | 2      |
| DEC Direct     | Decrement direct byte                                | 2     | 3      |
| DEC @Ri        | Decrement indirect RAM                               | 1     | 3      |
| INC DPTR       | Increment data pointer                               | 1     | 1      |
| MUL            | Multiply accumulator and B                           | 1     | 2      |
| DIV            | Divide accumulator by B                              | 1     | 6      |
| DAA            | Decimal adjust accumulator                           | 1     | 3      |

#### Table 4-1. Arithmetic Instructions



## PSoC<sup>®</sup> 3: CY8C38 Automotive Family Datasheet

Figure 4-3. Interrupt Structure

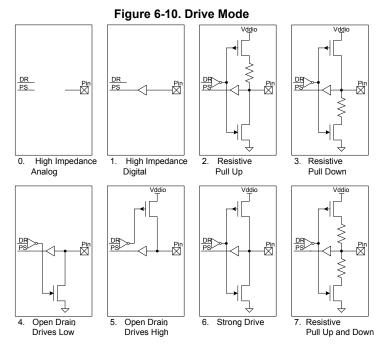


When an interrupt is pending, the current instruction is completed and the program counter is pushed onto the stack. Code execution then jumps to the program address provided by the vector. After the ISR is completed, a RETI instruction is executed and returns execution to the instruction following the previously interrupted instruction. To do this the RETI instruction pops the program counter from the stack.

If the same priority level is assigned to two or more interrupts, the interrupt with the lower vector number is executed first. Each interrupt vector may choose from three interrupt sources: Fixed Function, DMA, and UDB. The fixed function interrupts are

direct connections to the most common interrupt sources and provide the lowest resource cost connection. The DMA interrupt sources provide direct connections to the two DMA interrupt sources provided per DMA channel. The third interrupt source for vectors is from the UDB digital routing array. This allows any digital signal available to the UDB array to be used as an interrupt source. Fixed function interrupts and all interrupt sources may be routed to any interrupt vector using the UDB interrupt source connections.




## Table 4-8. Interrupt Vector Table

| #  | Fixed Function         | DMA               | UDB          |
|----|------------------------|-------------------|--------------|
| 0  | LVD                    | phub_termout0[0]  | udb_intr[0]  |
| 1  | Cache/ECC              | phub_termout0[1]  | udb_intr[1]  |
| 2  | Reserved               | phub_termout0[2]  | udb_intr[2]  |
| 3  | Sleep (Pwr Mgr)        | phub_termout0[3]  | udb_intr[3]  |
| 4  | PICU[0]                | phub_termout0[4]  | udb_intr[4]  |
| 5  | PICU[1]                | phub_termout0[5]  | udb_intr[5]  |
| 6  | PICU[2]                | phub_termout0[6]  | udb_intr[6]  |
| 7  | PICU[3]                | phub_termout0[7]  | udb_intr[7]  |
| 8  | PICU[4]                | phub_termout0[8]  | udb_intr[8]  |
| 9  | PICU[5]                | phub_termout0[9]  | udb_intr[9]  |
| 10 | PICU[6]                | phub_termout0[10] | udb_intr[10] |
| 11 | PICU[12]               | phub_termout0[11] | udb_intr[11] |
| 12 | PICU[15]               | phub_termout0[12] | udb_intr[12] |
| 13 | Comparators Combined   | phub_termout0[13] | udb_intr[13] |
| 14 | Switched Caps Combined | phub_termout0[14] | udb_intr[14] |
| 15 | l <sup>2</sup> C       | phub_termout0[15] | udb_intr[15] |
| 16 | CAN                    | phub_termout1[0]  | udb_intr[16] |
| 17 | Timer/Counter0         | phub_termout1[1]  | udb_intr[17] |
| 18 | Timer/Counter1         | phub_termout1[2]  | udb_intr[18] |
| 19 | Timer/Counter2         | phub_termout1[3]  | udb_intr[19] |
| 20 | Timer/Counter3         | phub_termout1[4]  | udb_intr[20] |
| 21 | USB SOF Int            | phub_termout1[5]  | udb_intr[21] |
| 22 | USB Arb Int            | phub_termout1[6]  | udb_intr[22] |
| 23 | USB Bus Int            | phub_termout1[7]  | udb_intr[23] |
| 24 | USB Endpoint[0]        | phub_termout1[8]  | udb_intr[24] |
| 25 | USB Endpoint Data      | phub_termout1[9]  | udb_intr[25] |
| 26 | Reserved               | phub_termout1[10] | udb_intr[26] |
| 27 | LCD                    | phub_termout1[11] | udb_intr[27] |
| 28 | DFB Int                | phub_termout1[12] | udb_intr[28] |
| 29 | Decimator Int          | phub_termout1[13] | udb_intr[29] |
| 30 | PHUB Error Int         | phub_termout1[14] | udb_intr[30] |
| 31 | EEPROM Fault Int       | phub_termout1[15] | udb_intr[31] |



### 6.4.1 Drive Modes

Each GPIO and SIO pin is individually configurable into one of the eight drive modes listed in Table 6-5. Three configuration bits are used for each pin (DM[2:0]) and set in the PRTxDM[2:0] registers. Figure 6-10 depicts a simplified pin view based on each of the eight drive modes. Table 6-5 shows the I/O pin's drive state based on the port data register value or digital array signal if bypass mode is selected. Note that the actual I/O pin voltage is determined by a combination of the selected drive mode and the load at the pin. For example, if a GPIO pin is configured for resistive pull-up mode and driven high while the pin is floating, the voltage measured at the pin is a high logic state. If the same GPIO pin is externally tied to ground then the voltage unmeasured at the pin is a low logic state.



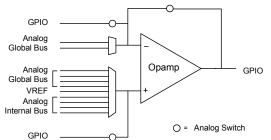
#### Table 6-5. Drive Modes

| Diagram | Drive Mode                                      | PRTxDM2 | PRTxDM1 | PRTxDM0 | PRTxDR = 1    | PRTxDR = 0   |
|---------|-------------------------------------------------|---------|---------|---------|---------------|--------------|
| 0       | High impedance analog                           | 0       | 0       | 0       | High Z        | High Z       |
| 1       | High Impedance digital                          | 0       | 0       | 1       | High Z        | High Z       |
| 2       | Resistive pull-up <sup>[14]</sup>               | 0       | 1       | 0       | Res High (5K) | Strong Low   |
| 3       | Resistive pull-down <sup>[14]</sup>             | 0       | 1       | 1       | Strong High   | Res Low (5K) |
| 4       | Open drain, drives low                          | 1       | 0       | 0       | High Z        | Strong Low   |
| 5       | Open drain, drive high                          | 1       | 0       | 1       | Strong High   | High Z       |
| 6       | Strong drive                                    | 1       | 1       | 0       | Strong High   | Strong Low   |
| 7       | Resistive pull-up and pull-down <sup>[14]</sup> | 1       | 1       | 1       | Res High (5K) | Res Low (5K) |



## 8.3.2 LUT

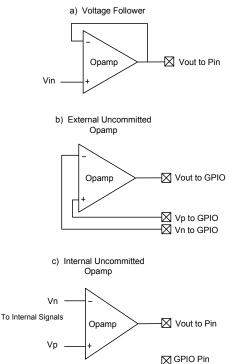
The CY8C38 family of devices contains four LUTs. The LUT is a two input, one output lookup table that is driven by any one or two of the comparators in the chip. The output of any LUT is routed to the digital system interface of the UDB array. From the digital system interface of the UDB array, these signals can be connected to UDBs, DMA controller, I/O, or the interrupt controller.


The LUT control word written to a register sets the logic function on the output. The available LUT functions and the associated control word is shown in Table 8-2.

| Control Word | Output (A and B are LUT inputs) |
|--------------|---------------------------------|
| 0000b        | <b>FALSE</b> ('0')              |
| 0001b        | A AND B                         |
| 0010b        | A AND (NOT B)                   |
| 0011b        | A                               |
| 0100b        | (NOT A) AND B                   |
| 0101b        | В                               |
| 0110b        | A XOR B                         |
| 0111b        | A OR B                          |
| 1000b        | A NOR B                         |
| 1001b        | A XNOR B                        |
| 1010b        | NOT <b>B</b>                    |
| 1011b        | A OR (NOT B)                    |
| 1100b        | NOT A                           |
| 1101b        | (NOT <b>A</b> ) OR <b>B</b>     |
| 1110b        | A NAND B                        |
| 1111b        | <b>TRUE</b> ('1')               |

## 8.4 Opamps

The CY8C38 family of devices contain up to four general purpose opamps in a device.


#### Figure 8-6. Opamp



The opamp is uncommitted and can be configured as a gain stage or voltage follower, or output buffer on external or internal signals.

See Figure 8-7. In any configuration, the input and output signals can all be connected to the internal global signals and monitored with an ADC, or comparator. The configurations are implemented with switches between the signals and GPIO pins.

#### Figure 8-7. Opamp Configurations



The opamp has three speed modes, slow, medium, and fast. The slow mode consumes the least amount of quiescent power and the fast mode consumes the most power. The inputs are able to swing rail-to-rail. The output swing is capable of rail-to-rail operation at low current output, within 50 mV of the rails. When driving high current loads (about 25 mA) the output voltage may only get within 500 mV of the rails.

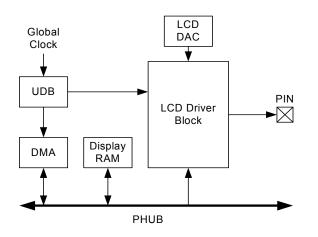
## 8.5 Programmable SC/CT Blocks

The CY8C38 family of devices contains up to four switched capacitor/continuous time (SC/CT) blocks in a device. Each switched capacitor/continuous time block is built around a single rail-to-rail high bandwidth opamp.

Switched capacitor is a circuit design technique that uses capacitors plus switches instead of resistors to create analog functions. These circuits work by moving charge between capacitors by opening and closing different switches. Nonoverlapping in phase clock signals control the switches, so that not all switches are ON simultaneously.

The PSoC Creator tool offers a user friendly interface, which allows you to easily program the SC/CT blocks. Switch control and clock phase control configuration is done by PSoC Creator so users only need to determine the application use parameters such as gain, amplifier polarity, V<sub>REF</sub> connection, and so on.

The same opamps and block interfaces are also connectable to an array of resistors which allows the construction of a variety of continuous time functions.




PSoC Creator provides an LCD segment drive component. The component wizard provides easy and flexible configuration of LCD resources. You can specify pins for segments and commons along with other options. The software configures the device to meet the required specifications. This is possible because of the programmability inherent to PSoC devices.

Key features of the PSoC LCD segment system are:

- LCD panel direct driving
- Type A (standard) and Type B (low-power) waveform support
- Wide operating voltage range support (2 V to 5 V) for LCD panels
- Static, 1/2, 1/3, 1/4, 1/5 bias voltage levels
- Internal bias voltage generation through internal resistor ladder
- Up to 62 total common and segment outputs
- Up to 1/16 multiplex for a maximum of 16 backplane/common outputs
- Up to 62 front plane/segment outputs for direct drive
- Drives up to 736 total segments (16 backplane × 46 front plane)
- Up to 64 levels of software controlled contrast
- Ability to move display data from memory buffer to LCD driver through DMA (without CPU intervention)
- Adjustable LCD refresh rate from 10 Hz to 150 Hz
- Ability to invert LCD display for negative image
- Three LCD driver drive modes, allowing power optimization

#### Figure 8-10. LCD System



#### 8.6.1 LCD Segment Pin Driver

Each GPIO pin contains an LCD driver circuit. The LCD driver buffers the appropriate output of the LCD DAC to directly drive the glass of the LCD. A register setting determines whether the pin is a common or segment. The pin's LCD driver then selects one of the six bias voltages to drive the I/O pin, as appropriate for the display data.

#### 8.6.2 Display Data Flow

The LCD segment driver system reads display data and generates the proper output voltages to the LCD glass to produce the desired image. Display data resides in a memory buffer in the system SRAM. Each time you need to change the common and segment driver voltages, the next set of pixel data moves from the memory buffer into the Port Data Registers through the DMA.

#### 8.6.3 UDB and LCD Segment Control

A UDB is configured to generate the global LCD control signals and clocking. This set of signals is routed to each LCD pin driver through a set of dedicated LCD global routing channels. In addition to generating the global LCD control signals, the UDB also produces a DMA request to initiate the transfer of the next frame of LCD data.

#### 8.6.4 LCD DAC

The LCD DAC generates the contrast control and bias voltage for the LCD system. The LCD DAC produces up to five LCD drive voltages plus ground, based on the selected bias ratio. The bias voltages are driven out to GPIO pins on a dedicated LCD bias bus, as required.

#### 8.7 CapSense

The CapSense system provides a versatile and efficient means for measuring capacitance in applications such as touch sense buttons, sliders, proximity detection, etc. The CapSense system uses a configuration of system resources, including a few hardware functions primarily targeted for CapSense. Specific resource usage is detailed in the CapSense component in PSoC Creator.

A capacitive sensing method using a Delta-sigma Modulator (CSD) is used. It provides capacitance sensing using a switched capacitor technique with a delta-sigma modulator to convert the sensing current to a digital code.

#### 8.8 Temp Sensor

Die temperature is used to establish programming parameters for writing flash. Die temperature is measured using a dedicated sensor based on a forward biased transistor. The temperature sensor has its own auxiliary ADC.



### Table 11-2. DC Specifications (continued)

| Parameter               | Description                                                                    | Conditions | Min | Тур  | Мах  | Units |  |  |  |
|-------------------------|--------------------------------------------------------------------------------|------------|-----|------|------|-------|--|--|--|
| Idd <sup>[24, 25]</sup> | Active Mode, VDD = 1.71 V - 5.5 V                                              |            |     |      |      |       |  |  |  |
|                         | Execute from CPU instruction<br>buffer, see Flash Program<br>Memory on page 21 |            |     |      |      |       |  |  |  |
|                         | CPU at 3 MHz                                                                   | T = -40 °C | -   | 1.3  | 2.9  | mA    |  |  |  |
|                         |                                                                                | T = 25 °C  | -   | 1.6  | 3.2  | mA    |  |  |  |
|                         |                                                                                | T = 85 °C  | -   | 4.8  | 7.5  | mA    |  |  |  |
|                         |                                                                                | T = 125 °C | -   | 4.9  | 7.7  | mA    |  |  |  |
|                         | CPU at 6 MHz                                                                   | T = -40 °C | -   | 2.1  | 3.7  | mA    |  |  |  |
|                         |                                                                                | T = 25 °C  | -   | 2.3  | 3.9  | mA    |  |  |  |
|                         |                                                                                | T = 85 °C  | -   | 5.6  | 8.5  | mA    |  |  |  |
|                         |                                                                                | T = 125 °C | -   | 5.8  | 8.7  | mA    |  |  |  |
|                         | CPU at 12 MHz                                                                  | T = -40 °C | -   | 3.5  | 5.2  | mA    |  |  |  |
|                         |                                                                                | T = 25 °C  | -   | 3.8  | 5.5  | mA    |  |  |  |
|                         |                                                                                | T = 85 °C  | -   | 7.1  | 9.8  | mA    |  |  |  |
|                         |                                                                                | T = 125 °C | -   | 9.0  | 10   | mA    |  |  |  |
|                         | CPU at 24 MHz                                                                  | T = -40 °C | -   | 6.3  | 8.1  | mA    |  |  |  |
|                         |                                                                                | T = 25 °C  | -   | 6.6  | 8.3  | mA    |  |  |  |
|                         |                                                                                | T = 85 °C  | -   | 10   | 13   | mA    |  |  |  |
|                         |                                                                                | T = 125 °C | -   | 12   | 14   | mA    |  |  |  |
|                         | CPU at 48 MHz                                                                  | T = -40 °C | -   | 11.5 | 13.5 | mA    |  |  |  |
|                         |                                                                                | T = 25 °C  | -   | 12   | 14   | mA    |  |  |  |
|                         |                                                                                | T = 85 °C  | -   | 15.5 | 18.5 | mA    |  |  |  |
|                         |                                                                                | T = 125 °C | -   | 16.5 | 19   | mA    |  |  |  |
|                         | CPU at 62 MHz                                                                  | T = -40 °C | -   | 16   | 18   | mA    |  |  |  |
|                         |                                                                                | T = 25 °C  | _   | 16   | 18   | mA    |  |  |  |
|                         |                                                                                | T = 85 °C  | _   | 19.5 | 23   | mA    |  |  |  |
|                         |                                                                                | T = 125 °C | _   | 20   | 24   | mA    |  |  |  |

Notes

24. The current consumption of additional peripherals that are implemented only in programmed logic blocks can be found in their respective data sheets, available in PSoC Creator, the integrated design environment. To compute total current, find CPU current at frequency of interest and add peripheral currents for your particular system from the device data sheet and component data sheets.
 25. Total current for all power domains: digital (I<sub>DDD</sub>), analog (I<sub>DDA</sub>), and I/Os (I<sub>DDIO0, 1, 2, 3</sub>). All I/Os floating.



## 11.4 Inputs and Outputs

Specifications are valid for -40°C  $\leq$  Ta  $\leq$  125°C and Tj  $\leq$  150°C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except value of the term of term where noted.

11.4.1 GPIO

## Table 11-6. GPIO DC Specifications

| Parameter       | Description                                                   | Conditions                                             | Min                | Тур | Max             | Units |
|-----------------|---------------------------------------------------------------|--------------------------------------------------------|--------------------|-----|-----------------|-------|
| Vih             | Input voltage high threshold                                  | CMOS Input, PRT[x]CTL = 0                              | $0.7 \times Vddio$ | -   | -               | V     |
| Vil             | Input voltage low threshold                                   | CMOS Input, PRT[x]CTL = 0                              | -                  | -   | 0.3 	imes Vddio | V     |
| Vih             | Input voltage high threshold                                  | LVTTL Input, PRT[x]CTL = 1,Vddio<br>< 2.7 V            | 0.7 x Vddio        | -   | -               | V     |
| Vih             | Input voltage high threshold                                  | LVTTL Input, PRT[x]CTL = 1, Vddio $\geq 2.7V$          | 2.0                | -   | -               | V     |
| Vil             | Input voltage low threshold                                   | LVTTL Input, PRT[x]CTL = 1,Vddio<br>< 2.7 V            | -                  | -   | 0.3 x Vddio     | V     |
| Vil             | Input voltage low threshold                                   | LVTTL Input, PRT[x]CTL = 1, Vddio $\geq 2.7V$          | -                  | -   | 0.8             | V     |
| Voh             | Output voltage high                                           | loh = 4 mA at 3.3 Vddio                                | Vddio - 0.6        | -   | -               | V     |
|                 |                                                               | loh = 1 mA at 1.8 Vddio                                | Vddio - 0.5        | -   | -               | V     |
| Vol             | Output voltage low                                            | lol = 6 mA at 3.3 Vddio                                | _                  | _   | 0.6             | V     |
|                 |                                                               | lol = 3 mA at 1.8 Vddio                                | -                  | _   | 0.6             | V     |
|                 |                                                               | lol = 3 mA at 3.3 Vddio                                | _                  | _   | 0.4             | V     |
| Rpullup         | Pull up resistor                                              |                                                        | 3.5                | 5.6 | 8.5             | kΩ    |
| Rpulldown       | Pull down resistor                                            |                                                        | 3.5                | 5.6 | 8.5             | kΩ    |
| lil             | Input leakage current (absolute value) <sup>[31]</sup>        | 25°C, Vddio = 3.0 V                                    | -                  | -   | 2               | nA    |
| C <sub>IN</sub> | Input capacitance <sup>[31]</sup>                             | GPIOs not shared with opamp outputs, MHz ECO or kHzECO | -                  | 4   | 7               | pF    |
|                 |                                                               | GPIOs shared with MHz ECO or<br>kHzECO <sup>[32]</sup> | -                  | 5   | 7               | pF    |
|                 |                                                               | GPIOs shared with opamp outputs                        | _                  | _   | 18              | pF    |
| Vh              | Input voltage hysteresis<br>(Schmitt-Trigger) <sup>[31]</sup> |                                                        | -                  | 40  | -               | mV    |
| Idiode          | Current through protection diode to Vddio and Vssio           |                                                        | -                  | -   | 100             | μA    |
| Rglobal         | Resistance pin to analog global bus                           | 25°C, Vddio = 3.0 V                                    | -                  | 320 | -               | Ω     |
| Rmux            | Resistance pin to analog mux bus                              | 25°C, Vddio = 3.0 V                                    | -                  | 220 | -               | Ω     |
|                 | 1                                                             |                                                        |                    |     |                 |       |

Notes

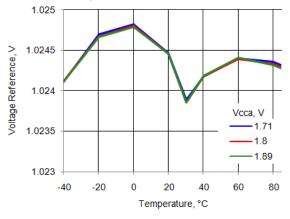
31. Based on device characterization (Not production tested).
 32. For information on designing with PSoC 3 oscillators, refer to the application note, AN54439 - PSoC<sup>®</sup> 3 and PSoC 5 External Oscillator.



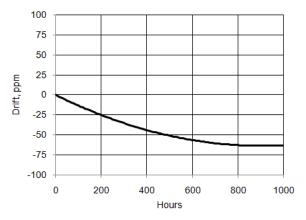
## 11.4.3 USBIO

## Table 11-10. USBIO DC Specifications

| Parameter           | Description                            | Conditions                                                       | Min            | Тур | Max            | Units |
|---------------------|----------------------------------------|------------------------------------------------------------------|----------------|-----|----------------|-------|
| Rusbi               | USB D+ pull up resistance              | With idle bus                                                    | 0.900          | -   | 1.575          | kΩ    |
| Rusba               | USB D+ pull up resistance              | While receiving traffic                                          | 1.425          | -   | 3.090          | kΩ    |
| Vohusb              | Static output high                     | 15 k $\Omega$ ±5% to Vss, internal pull up enabled               | 2.8            | -   | 3.6            | V     |
| Volusb              | Static output low                      | 15 k $\Omega$ ±5% to Vss, internal pull up enabled               | -              | -   | 0.3            | V     |
| Vihgpio             | Input voltage high, GPIO mode          | $V_{DDD} \ge 3 V$                                                | 2              | -   | -              | V     |
| Vilgpio             | Input voltage low, GPIO mode           | $V_{DDD} \ge 3 V$                                                | _              | -   | 0.8            | V     |
| Vohgpio             | Output voltage high, GPIO mode         | Ioh = 4 mA, Vddio $\ge$ 3 V                                      | 2.4            | -   | -              | V     |
| Volgpio             | Output voltage low, GPIO mode          | IoI = 4 mA, Vddio $\ge$ 3 V                                      | -              | -   | 0.3            | V     |
| Vdi                 | Differential input sensitivity         | (D+)-(D-)                                                        | -              | -   | 0.2            | V     |
| Vcm                 | Differential input common mode range   |                                                                  | 0.8            | -   | 2.5            | V     |
| Vse                 | Single ended receiver threshold        |                                                                  | 0.8            | -   | 2              | V     |
| Rps2                | PS/2 pull up resistance                | In PS/2 mode, with PS/2 pull up enabled                          | 3              | -   | 7              | kΩ    |
| Rext                | External USB series resistor           | In series with each USB pin                                      | 21.78<br>(-1%) | 22  | 22.22<br>(+1%) | Ω     |
| 70                  | USB driver output impedance            | Including Rext, -40°C $\leq$ Ta $\leq$ 85°C and Tj $\leq$ 100°C  | 28             | -   | 44             | Ω     |
| Zo                  |                                        | Including Rext, -40°C $\leq$ Ta $\leq$ 125°C and Tj $\leq$ 150°C | 28             | -   | 46             | Ω     |
| Cin                 | USB transceiver input capacitance      |                                                                  | -              | -   | 20             | pF    |
| lil <sup>[35]</sup> | Input leakage current (absolute value) | 25°C, Vddio = 3.0 V                                              | -              | -   | 2              | nA    |




## 11.5.3 Voltage Reference


## Table 11-24. Voltage Reference Specifications

| Parameter            | Description                                           | Conditions                                                                                                                              | Min              | Тур   | Max              | Units   |
|----------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|------------------|---------|
| Vref <sup>[39]</sup> | Precision reference                                   | -40°C $\leq$ Ta $\leq$ 85°C and Tj $\leq$ 100°C                                                                                         | 1.021<br>(-0.3%) | 1.024 | 1.027<br>(+0.3%) | V       |
| VIEI                 |                                                       | -40°C $\leq$ Ta $\leq$ 125°C and Tj $\leq$ 150°C                                                                                        | 1.018<br>(–0.6%) | 1.024 | 1.030<br>(+0.6%) | V       |
|                      | After typical PCB assembly, post reflow               | Typical (non-optimized) board<br>layout and 250 °C solder reflow.<br>Device may be calibrated after<br>assembly to improve performance. |                  |       |                  |         |
|                      |                                                       | –40 °C                                                                                                                                  |                  | ±0.5  |                  | %       |
|                      |                                                       | 25 °C                                                                                                                                   |                  | ±0.2  |                  | %       |
|                      |                                                       | 85 °C                                                                                                                                   |                  | ±0.2  |                  | %       |
|                      | Temperature drift <sup>[40]</sup>                     | Box method                                                                                                                              | _                | _     | 30               | ppm/°C  |
|                      | Long term drift                                       |                                                                                                                                         | -                | 100   | _                | ppm/khr |
|                      | Thermal cycling drift (stability) <sup>[40, 41]</sup> |                                                                                                                                         | -                | 100   | _                | ppm     |

## Figure 11-30. Voltage Reference vs. Temperature and $V_{CCA}$







#### Notes

39.  $V_{REF}$  is measured after packaging, and thus accounts for substrate and die attach stresses.

40. Based on device characterization (Not production tested).

41. After eight full cycles between -40 °C and 100 °C.



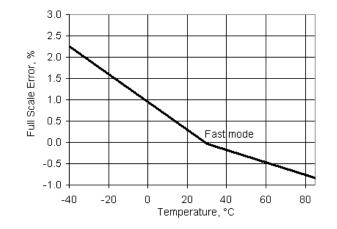



Figure 11-39. IDAC Full Scale Error vs Temperature, Range = 255 µA, Sink Mode



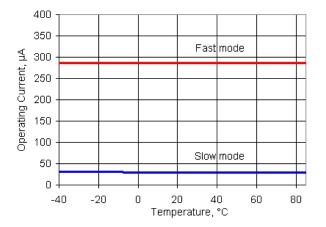
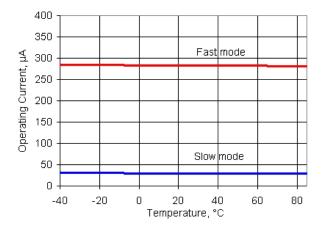
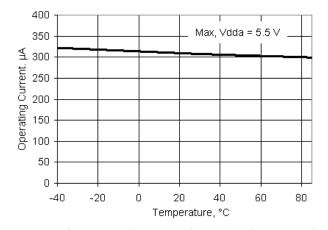





Figure 11-41. IDAC Operating Current vs Temperature, Range = 255 µA, Code = 0, Sink Mode











#### 11.5.10 Programmable Gain Amplifier

The PGA is created using a SC/CT Analog Block, see the PGA component data sheet in PSoC Creator for full AC/DC specifications, and APIs and example code.

Unless otherwise specified, operating conditions are:

- Operating temperature = 25 °C for typical values
- Unless otherwise specified, all charts and graphs show typical values

#### Table 11-36. PGA DC Specifications

| Parameter | Description                                 | Conditions                                                                                                                                                      | Min                        | Тур | Max                        | Units    |
|-----------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----|----------------------------|----------|
| Vin       | Input voltage range                         | Power mode = minimum                                                                                                                                            | Vssa                       | _   | Vdda                       | V        |
| Vos       | Input offset voltage                        | Power mode = high,<br>gain = 1                                                                                                                                  | -                          | -   | 10                         | mV       |
|           | Gain Error <sup>[30]</sup>                  | Non inverting mode, reference = V                                                                                                                               | ssa                        |     |                            |          |
| Ge1       | Gain = 1                                    | Rin of 40K, -40°C $\leq$ Ta $\leq$ 85°C and Tj $\leq$ 100°C                                                                                                     | -                          | -   | ±0.15                      | %        |
|           |                                             | $\begin{array}{l} \mbox{Rin of 40K, -40 }^\circ\mbox{C} \leq \mbox{Ta} \leq 125 \\^\circ\mbox{C} \mbox{and} \\ \mbox{Tj} \leq 150 \\^\circ\mbox{C} \end{array}$ | -                          | -   | ±0.15                      | %        |
| Ge16      | Gain = 16                                   | $\begin{array}{l} \mbox{Rin of 40K, -40}^\circ\mbox{C} \leq \mbox{Ta} \leq 85^\circ\mbox{C} \mbox{ and } \\ \mbox{Tj} \leq 100^\circ\mbox{C} \end{array}$       | -                          | -   | ±2.5                       | %        |
|           |                                             | $\begin{array}{l} \mbox{Rin of 40K, -40 }^\circ\mbox{C} \leq \mbox{Ta} \leq 125 \\^\circ\mbox{C} \mbox{and} \\ \mbox{Tj} \leq 150 \\^\circ\mbox{C} \end{array}$ | -                          | -   | ±4                         | %        |
| Ge50      | Gain = 50                                   | $\begin{array}{l} \mbox{Rin of 40K, -40}^\circ\mbox{C} \leq \mbox{Ta} \leq 85^\circ\mbox{C} \mbox{ and } \\ \mbox{Tj} \leq 100^\circ\mbox{C} \end{array}$       | -                          | -   | ±5                         | %        |
|           |                                             | $\begin{array}{l} \mbox{Rin of 40K, -40 }^\circ\mbox{C} \leq \mbox{Ta} \leq 125 \\^\circ\mbox{C} \mbox{and} \\ \mbox{Tj} \leq 150 \\^\circ\mbox{C} \end{array}$ | -                          | -   | ±6                         | %        |
| TCVos     | Input offset voltage drift with temperature | Power mode = high,<br>gain = 1                                                                                                                                  | -                          | -   | ±30                        | µV/°C    |
| Vonl      | DC output nonlinearity                      | Gain = 1                                                                                                                                                        | _                          | _   | ±0.01                      | % of FSR |
| Cin       | Input capacitance                           |                                                                                                                                                                 | _                          | _   | 7                          | pF       |
| Voh       | Output voltage swing                        | Power mode = high,<br>gain = 1, Rload = $100 \text{ k}\Omega$ to V <sub>DDA</sub> / 2                                                                           | V <sub>DDA</sub> –<br>0.15 | -   | -                          | V        |
| Vol       | Output voltage swing                        | Power mode = high,<br>gain = 1, Rload = $100 \text{ k}\Omega$ to V <sub>DDA</sub> / 2                                                                           | -                          | -   | V <sub>SSA</sub> +<br>0.15 | V        |
| Vsrc      | Output voltage under load                   | Iload = 250 $\mu$ A, Vdda $\ge$ 2.7V, power mode = high                                                                                                         | -                          | -   | 300                        | mV       |
| ldd       | Operating current                           | Power mode = high                                                                                                                                               | -                          | 1.5 | 1.65                       | mA       |
| PSRR      | Power supply rejection ratio                |                                                                                                                                                                 | 48                         | _   | -                          | dB       |



## 11.5.12 LCD Direct Drive

## Table 11-39. LCD Direct Drive DC Specifications

| Parameter           | Description                                                                         | Conditions                                                                                                                                                                                       | Min | Тур                       | Max  | Units |
|---------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------|------|-------|
| I <sub>CC</sub>     | LCD system operating current                                                        | Device sleep mode with wakeup at<br>400-Hz rate to refresh LCDs, bus<br>clock = 3 Mhz, Vddio = Vdda = 3 V,<br>4 commons, 16 segments, 1/4 duty<br>cycle, 50 Hz frame rate, no glass<br>connected | -   | 38                        | -    | μA    |
| I <sub>CC_SEG</sub> | Current per segment driver                                                          | Strong drive mode                                                                                                                                                                                | -   | 260                       | -    | μA    |
| V <sub>BIAS</sub>   | LCD bias range (V <sub>BIAS</sub> refers to the main output voltage(V0) of LCD DAC) | $V_{DDA} \ge 3 \text{ V} \text{ and } V_{DDA} \ge V_{BIAS}$                                                                                                                                      | 2   | -                         | 5    | V     |
|                     | LCD bias step size                                                                  | $V_{DDA} \ge 3 \text{ V} \text{ and } V_{DDA} \ge V_{BIAS}$                                                                                                                                      | -   | 9.1 ×<br>V <sub>DDA</sub> | -    | mV    |
|                     | LCD capacitance per<br>segment/common driver                                        | Drivers may be combined                                                                                                                                                                          | -   | 500                       | 5000 | pF    |
|                     | Long term segment offset                                                            |                                                                                                                                                                                                  | -   | -                         | 20   | mV    |
| I <sub>OUT</sub>    | Output drive current per segment driver)                                            | Vddio = 5.5V, strong drive mode                                                                                                                                                                  | 355 | -                         | 710  | μA    |

## Table 11-40. LCD Direct Drive AC Specifications

| Parameter        | Description    | Conditions | Min | Тур | Max | Units |
|------------------|----------------|------------|-----|-----|-----|-------|
| f <sub>LCD</sub> | LCD frame rate |            | 10  | 50  | 150 | Hz    |



## 11.7 Memory

Specifications are valid for  $-40^{\circ}$ C  $\leq$  Ta  $\leq 125^{\circ}$ C and Tj  $\leq 150^{\circ}$ C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.7.1 Flash

## Table 11-55. Flash DC Specifications

| Parameter | Description               | Conditions | Min  | Тур | Мах | Units |
|-----------|---------------------------|------------|------|-----|-----|-------|
|           | Erase and program voltage | Vddd pin   | 1.71 | -   | 5.5 | V     |

#### Table 11-56. Flash AC Specifications

| Parameter | Description                                         | Conditions                                                                                        | Min | Тур | Max | Units   |
|-----------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|---------|
| Twrite    | Block write time (erase + program)                  | -40°C $\leq$ Ta $\leq$ 85°C and Tj $\leq$ 100°C                                                   | -   | -   | 15  | ms      |
|           |                                                     | -40°C $\leq$ Ta $\leq$ 125°C and Tj $\leq$ 140°C                                                  | -   | -   | 15  | ms      |
| Terase    | Block erase time                                    | -40°C $\leq$ Ta $\leq$ 85°C and Tj $\leq$ 100°C                                                   | -   | -   | 10  | ms      |
|           |                                                     | -40°C $\leq$ Ta $\leq$ 125°C and Tj $\leq$ 140°C                                                  | -   | -   | 10  | ms      |
|           | Block program time                                  | -40°C $\leq$ Ta $\leq$ 85°C and Tj $\leq$ 100°C                                                   | -   | -   | 5   | ms      |
|           |                                                     | -40°C $\leq$ Ta $\leq$ 125°C and Tj $\leq$ 140°C                                                  | -   | -   | 5   | ms      |
| Tbulk     | Bulk erase time (16 KB to 64 KB) <sup>[53]</sup>    | -40°C $\leq$ Ta $\leq$ 85°C and Tj $\leq$ 100°C                                                   | -   | -   | 35  | ms      |
|           |                                                     | -40°C $\leq$ Ta $\leq$ 125°C and Tj $\leq$ 140°C                                                  | -   | -   | 35  | ms      |
|           | Sector erase time (8 KB to 16 KB) <sup>[53]</sup>   | -40°C $\leq$ Ta $\leq$ 85°C and Tj $\leq$ 100°C                                                   | -   | -   | 15  | ms      |
|           |                                                     | -40°C $\leq$ Ta $\leq$ 125°C and Tj $\leq$ 140°C                                                  | -   | -   | 15  | ms      |
|           | Total device program time<br>(including JTAG, etc.) | No overhead <sup>[54]</sup>                                                                       | -   | -   | 5   | seconds |
|           | Flash data retention time <sup>[55]</sup>           | Average ambient temp.<br>T <sub>A</sub> ≤ 55 °C,<br>100 K erase/program cycles                    | 20  | -   | -   | years   |
|           |                                                     | Retention period measured from last erase cycle after 100k progra/erase cycles at $T_A \le 85$ °C | 10  | -   | _   |         |

Notes

53. ECC not included.
 54. See PSoC<sup>®</sup> 3 Device Programming Specifications for a description of a low-overhead method of programming PSoC 3 flash. (Please take care of Foot note numbers)
 55. Cypress provides a retention calculator to calculate the retention lifetime based on customers' individual temperature profiles for operation over the -40 °C to +125 °C ambient temperature range. Contact customercare@cypress.com.



## 14. Acronyms

## Table 14-1. Acronyms Used in this Document

| Acronym          | Description                                                                                             |  |  |
|------------------|---------------------------------------------------------------------------------------------------------|--|--|
| abus             | analog local bus                                                                                        |  |  |
| ADC              | analog-to-digital converter                                                                             |  |  |
| AG               | analog global                                                                                           |  |  |
| АНВ              | AMBA (advanced microcontroller bus archi-<br>tecture) high-performance bus, an ARM data<br>transfer bus |  |  |
| ALU              | arithmetic logic unit                                                                                   |  |  |
| AMUXBUS          | analog multiplexer bus                                                                                  |  |  |
| API              | application programming interface                                                                       |  |  |
| APSR             | application program status register                                                                     |  |  |
| ARM <sup>®</sup> | advanced RISC machine, a CPU architecture                                                               |  |  |
| ATM              | automatic thump mode                                                                                    |  |  |
| BW               | bandwidth                                                                                               |  |  |
| CAN              | Controller Area Network, a communications protocol                                                      |  |  |
| CMRR             | common-mode rejection ratio                                                                             |  |  |
| CPU              | central processing unit                                                                                 |  |  |
| CRC              | cyclic redundancy check, an error-checking protocol                                                     |  |  |
| DAC              | digital-to-analog converter, see also IDAC, VDAC                                                        |  |  |
| DFB              | digital filter block                                                                                    |  |  |
| DIO              | digital input/output, GPIO with only digital capabilities, no analog. See GPIO.                         |  |  |
| DMA              | direct memory access, see also TD                                                                       |  |  |
| DNL              | differential nonlinearity, see also INL                                                                 |  |  |
| DNU              | do not use                                                                                              |  |  |
| DR               | port write data registers                                                                               |  |  |
| DSI              | digital system interconnect                                                                             |  |  |
| DWT              | data watchpoint and trace                                                                               |  |  |
| ECC              | error correcting code                                                                                   |  |  |
| ECO              | external crystal oscillator                                                                             |  |  |
| EEPROM           | electrically erasable programmable read-only memory                                                     |  |  |
| EMI              | electromagnetic interference                                                                            |  |  |
| EMIF             | external memory interface                                                                               |  |  |
| EOC              | end of conversion                                                                                       |  |  |
| EOF              | end of frame                                                                                            |  |  |
| EPSR             | execution program status register                                                                       |  |  |
| ESD              | electrostatic discharge                                                                                 |  |  |
| ETM              | embedded trace macrocell                                                                                |  |  |

## Table 14-1. Acronyms Used in this Document (continued)

| Acronym                  | Description                                            |  |  |
|--------------------------|--------------------------------------------------------|--|--|
| FIR                      | finite impulse response, see also IIR                  |  |  |
| FPB                      | flash patch and breakpoint                             |  |  |
| FS                       | full-speed                                             |  |  |
| GPIO                     | general-purpose input/output, applies to a PSoC pin    |  |  |
| HVI                      | high-voltage interrupt, see also LVI, LVD              |  |  |
| IC                       | integrated circuit                                     |  |  |
| IDAC                     | current DAC, see also DAC, VDAC                        |  |  |
| IDE                      | integrated development environment                     |  |  |
| I <sup>2</sup> C, or IIC | Inter-Integrated Circuit, a communications protocol    |  |  |
| lir                      | infinite impulse response, see also FIR                |  |  |
| ILO                      | internal low-speed oscillator, see also IMO            |  |  |
| IMO                      | internal main oscillator, see also ILO                 |  |  |
| INL                      | integral nonlinearity, see also DNL                    |  |  |
| I/O                      | input/output, see also GPIO, DIO, SIO, USBIO           |  |  |
| IPOR                     | initial power-on reset                                 |  |  |
| IPSR                     | interrupt program status register                      |  |  |
| IRQ                      | interrupt request                                      |  |  |
| ITM                      | instrumentation trace macrocell                        |  |  |
| LCD                      | liquid crystal display                                 |  |  |
| LIN                      | Local Interconnect Network, a communications protocol. |  |  |
| LR                       | link register                                          |  |  |
| LUT                      | lookup table                                           |  |  |
| LVD                      | low-voltage detect, see also LVI                       |  |  |
| LVI                      | low-voltage interrupt, see also HVI                    |  |  |
| LVTTL                    | low-voltage transistor-transistor logic                |  |  |
| MAC                      | multiply-accumulate                                    |  |  |
| MCU                      | microcontroller unit                                   |  |  |
| MISO                     | master-in slave-out                                    |  |  |
| NC                       | no connect                                             |  |  |
| NMI                      | nonmaskable interrupt                                  |  |  |
| NRZ                      | non-return-to-zero                                     |  |  |
| NVIC                     | nested vectored interrupt controller                   |  |  |
| NVL                      | nonvolatile latch, see also WOL                        |  |  |
| opamp                    | operational amplifier                                  |  |  |
| PAL                      | programmable array logic, see also PLD                 |  |  |
| PC                       | program counter                                        |  |  |
| РСВ                      | printed circuit board                                  |  |  |
| PGA                      | programmable gain amplifier                            |  |  |



# 17. Revision History (continued)

| *I       4174912       10/26/2013       NFB /<br>ANMD       Updated Packaging:<br>Updated Packaging:<br>Updated Packaging:<br>Updated Table 11-28.         *I       4174912       10/26/2013       NFB /<br>ANMD       Updated Packaging:<br>Updated Packaging:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Description Title: PSoC <sup>®</sup> 3: CY8C38 Automotive Family Datasheet, Programmable System-on-Chip (PSoC <sup>®</sup> )<br>Document Number: 001-54683 |         |            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>ANMD Updated Table 11-2.<br/>Updated Table 11-2.<br/>Updated Table 11-2.<br/>Updated GPIO:<br/>Updated Fable 11-7.<br/>Removed figure 'GPIO Output Rise and Fall Times, Fast Strong Mode, V<sub>DDIO</sub> = 3.3 V, 25 pF Load'.<br/>Updated Table 11-7.<br/>Updated Table 11-8.<br/>Updated Table 11-8.<br/>Updated Table 11-8.<br/>Updated Table 11-24.<br/>Updated Table 11-24.<br/>Updated Table 11-26.<br/>Updated Table 11-26.<br/>Updated Table 11-26.<br/>Updated Table 11-66.<br/>Updated Table 11-76.<br/>Updated Table 11-76.<br/>Updated Table 11-76.<br/>Updated Table 11-76.<br/>Updated Table 11-76.<br/>Updated Inema Main Oscillator:<br/>Updated Table 11-76.<br/>Updated Inema Main Oscillator:<br/>Updated In</li></ul> | Rev.                                                                                                                                                       | ECN     |            |  | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| ANMD Added Note 8 and referred the same note in 100 mA in description.<br>Updated Electrical Specifications:<br>Updated Absolute Maximum Ratings:<br>Updated Table 11-1.<br>Added Note 18 and referred the same note in Table 11-1.<br>Added Note 20 and referred the same note in Ivddio parameter in Table<br>Updated Device Level Specifications:<br>Updated Table 11-2.<br>Updated Table 11-2.<br>Updated Table 11-15.<br>Updated Table 11-15.<br>Updated Table 11-24.<br>Updated Packaging:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *H (cont.)                                                                                                                                                 | 4094193 | 08/30/2013 |  | Updated Device Level Specifications:<br>Updated Table 11-2.<br>Updated Table 11-3.<br>Updated Inputs and Outputs:<br>Updated GPIO:<br>Updated Table 11-7.<br>Removed figure "GPIO Output Rise and Fall Times, Fast Strong Mode,<br>V <sub>DDIO</sub> = 3.3 V, 25 pF Load" and figure "GPIO Output Rise and Fall Times, Slow<br>Strong Mode, V <sub>DDIO</sub> = 3.3 V, 25 pF Load".<br>Updated Analog Peripherals:<br>Updated Delta-Sigma ADC:<br>Updated Table 11-17.<br>Updated Table 11-18.<br>Updated Table 11-28.<br>Updated Table 11-28.<br>Updated Table 11-28.<br>Updated Table 11-28.<br>Updated Flash:<br>Updated Table 11-56.<br>Updated Clocking:<br>Updated Internal Main Oscillator:<br>Updated Table 11-76.<br>Updated Packaging:<br>spec 51-85048 – Changed revision from *G to *H.<br>Updated in new template. |  |  |
| Updated Table 13-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                          | 4174912 | 10/26/2013 |  | Added Note 8 and referred the same note in 100 mA in description.<br>Updated Electrical Specifications:<br>Updated Absolute Maximum Ratings:<br>Updated Table 11-1.<br>Added Note 18 and referred the same note in Table 11-1.<br>Added Note 20 and referred the same note in Ivddio parameter in Table 11-1<br>Updated Device Level Specifications:<br>Updated Table 11-2.<br>Updated Analog Peripherals:<br>Updated Opamp:<br>Updated Table 11-15.<br>Updated Voltage Reference:<br>Updated Table 11-24.<br>Updated Packaging:                                                                                                                                                                                                                                                                                                |  |  |
| *J 4188568 11/14/2013 WKA No content update.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * I                                                                                                                                                        | 1100560 | 11/14/2012 |  | Updated Table 13-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |