

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x20b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	48-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3865pva-060

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-4. 100-pin TQFP Part Pinout

Figure 2-5 and Figure 2-6 show an example schematic and an example PCB layout, for the 100-pin TQFP part, for optimal analog performance on a two-layer board.

- The two pins labeled VDDD must be connected together.
- The two pins labeled VCCD must be connected together, with capacitance added, as shown in Figure 2-5 and Power System on page 29. The trace between the two VCCD pins should be as short as possible.
- The two pins labeled Vssd must be connected together.

For information on circuit board layout issues for mixed signals, refer to the application note, AN57821 - Mixed Signal Circuit Board Layout Considerations for PSoC® 3 and PSoC 5.

4.3.1.2 Logical Instructions

The logical instructions perform Boolean operations such as AND, OR, XOR on bytes, rotate of accumulator contents, and swap of nibbles in an accumulator. The Boolean operations on the bytes are performed on the bit-by-bit basis. Table 4-2 shows the list of logical instructions and their description.

Table 4-2. Logical Instructions

	Mnemonic	Description	Bytes	Cycles
ANL	A,Rn	AND register to accumulator	1	1
ANL	A,Direct	AND direct byte to accumulator	2	2
ANL	A,@Ri	AND indirect RAM to accumulator	1	2
ANL	A,#data	AND immediate data to accumulator	2	2
ANL	Direct, A	AND accumulator to direct byte	2	3
ANL	Direct, #data	AND immediate data to direct byte	3	3
ORL	A,Rn	OR register to accumulator	1	1
ORL	A,Direct	OR direct byte to accumulator	2	2
ORL	A,@Ri	OR indirect RAM to accumulator	1	2
ORL	A,#data	OR immediate data to accumulator	2	2
ORL	Direct, A	OR accumulator to direct byte	2	3
ORL	Direct, #data	OR immediate data to direct byte	3	3
XRL	A,Rn	XOR register to accumulator	1	1
XRL	A,Direct	XOR direct byte to accumulator	2	2
XRL	A,@Ri	XOR indirect RAM to accumulator	1	2
XRL	A,#data	XOR immediate data to accumulator	2	2
XRL	Direct, A	XOR accumulator to direct byte	2	3
XRL	Direct, #data	XOR immediate data to direct byte	3	3
CLR	А	Clear accumulator	1	1
CPL	А	Complement accumulator	1	1
RL	A	Rotate accumulator left	1	1
RLC	A	Rotate accumulator left through carry	1	1
RR	A	Rotate accumulator right	1	1
RRC	А	Rotate accumulator right though carry	1	1
SWAF	PA	Swap nibbles within accumulator	1	1

4.3.1.3 Data Transfer Instructions

The data transfer instructions are of three types: the core RAM, xdata RAM, and the lookup tables. The core RAM transfer includes transfer between any two core RAM locations or SFRs. These instructions can use direct, indirect, register, and immediate addressing. The xdata RAM transfer includes only the transfer between the accumulator and the xdata RAM location. It can use only indirect addressing. The lookup tables involve nothing but the read of program memory using the Indexed

addressing mode. Table 4-3 lists the various data transfer instructions available.

4.3.1.4 Boolean Instructions

The 8051 core has a separate bit-addressable memory location. It has 128 bits of bit addressable RAM and a set of SFRs that are bit addressable. The instruction set includes the whole menu of bit operations such as move, set, clear, toggle, OR, and AND instructions and the conditional jump instructions. Table 4-4 lists the available Boolean instructions.

Table 4-8. Interrupt Vector Table

#	Fixed Function	DMA	UDB
0	LVD	phub_termout0[0]	udb_intr[0]
1	Cache/ECC	phub_termout0[1]	udb_intr[1]
2	Reserved	phub_termout0[2]	udb_intr[2]
3	Sleep (Pwr Mgr)	phub_termout0[3]	udb_intr[3]
4	PICU[0]	phub_termout0[4]	udb_intr[4]
5	PICU[1]	phub_termout0[5]	udb_intr[5]
6	PICU[2]	phub_termout0[6]	udb_intr[6]
7	PICU[3]	phub_termout0[7]	udb_intr[7]
8	PICU[4]	phub_termout0[8]	udb_intr[8]
9	PICU[5]	phub_termout0[9]	udb_intr[9]
10	PICU[6]	phub_termout0[10]	udb_intr[10]
11	PICU[12]	phub_termout0[11]	udb_intr[11]
12	PICU[15]	phub_termout0[12]	udb_intr[12]
13	Comparators Combined	phub_termout0[13]	udb_intr[13]
14	Switched Caps Combined	phub_termout0[14]	udb_intr[14]
15	l ² C	phub_termout0[15]	udb_intr[15]
16	CAN	phub_termout1[0]	udb_intr[16]
17	Timer/Counter0	phub_termout1[1]	udb_intr[17]
18	Timer/Counter1	phub_termout1[2]	udb_intr[18]
19	Timer/Counter2	phub_termout1[3]	udb_intr[19]
20	Timer/Counter3	phub_termout1[4]	udb_intr[20]
21	USB SOF Int	phub_termout1[5]	udb_intr[21]
22	USB Arb Int	phub_termout1[6]	udb_intr[22]
23	USB Bus Int	phub_termout1[7]	udb_intr[23]
24	USB Endpoint[0]	phub_termout1[8]	udb_intr[24]
25	USB Endpoint Data	phub_termout1[9]	udb_intr[25]
26	Reserved	phub_termout1[10]	udb_intr[26]
27	LCD	phub_termout1[11]	udb_intr[27]
28	DFB Int	phub_termout1[12]	udb_intr[28]
29	Decimator Int	phub_termout1[13]	udb_intr[29]
30	PHUB Error Int	phub_termout1[14]	udb_intr[30]
31	EEPROM Fault Int	phub_termout1[15]	udb_intr[31]

5.6 External Memory Interface

CY8C38 provides an EMIF for connecting to external memory devices. The connection allows read and write accesses to external memories. The EMIF operates in conjunction with UDBs, I/O ports, and other hardware to generate external memory address and control signals. At 33 MHz, each memory access cycle takes four bus clock cycles. Figure 5-1 is the EMIF block diagram. The EMIF supports synchronous and asynchronous memories. The CY8C38 supports only one type of external memory device at a time. External memory can be accessed through the 8051 xdata space; up to 24 address bits can be used. See "xdata Space" section on page 25. The memory can be 8 or 16 bits wide.

Figure 5-1. EMIF Block Diagram

Figure 6-1. Clocking Subsystem

6.1.1 Internal Oscillators

6.1.1.1 Internal Main Oscillator

In most designs the IMO is the only clock source required, due to its \pm 1-percent accuracy. The IMO operates with no external components and outputs a stable clock. A factory trim for each frequency range is stored in the device. With the factory trim, tolerance varies from \pm 1 percent at 3 MHz, up to \pm 7 percent at 62 MHz. The IMO, in conjunction with the PLL, allows generation of other clocks up to the device's maximum frequency (see PLL). The IMO provides clock outputs at 3, 6, 12, 24, 48, and 62 MHz.

6.1.1.2 Clock Doubler

The clock doubler outputs a clock at twice the frequency of the input clock. The doubler works at input frequency of 24 MHz, providing 48 MHz for the USB. It can be configured to use a clock from the IMO, MHzECO, or the DSI (external pin).

6.1.1.3 PLL

The PLL allows low-frequency, high-accuracy clocks to be multiplied to higher frequencies. This is a trade off between higher clock frequency and accuracy and, higher power consumption and increased startup time.

The PLL block provides a mechanism for generating clock frequencies based upon a variety of input sources. The PLL outputs clock frequencies in the range of 24 to 67 MHz. Its input and feedback dividers supply 4032 discrete ratios to create almost any desired clock frequency. The accuracy of the PLL output depends on the accuracy of the PLL input source. The most common PLL use is to multiply the IMO clock at 3 MHz, where it is most accurate, to generate the other clocks up to the device's maximum frequency.

The PLL achieves phase lock within 250 μ s (verified by bit setting). It can be configured to use a clock from the IMO, MHzECO or DSI (external pin). The PLL clock source can be

used until lock is complete and signaled with a lock bit. The lock signal can be routed through the DSI to generate an interrupt. Disable the PLL before entering low-power modes.

6.1.1.4 Internal Low-Speed Oscillator

The ILO provides clock frequencies for low-power consumption, including the watchdog timer, and sleep timer. The ILO generates up to three different clocks: 1 kHz, 33 kHz, and 100 kHz. The 1-kHz clock (CLK1K) is typically used for a background 'heartbeat' timer. This clock inherently lends itself to low-power supervisory operations such as the watchdog timer and long sleep intervals using the central timewheel (CTW).

The central timewheel is a 1-kHz, free running, 13-bit counter clocked by the ILO. The central timewheel is always enabled, except in hibernate mode and when the CPU is stopped during debug on chip mode. It can be used to generate periodic interrupts for timing purposes or to wake the system from a low-power mode. Firmware can reset the central timewheel. Systems that require accurate timing should use the RTC capability instead of the central timewheel.

The 100-kHz clock (CLK100K) can be used as a low power master clock. It can also generate time intervals using the fast timewheel.

The fast timewheel is a 5-bit counter, clocked by the 100-kHz clock. It features programmable settings and automatically resets when the terminal count is reached. An optional interrupt can be generated each time the terminal count is reached. This enables flexible, periodic interrupts of the CPU at a higher rate than is allowed using the central timewheel.

The 33-kHz clock (CLK33K) comes from a divide-by-3 operation on CLK100K. This output can be used as a reduced accuracy version of the 32.768-kHz ECO clock with no need for a crystal.

6.1.2 External Oscillators

6.1.2.1 MHz External Crystal Oscillator

The MHzECO provides high frequency, high precision clocking using an external crystal (see Figure 6-2). It supports a wide variety of crystal types, in the range of 4 to 25 MHz. When used in conjunction with the PLL, it can generate other clocks up to the device's maximum frequency (see PLL). The GPIO pins connecting to the external crystal and capacitors are fixed. MHzECO accuracy depends on the crystal chosen.

Figure 6-2. MHzECO Block Diagram

6.1.2.2 32.768-kHz ECO

The 32.768-kHz external crystal oscillator (32kHzECO) provides precision timing with minimal power consumption using an external 32.768-kHz watch crystal (see Figure 6-3). The 32kHzECO also connects directly to the sleep timer and provides the source for the RTC. The RTC uses a 1-second interrupt to implement the RTC functionality in firmware.

The oscillator works in two distinct power modes. This allows users to trade off power consumption with noise immunity from neighboring circuits. The GPIO pins connected to the external crystal and capacitors are fixed.

Figure 6-3. 32kHzECO Block Diagram

It is recommended that the external 32.768-kHz watch crystal have a load capacitance (CL) of 6 pF or 12.5 pF. Check the crystal manufacturer's datasheet. The two external capacitors, CL1 and CL2, are typically of the same value, and their total capacitance, CL1CL2 / (CL1 + CL2), including pin and trace

capacitance, should equal the crystal CL value. For more information, refer to application note AN54439: PSoC 3 and PSoC 5 External Oscillators. See also pin capacitance specifications in the "GPIO" section on page 74.

6.1.2.3 Digital System Interconnect

The DSI provides routing for clocks taken from external clock oscillators connected to I/O. The oscillators can also be generated within the device in the digital system and UDBs.

While the primary DSI clock input provides access to all clocking resources, up to eight other DSI clocks (internally or externally generated) may be routed directly to the eight digital clock dividers. This is only possible if there are multiple precision clock sources.

6.1.3 Clock Distribution

All seven clock sources are inputs to the central clock distribution system. The distribution system is designed to create multiple high precision clocks. These clocks are customized for the design's requirements and eliminate the common problems found with limited resolution prescalers attached to peripherals. The clock distribution system generates several types of clock trees.

- The master clock is used to select and supply the fastest clock in the system for general clock requirements and clock synchronization of the PSoC device.
- Bus clock 16-bit divider uses the master clock to generate the bus clock used for data transfers. Bus clock is the source clock for the CPU clock divider.
- Eight fully programmable 16-bit clock dividers generate digital system clocks for general use in the digital system, as configured by the design's requirements. Digital system clocks can generate custom clocks derived from any of the seven clock sources for any purpose. Examples include baud rate generators, accurate PWM periods, and timer clocks, and many others. If more than eight digital clock dividers are required, the UDBs and fixed function timer/counter/PWMs can also generate clocks.
- Four 16-bit clock dividers generate clocks for the analog system components that require clocking, such as ADC and mixers. The analog clock dividers include skew control to ensure that critical analog events do not occur simultaneously with digital switching events. This is done to reduce analog system noise.

Each clock divider consists of an 8-input multiplexer, a 16-bit clock divider (divide by 2 and higher) that generates ~50 percent duty cycle clocks, master clock resynchronization logic, and deglitch logic. The outputs from each digital clock tree can be routed into the digital system interconnect and then brought back into the clock system as an input, allowing clock chaining of up to 32 bits.

6.1.4 USB Clock Domain

The USB clock domain is unique in that it operates largely asynchronously from the main clock network. The USB logic contains a synchronous bus interface to the chip, while running on an asynchronous clock to process USB data. The USB logic requires a 48 MHz frequency. This frequency can be generated from different sources, including DSI clock at 48 MHz or doubled value of 24 MHz from internal oscillator, DSI signal, or crystal oscillator.

6.2 Power System

The power system consists of separate analog, digital, and I/O supply pins, labeled VDDA, VDDD, and VDDIOX, respectively. It also includes two internal 1.8-V regulators that provide the digital (VCCD) and analog (VCCA) supplies for the internal core logic. The output pins of the regulators (VCCD and VCCA) and the VDDIO pins must have capacitors connected as shown in Figure 6-4. The two VCCD pins must be shorted together, with as short a trace as possible, and connected to a 1- μ F ±10-percent X5R capacitor. The power system also contains a sleep regulator, an I²C regulator, and a hibernate regulator.

Figure 6-4. PSoC Power System

Note The two VCCD pins must be connected together with as short a trace as possible. A trace under the device is recommended, as shown in Figure 2-6 on page 9.

You can power the device in internally regulated mode, where the voltage applied to the V_{DDx} pins is as high as 5.5 V, and the internal regulators provide the core voltages. In this mode, do not apply power to the V_{CCx} pins, and do not tie the V_{DDx} pins to the V_{CCx} pins.

You can also power the device in externally regulated mode, that is, by directly powering the V_{CCD} and V_{CCA} pins. In this configuration, the V_{DDD} pins should be shorted to the V_{CCD} pins and the V_{DDA} pin should be shorted to the V_{CCA} pin. The allowed supply range in this configuration is 1.71 V to 1.89 V. After power up in this configuration, the internal regulators are on by default, and should be disabled to reduce power consumption.

7.5 CAN

The CAN peripheral is a fully functional controller area network (CAN) supporting communication baud rates up to 1 Mbps. The CAN controller implements the CAN2.0A and CAN2.0B specifications as defined in the Bosch specification and conforms to the ISO-11898-1 standard. The CAN protocol was originally designed for automotive applications with a focus on a high level of fault detection. This ensures high communication reliability at a low cost. Because of its success in automotive applications, CAN is used as a standard communication protocol for motion oriented machine control networks (CANOpen) and factory automation applications (DeviceNet). The CAN controller features allow the efficient implementation of higher level protocols without affecting the performance of the microcontroller CPU. Full configuration support is provided in PSoC Creator.

Figure 7-14. CAN Bus System Implementation

7.5.1 CAN Features

- CAN2.0A/B protocol implementation ISO 11898 compliant
 Standard and extended frames with up to 8 bytes of data per frame
 - Message filter capabilities
 - □ Remote Transmission Request (RTR) support
 - Programmable bit rate up to 1 Mbps
- Listen Only mode
- SW readable error counter and indicator
- Sleep mode: Wake the device from sleep with activity on the Rx pin
- Supports two or three wire interface to external transceiver (Tx, Rx, and Enable). The three-wire interface is compatible with the Philips PHY; the PHY is not included on-chip. The three wires can be routed to any I/O
- Enhanced interrupt controller
 CAN receive and transmit buffers status
 - CAN controller error status including BusOff

- Receive path
 - □ 16 receive buffers each with its own message filter
 - Enhanced hardware message filter implementation that covers the ID, IDE, and RTR
 - DeviceNet addressing support
 - Multiple receive buffers linkable to build a larger receive message array
 - a Automatic transmission request (RTR) response handler
 - Lost received message notification
- Transmit path
 - Eight transmit buffers
 - Programmable transmit priority
 - Round robin
 - Fixed priority
 - Message transmissions abort capability

7.5.2 Software Tools Support

- CAN Controller configuration integrated into PSoC Creator:
- CAN Configuration walkthrough with bit timing analyzer
- Receive filter setup

Analog local buses (abus) are routing resources located within the analog subsystem and are used to route signals between different analog blocks. There are eight abus routes in CY8C38, four in the left half (abusl [0:3]) and four in the right half (abusr [0:3]) as shown in Figure 8-2. Using the abus saves the analog globals and analog mux buses from being used for interconnecting the analog blocks.

Multiplexers and switches exist on the various buses to direct signals into and out of the analog blocks. A multiplexer can have only one connection on at a time, whereas a switch can have multiple connections on simultaneously. In Figure 8-2, multiplexers are indicated by grayed ovals and switches are indicated by transparent ovals.

8.2 Delta-sigma ADC

The CY8C38 device contains one delta-sigma ADC. This ADC offers differential input, high resolution and excellent linearity, making it a good ADC choice for both audio signal processing and measurement applications. The converter's nominal operation is 16 bits at 48 ksps. The ADC can be configured to output 20-bit resolution at data rates of up to 187 sps. At a fixed clock rate, resolution can be traded for faster data rates as shown in Table 8-1 and Figure 8-3.

Bits	Maximum Sample Rate (sps)	SINAD (dB)
20	187	_
16	48 k	83
12	192 k	66
8	384 k	43

 Table 8-1.
 Delta-sigma ADC Performance

Figure 8-3. Delta-sigma ADC Sample Rates, Range = ±1.024 V

8.2.1 Functional Description

The ADC connects and configures three basic components, input buffer, delta-sigma modulator, and decimator. The basic

block diagram is shown in Figure 8-4. The signal from the input muxes is delivered to the delta-sigma modulator either directly or through the input buffer. The delta-sigma modulator performs the actual analog to digital conversion. The modulator over-samples the input and generates a serial data stream output. This high speed data stream is not useful for most applications without some type of post processing, and so is passed to the decimator through the Analog Interface block. The decimator converts the high speed serial data stream into parallel ADC results. The modulator/decimator frequency response is $[(\sin x)/x]^4$.

Figure 8-4. Delta-sigma ADC Block Diagram

Resolution and sample rate are controlled by the Decimator. Data is pipelined in the decimator; the output is a function of the last four samples. When the input multiplexer is switched, the output data is not valid until after the fourth sample after the switch.

8.2.2 Operational Modes

The ADC can be configured by the user to operate in one of four modes: Single Sample, Multi Sample, Continuous, or Multi Sample (Turbo). All four modes are started by either a write to the start bit in a control register or an assertion of the Start of Conversion (SoC) signal. When the conversion is complete, a status bit is set and the output signal End of Conversion (EoC) asserts high and remains high until the value is read by either the DMA controller or the CPU.

8.2.2.1 Single Sample

In Single Sample mode, the ADC performs one sample conversion on a trigger. In this mode, the ADC stays in standby state waiting for the SoC signal to be asserted. When SoC is signaled the ADC performs four successive conversions. The first three conversions prime the decimator. The ADC result is valid and available after the fourth conversion, at which time the EoC signal is generated. To detect the end of conversion, the system may poll a control register for status or configure the external EoC signal to generate an interrupt or invoke a DMA request. When the transfer is done the ADC reenters the standby state where it stays until another SoC event.

8.2.2.2 Continuous

Continuous sample mode is used to take multiple successive samples of a single input signal. Multiplexing multiple inputs should not be done with this mode. There is a latency of three conversion times before the first conversion result is available. This is the time required to prime the decimator. After the first result, successive conversions are available at the selected sample rate.

11.2 Device Level Specifications

Specifications are valid for -40°C \leq Ta \leq 125°C and Tj \leq 150°C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 11-2. DC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
V _{DDA}	Analog supply voltage and input to analog core regulator	Analog core regulator enabled	1.8	-	5.5	V
V _{DDA}	Analog supply voltage, analog regulator bypassed	Analog core regulator disabled	1.71	1.8	1.89	V
V _{DDD}	Digital supply voltage relative to V _{SSD}	Digital core regulator enabled	1.8	_	V _{DDA} ^[22]	V
V _{DDD}	Digital supply voltage, digital regulator bypassed	Digital core regulator disabled	1.71	1.8	1.89	V
V _{DDIO} ^[23]	I/O supply voltage relative to V _{SSIO}		1.71	-	V _{DDA} ^[22]	V
V _{CCA}	Direct analog core voltage input (Analog regulator bypass)	Analog core regulator disabled	1.71	1.8	1.89	V
V _{CCD}	Direct digital core voltage input (Digital regulator bypass)	Digital core regulator disabled	1.71	1.8	1.89	V

Table 11-2. DC Specifications (continued)

Parameter	Description	Conditions		Min	Тур	Max	Units
	Hibernate Mode ^[28]						
		V _{DD} = V _{DDIO} = 4.5 V–5.5 V	T = -40 °C	-	0.2	1.6	μA
			T = 25 °C	-	0.5	1.5	μA
			T = 85 °C	-	4.1	5.3	μA
	Hibernate mode current All regulators and oscillators off. SRAM retention GPIO interrupts are active SIO Pins in single ended input, unregulated output mode		T = 125 °C	-	6.3	10	μA
		V _{DD} = V _{DDIO} = 2.7 V–3.6 V	T = -40 °C	-	0.2	1.5	μA
			T = 25 °C	-	0.2	1.5	μA
			T = 85 °C	-	3.2	4.2	μA
			T = 125 °C	-	6	10	μA
		$V_{CC} = V_{DDIO} =$	T = -40 °C	-	0.2	1.5	μA
		1.71 V–1.95 V	T = 25 °C	-	0.2	1.5	μA
			T = 85 °C	-	2.8	4.3	μA
			T = 125 °C	-	5.4	10	μA
I _{DDAR}	Analog current consumption	V _{DDA} <u>≤</u> 3.6 V		-	0.3	1	mA
	while device is reset ^[29]	V _{DDA} > 3.6 V		-	1.4	3.3	mA
I _{DDDR}	Digital current consumption while	V _{DDD} <u><</u> 3.6 V		-	1.1	6	mA
	device is reset ^[29]	V _{DDD} > 3.6 V		-	0.7	6	mA
I _{IB}	Input bias current ^[29]		T = 25 °C	-	10	-	pА

Notes

28. If Vccd and Vcca are externally regulated, the voltage difference between Vccd and Vcca must be less than 50 mV.
29. Based on device characterization (not production tested). USBIO pins tied to ground (V_{SSD}).

Figure 11-14. USBIO Output Low Voltage and Current, GPIO Mode

Figure 11-17. Opamp Voffset vs Temperature, Vdda = 5 V

Figure 11-18. Opamp Voffset vs Vcommon and Vdda, 25 °C

Figure 11-19. Opamp Output Voltage vs Load Current and Temperature, High Power Mode, 25 °C, Vdda = 2.7 V

Figure 11-20. Opamp Operating Current vs Vdda and Power Mode

Table 11-16. Opamp AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
GBW	Gain-bandwidth product	Power mode = minimum, 15 pF load	1	-	_	MHz
		Power mode = low, 15 pF load	2	-	-	MHz
		Power mode = medium, 200 pF load	1	-	_	MHz
		Power mode = high, 200 pF load	2.5	-	-	MHz
SR	Slew rate, 20% - 80%	Power mode = low, 15 pF load	1.1	-	-	V/µs
		Power mode = medium, 200 pF load	0.9	-	_	V/µs
		Power mode = high, 200 pF load	3	-	-	V/µs
e _n	Input noise density	Power mode = high, Vdda = 5 V, at 100 kHz	_	45	_	nV/sqrtH z

Figure 11-21. Opamp Noise vs Frequency, Power Mode = High, Vdda = 5 V

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{DD}	Operating current, code = 0	Low speed mode, source mode, range = 31.875 µA	-	44	100	μA
		Low speed mode, source mode, range = 255 μA,	-	33	100	μA
		Low speed mode, source mode, range = 2.04 mA	-	33	100	μA
		Low speed mode, sink mode, range = 31.875 µA	-	36	100	μA
		Low speed mode, sink mode, range = 255 µA	-	33	100	μA
		Low speed mode, sink mode, range = 2.04 mA	-	33	100	μA
		High speed mode, source mode, range = 31.875 μA	-	310	500	μA
		High speed mode, source mode, range = 255 μA	-	305	500	μA
		High speed mode, source mode, range = 2.04 mA	-	305	500	μA
		High speed mode, sink mode, range = 31.875 μΑ	-	310	500	μA
		High speed mode, sink mode, range = 255 μA	-	300	500	μA
		High speed mode, sink mode, range = 2.04 mA	-	300	500	μA

Table 11-28	. IDAC (Current	Digital-to-Analog	J Converter)	DC Specifications	(continued)
-------------	-----------------	-------------------	--------------	-------------------	-------------

Figure 11-32. IDAC INL vs Input Code, Range = 255 µA, Source Mode

11.6 Digital Peripherals

Specifications are valid for -40°C \leq Ta \leq 125°C and Tj \leq 150°C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.6.1 Timer

Table 11-41. Timer DC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
	Block current consumption	16-bit timer, at listed input clock frequency	-	_	_	μA
	3 MHz		-	15	_	μA
	12 MHz		_	60	_	μA
	50 MHz		_	260	-	μA
	67 MHz		-	350	-	μA

Table 11-42. Timer AC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
	Operating frequency	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	DC	-	67 ^[47]	MHz
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	DC	-	50	MHz
	Capture pulse width (Internal)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Capture pulse width (external)	$-40^{\circ}C \le Ta \le 85^{\circ}C$ and $Tj \le 100^{\circ}C$	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns
	Timer resolution	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Enable pulse width	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Enable pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns
	Reset pulse width	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Reset pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns

47. Applicable at -40°C to 85°C; 50 MHz at -40°C to 125°C.

11.6.2 Counter

Table 11-43. Counter DC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
	Block current consumption	16-bit counter, at listed input clock frequency	-	_	-	μA
	3 MHz		_	15	-	μA
	12 MHz		-	60	-	μA
	50 MHz		_	260	_	μA
	67 MHz		_	350	_	μA

Table 11-44. Counter AC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
	Operating frequency	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	DC	-	67 ^[48]	MHz
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	DC	-	50	MHz
	Capture pulse	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Resolution	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Pulse width	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns
	Enable pulse width	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Enable pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns
	Reset pulse width	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Reset pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns

48. Applicable at -40°C to 85°C; 50 MHz at -40°C to 125°C.

11.8 PSoC System Resources

Specifications are valid for -40°C \leq Ta \leq 125°C and Tj \leq 150°C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.8.1 POR with Brown Out

For brown out detect in regulated mode, Vddd and Vdda must be \geq 2.0 V. Brown out detect is available in externally regulated mode. Table 11-67. Precise Power On Reset (PRES) with Brown Out DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
PRESR	Rising trip voltage	Factory trim	1.64	-	1.68	V
PRESF	Falling trip voltage		1.62	-	1.66	V

Table 11-68. Precise Power On Reset (PRES) with Brown Out AC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
PRES_TR	Response time		-	-	0.5	μs
	V _{DDD} /V _{DDA} droop rate	Sleep mode	-	5	-	V/sec

11.8.2 Voltage Monitors

Table 11-69. Voltage Monitors DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
LVI	Trip voltage					
	LVI_A/D_SEL[3:0] = 0000b		1.68	1.73	1.77	V
	LVI_A/D_SEL[3:0] = 0001b		1.89	1.95	2.01	V
	LVI_A/D_SEL[3:0] = 0010b		2.14	2.20	2.27	V
	LVI_A/D_SEL[3:0] = 0011b		2.38	2.45	2.53	V
	LVI_A/D_SEL[3:0] = 0100b		2.62	2.71	2.79	V
	LVI_A/D_SEL[3:0] = 0101b		2.87	2.95	3.04	V
	LVI_A/D_SEL[3:0] = 0110b		3.11	3.21	3.31	V
	LVI_A/D_SEL[3:0] = 0111b		3.35	3.46	3.56	V
	LVI_A/D_SEL[3:0] = 1000b		3.59	3.70	3.81	V
	LVI_A/D_SEL[3:0] = 1001b		3.84	3.95	4.07	V
	LVI_A/D_SEL[3:0] = 1010b		4.08	4.20	4.33	V
	LVI_A/D_SEL[3:0] = 1011b		4.32	4.45	4.59	V
	LVI_A/D_SEL[3:0] = 1100b		4.56	4.70	4.84	V
	LVI_A/D_SEL[3:0] = 1101b		4.83	4.98	5.13	V
	LVI_A/D_SEL[3:0] = 1110b		5.05	5.21	5.37	V
	LVI_A/D_SEL[3:0] = 1111b		5.30	5.47	5.63	V
HVI	Trip voltage		5.57	5.75	5.92	V

Table 11-70. Voltage Monitors AC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
	Response time ^[59]		-	-	1	μs

11.9 Clocking

Specifications are valid for -40°C \leq Ta \leq 125°C and Tj \leq 150°C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.9.1 Internal Main Oscillator

Table 11-75. IMO DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Supply current					
	62.6 MHz		-	-	600	μA
	48 MHz		-	-	500	μA
	24 MHz – USB mode	With oscillator locking to USB bus	-	-	500	μA
	24 MHz – non USB mode		-	-	300	μA
	12 MHz		-	-	200	μA
	6 MHz		-	-	180	μA
	3 MHz		_	_	150	μA

Figure 11-67. IMO Current vs. Frequency

13. Packaging

Table 13-1. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature		-40	25.00	125	°C
TJ	Operating junction temperature		-40	-	150	°C
T _{JA}	Package θ_{JA} (48-pin SSOP)		-	49	_	°C/W
T _{JA}	Package θ_{JA} (100-pin TQFP)		_	34	-	°C/W
T _{JC}	Package θ_{JC} (48-pin SSOP)		-	24	_	°C/W
T _{JC}	Package θ_{JC} (100-pin TQFP)		-	10	_	°C/W

Table 13-2. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
48-pin SSOP	260 °C	30 seconds
100-pin TQFP	260 °C	30 seconds

Table 13-3. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
48-pin SSOP	MSL 3
100-pin TQFP	MSL 3

Figure 13-1. 48-pin SSOP (300 Mils) O483 Package Outline, 51-85061

