

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x20b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	48-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3866pva-021

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Program branching instructions

4.3.1 Instruction Set Summary

4.3.1.1 Arithmetic Instructions

Arithmetic instructions support the direct, indirect, register, immediate constant, and register-specific instructions. Arithmetic modes are used for addition, subtraction, multiplication, division, increment, and decrement operations. Table 4-1 lists the different arithmetic instructions.

Mnemonic	Description	Bytes	Cycles
ADD A,Rn	Add register to accumulator	1	1
ADD A,Direct	Add direct byte to accumulator	2	2
ADD A,@Ri	Add indirect RAM to accumulator	1	2
ADD A,#data	Add immediate data to accumulator	2	2
ADDC A,Rn	Add register to accumulator with carry	1	1
ADDC A, Direct	Add direct byte to accumulator with carry	2	2
ADDC A,@Ri	Add indirect RAM to accumulator with carry	1	2
ADDC A,#data	Add immediate data to accumulator with carry	2	2
SUBB A,Rn	Subtract register from accumulator with borrow	1	1
SUBB A, Direct	Subtract direct byte from accumulator with borrow	2	2
SUBB A,@Ri	Subtract indirect RAM from accumulator with borrow	1	2
SUBB A,#data	Subtract immediate data from accumulator with borrow	2	2
INC A	Increment accumulator	1	1
INC Rn	Increment register	1	2
INC Direct	Increment direct byte	2	3
INC @Ri	Increment indirect RAM	1	3
DEC A	Decrement accumulator	1	1
DEC Rn	Decrement register	1	2
DEC Direct	Decrement direct byte	2	3
DEC @Ri	Decrement indirect RAM	1	3
INC DPTR	Increment data pointer	1	1
MUL	Multiply accumulator and B	1	2
DIV	Divide accumulator by B	1	6
DAA	Decimal adjust accumulator	1	3

Table 4-1. Arithmetic Instructions

Table 4-3. Data Transfer Instructions

Mn	nemonic	Description	Bytes	Cycles
MOV A,F	٦n	Move register to accumulator	1	1
MOV A,E	Direct	Move direct byte to accumulator	2	2
MOV A,@	@Ri	Move indirect RAM to accumulator	1	2
MOV A,#	#data	Move immediate data to accumulator	2	2
MOV Rn	ı,A	Move accumulator to register	1	1
MOV Rn	,Direct	Move direct byte to register	2	3
MOV Rn	i, #data	Move immediate data to register	2	2
MOV Dir	rect, A	Move accumulator to direct byte	2	2
MOV Dir	rect, Rn	Move register to direct byte	2	2
MOV Dir	rect, Direct	Move direct byte to direct byte	3	3
MOV Dir	rect, @Ri	Move indirect RAM to direct byte	2	3
MOV Dir	rect, #data	Move immediate data to direct byte	3	3
MOV @F	Ri, A	Move accumulator to indirect RAM	1	2
MOV @F	Ri, Direct	Move direct byte to indirect RAM	2	3
MOV @F	Ri, #data	Move immediate data to indirect RAM	2	2
MOV DP	PTR, #data16	Load data pointer with 16 bit constant	3	3
MOVC A,	@A+DPTR	Move code byte relative to DPTR to accumulator	1	5
MOVC A,	@A + PC	Move code byte relative to PC to accumulator	1	4
MOVX A,(@Ri	Move external RAM (8-bit) to accumulator	1	4
MOVX A,	@DPTR	Move external RAM (16-bit) to accumulator	1	3
MOVX @I	Ri, A	Move accumulator to external RAM (8-bit)	1	5
MOVX @I	DPTR, A	Move accumulator to external RAM (16-bit)	1	4
PUSH Dire	rect	Push direct byte onto stack	2	3
POP Dir	rect	Pop direct byte from stack	2	2
XCH A,	Rn	Exchange register with accumulator	1	2
XCH A,	Direct	Exchange direct byte with accumulator	2	3
XCH A,	@Ri	Exchange indirect RAM with accumulator	1	3
XCHD A,	@Ri	Exchange low order indirect digit RAM with accumulator	1	3

Table 4-4. Boolean Instructions

Mnemonic	Description	Bytes	Cycles
CLR C	Clear carry	1	1
CLR bit	Clear direct bit	2	3
SETB C	Set carry	1	1
SETB bit	Set direct bit	2	3
CPL C	Complement carry	1	1
CPL bit	Complement direct bit	2	3
ANL C, bit	AND direct bit to carry	2	2

6.2.1 Power Modes

PSoC 3 devices have four different power modes, as shown in Table 6-2 and Table 6-3. The power modes allow a design to easily provide required functionality and processing power while simultaneously minimizing power consumption and maximizing battery life in low-power and portable devices.

PSoC 3 power modes, in order of decreasing power consumption are:

- Active
- Alternate Active
- Sleep
- Hibernate

Active is the main processing mode. Its functionality is configurable. Each power controllable subsystem is enabled or disabled by using separate power configuration template registers. In alternate active mode, fewer subsystems are enabled, reducing power. In sleep mode most resources are disabled regardless of the template settings. Sleep mode is optimized to provide timed sleep intervals and Real Time Clock functionality. The lowest power mode is hibernate, which retains register and SRAM state, but no clocks, and allows wakeup only from I/O pins. Figure 6-5 on page 31 illustrates the allowable transitions between power modes. Sleep and hibernate modes should not be entered until all VDDIO supplies are at valid voltage levels.

Power Modes	Description	Entry Condition	Wakeup Source	Active Clocks	Regulator
Active	Primary mode of operation, all peripherals available (programmable)	Wakeup, reset, manual register entry	Any interrupt	Any (programmable)	All regulators available. Digital and analog regulators can be disabled if external regulation used.
Alternate Active	Similar to Active mode, and is typically configured to have fewer peripherals active to reduce power. One possible configuration is to use the UDBs for processing, with the CPU turned off	Manual register entry	Any interrupt	Any (programmable)	All regulators available. Digital and analog regulators can be disabled if external regulation used.
Sleep	All subsystems automatically disabled	Manual register entry	Comparator, PICU, I ² C, RTC, CTW, LVD	ILO/kHzECO	Both digital and analog regulators buzzed. Digital and analog regulators can be disabled if external regulation used.
Hibernate	All subsystems automatically disabled Lowest power consuming mode with all peripherals and internal regulators disabled, except hibernate regulator is enabled Configuration and memory contents retained	Manual register entry	PICU		Only hibernate regulator active.

Table 6-2. Power Modes

Table 6-3. Power Modes Wakeup Time and Power Consumption

Sleep Modes	Wakeup Time	Current (typ)	Code Execution	Digital Resources	Analog Resources	Clock Sources Available	Wakeup Sources	Reset Sources
Active	-	1.2 mA ^[12]	Yes	All	All	All	-	All
Alternate Active	_	-	User defined	All	All	All	-	All
Sleep	<15 µs	1 μΑ	No	l ² C	Comparator	ILO/kHzECO	Comparator, PICU, I ² C, RTC, CTW, LVD	XRES, LVD, WDR
Hibernate	<100 µs	200 nA	No	None	None	None	PICU	XRES

Note

12. Bus clock off. Execute from cache at 6 MHz. See Table 11-2 on page 66.

6.4 I/O System and Routing

PSoC I/Os are extremely flexible. Every GPIO has analog and digital I/O capability. All I/Os have a large number of drive modes, which are set at POR. PSoC also provides up to four individual I/O voltage domains through the VDDIO pins.

There are two types of I/O pins on every device; those with USB provide a third type. Both GPIO and SIO provide similar digital functionality. The primary differences are their analog capability and drive strength. Devices that include USB also provide two USBIO pins that support specific USB functionality as well as limited GPIO capability.

All I/O pins are available for use as digital inputs and outputs for both the CPU and digital peripherals. In addition, all I/O pins can generate an interrupt. The flexible and advanced capabilities of the PSoC I/O, combined with any signal to any pin routability, greatly simplify circuit design and board layout. All GPIO pins can be used for analog input, CapSense^[13], and LCD segment drive, while SIO pins are used for voltages in excess of VDDA and for programmable output voltages.

- Features supported by both GPIO and SIO:
 - User programmable port reset state
 - Separate I/O supplies and voltages for up to four groups of I/O
 - Digital peripherals use DSI to connect the pins
 - □ Input or output or both for CPU and DMA
 - Eight drive modes
 - Every pin can be an interrupt source configured as rising edge, falling edge or both edges. If required, level sensitive interrupts are supported through the DSI
 - Dedicated port interrupt vector for each port

- Slew rate controlled digital output drive mode
- Access port control and configuration registers on either port basis or pin basis
- Separate port read (PS) and write (DR) data registers to avoid read modify write errors
- □ Special functionality on a pin by pin basis
- Additional features only provided on the GPIO pins:
 LCD segment drive on LCD equipped devices
 - □ CapSense^[13]
 - Analog input and output capability
 - □ Continuous 100 µA clamp current capability
 - □ Standard drive strength down to 1.7 V
- Additional features only provided on SIO pins:
 - Higher drive strength than GPIO
 - Hot swap capability (5 V tolerance at any operating V_{DD})
 - Programmable and regulated high input and output drive levels down to 1.2 V
 - □ No analog input, CapSense, or LCD capability
 - Dver voltage tolerance up to 5.5 V
- □ SIO can act as a general purpose analog comparator
- USBIO features:
 - □ Full speed USB 2.0 compliant I/O
 - Highest drive strength for general purpose use
 - □ Input, output, or both for CPU and DMA
 - □ Input, output, or both for digital peripherals
 - Digital output (CMOS) drive mode
 - Each pin can be an interrupt source configured as rising edge, falling edge, or both edges

^{13.} GPIOs with opamp outputs are not recommended for use with CapSense.

7.1.3 Example System Function Components

The following is a sample of the system function components available in PSoC Creator for the CY8C38 family. The exact amount of hardware resources (UDBs, DFB taps, SC/CT blocks, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- CapSense
- LCD drive
- LCD control
- Filters

7.1.4 Designing with PSoC Creator

7.1.4.1 More Than a Typical IDE

A successful design tool allows for the rapid development and deployment of both simple and complex designs. It reduces or eliminates any learning curve. It makes the integration of a new design into the production stream straightforward.

PSoC Creator is that design tool.

PSoC Creator is a full featured Integrated Development Environment (IDE) for hardware and software design. It is optimized specifically for PSoC devices and combines a modern, powerful software development platform with a sophisticated graphical design tool. This unique combination of tools makes PSoC Creator the most flexible embedded design platform available.

Graphical design entry simplifies the task of configuring a particular part. You can select the required functionality from an extensive catalog of components and place it in your design. All components are parameterized and have an editor dialog that allows you to tailor functionality to your needs.

PSoC Creator automatically configures clocks and routes the I/O to the selected pins and then generates APIs to give the application complete control over the hardware. Changing the PSoC device configuration is as simple as adding a new component, setting its parameters, and rebuilding the project.

At any stage of development you are free to change the hardware configuration and even the target processor. To retarget your application (hardware and software) to new devices, even from 8- to 32-bit families, just select the new device and rebuild.

You also have the ability to change the C compiler and evaluate an alternative. Components are designed for portability and are validated against all devices, from all families, and against all supported tool chains. Switching compilers is as easy as editing the from the project options and rebuilding the application with no errors from the generated APIs or boot code.

7.1.4.2 Component Catalog

The component catalog is a repository of reusable design elements that select device functionality and customize your PSoC device. It is populated with an impressive selection of content; from simple primitives such as logic gates and device registers, through the digital timers, counters and PWMs, plus analog components such as ADC, DACs, and filters, and communication protocols, such as I²C, USB, and CAN. See Example Peripherals on page 40 for more details about available peripherals. All content is fully characterized and carefully documented in data sheets with code examples, AC/DC specifications, and user code ready APIs.

7.1.4.3 Design Reuse

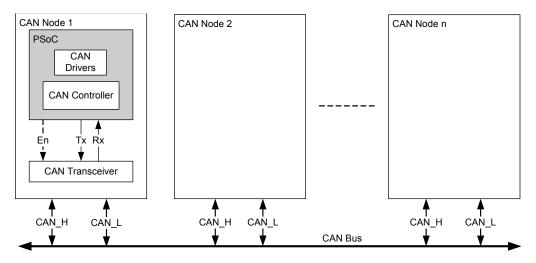
The symbol editor gives you the ability to develop reusable components that can significantly reduce future design time. Just draw a symbol and associate that symbol with your proven design. PSoC Creator allows for the placement of the new symbol anywhere in the component catalog along with the content provided by Cypress. You can then reuse your content as many times as you want, and in any number of projects, without ever having to revisit the details of the implementation.

7.1.4.4 Software Development

Anchoring the tool is a modern, highly customizable user interface. It includes project management and integrated editors for C and assembler source code, as well the design entry tools.

Project build control leverages compiler technology from top commercial vendors such as ARM[®] Limited, Keil[™], and CodeSourcery (GNU). Free versions of Keil C51 and GNU C Compiler (GCC) for ARM, with no restrictions on code size or end product distribution, are included with the tool distribution. Upgrading to more optimizing compilers is a snap with support for the professional Keil C51 product and ARM RealView[™] compiler.

7.1.4.5 Nonintrusive Debugging


With JTAG (4-wire) and SWD (2-wire) debug connectivity available on all devices, the PSoC Creator debugger offers full control over the target device with minimum intrusion. Breakpoints and code execution commands are all readily available from toolbar buttons and an impressive lineup of windows—register, locals, watch, call stack, memory and peripherals—make for an unparalleled level of visibility into the system.

PSoC Creator contains all the tools necessary to complete a design, and then to maintain and extend that design for years to come. All steps of the design flow are carefully integrated and optimized for ease-of-use and to maximize productivity.

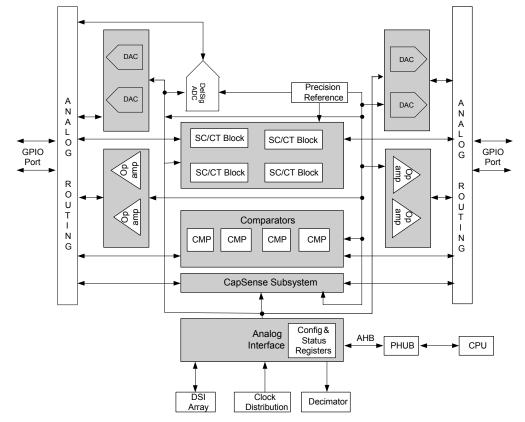
7.5 CAN

The CAN peripheral is a fully functional controller area network (CAN) supporting communication baud rates up to 1 Mbps. The CAN controller implements the CAN2.0A and CAN2.0B specifications as defined in the Bosch specification and conforms to the ISO-11898-1 standard. The CAN protocol was originally designed for automotive applications with a focus on a high level of fault detection. This ensures high communication reliability at a low cost. Because of its success in automotive applications, CAN is used as a standard communication protocol for motion oriented machine control networks (CANOpen) and factory automation applications (DeviceNet). The CAN controller features allow the efficient implementation of higher level protocols without affecting the performance of the microcontroller CPU. Full configuration support is provided in PSoC Creator.

Figure 7-14. CAN Bus System Implementation

7.5.1 CAN Features

- CAN2.0A/B protocol implementation ISO 11898 compliant
 Standard and extended frames with up to 8 bytes of data per frame
 - Message filter capabilities
 - □ Remote Transmission Request (RTR) support
 - Programmable bit rate up to 1 Mbps
- Listen Only mode
- SW readable error counter and indicator
- Sleep mode: Wake the device from sleep with activity on the Rx pin
- Supports two or three wire interface to external transceiver (Tx, Rx, and Enable). The three-wire interface is compatible with the Philips PHY; the PHY is not included on-chip. The three wires can be routed to any I/O
- Enhanced interrupt controller
 CAN receive and transmit buffers status
 - CAN controller error status including BusOff


- Receive path
 - □ 16 receive buffers each with its own message filter
 - Enhanced hardware message filter implementation that covers the ID, IDE, and RTR
 - DeviceNet addressing support
 - Multiple receive buffers linkable to build a larger receive message array
 - a Automatic transmission request (RTR) response handler
 - Lost received message notification
- Transmit path
 - Eight transmit buffers
 - Programmable transmit priority
 - Round robin
 - Fixed priority
 - Message transmissions abort capability

7.5.2 Software Tools Support

- CAN Controller configuration integrated into PSoC Creator:
- CAN Configuration walkthrough with bit timing analyzer
- Receive filter setup

Figure 8-1. Analog Subsystem Block Diagram

The PSoC Creator software program provides a user friendly interface to configure the analog connections between the GPIO and various analog resources and connections from one analog resource to another. PSoC Creator also provides component libraries that allow you to configure the various analog blocks to perform application specific functions (PGA, transimpedance amplifier, voltage DAC, current DAC, and so on). The tool also generates API interface libraries that allow you to write firmware that allows the communication between the analog peripheral and CPU/Memory.

8.1 Analog Routing

The CY8C38 family of devices has a flexible analog routing architecture that provides the capability to connect GPIOs and different analog blocks, and also route signals between different analog blocks. One of the strong points of this flexible routing architecture is that it allows dynamic routing of input and output connections to the different analog blocks.

For information on how to make pin selections for optimal analog routing, refer to the application note, AN58304 - PSoC® 3 and PSoC® 5 - Pin Selection for Analog Designs.

8.1.1 Features

- Flexible, configurable analog routing architecture
- 16 analog globals (AG) and two analog mux buses (AMUXBUS) to connect GPIOs and the analog blocks
- Each GPIO is connected to one analog global and one analog mux bus
- Eight analog local buses (abus) to route signals between the different analog blocks
- Multiplexers and switches for input and output selection of the analog blocks

8.1.2 Functional Description

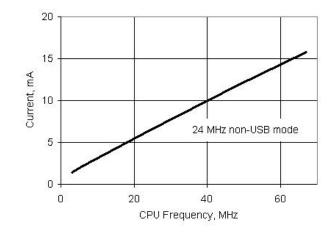
Analog globals (AGs) and analog mux buses (AMUXBUS) provide analog connectivity between GPIOs and the various analog blocks. There are 16 AGs in the CY8C38 family. The analog routing architecture is divided into four quadrants as shown in Figure 8-2. Each quadrant has four analog globals (AGL[0..3], AGL[4..7], AGR[0..3], AGR[4..7]). Each GPIO is connected to the corresponding AG through an analog switch. The analog mux bus is a shared routing resource that connects to every GPIO through an analog switch. There are two AMUXBUS routes in CY8C38, one in the left half (AMUXBUSL) and one in the right half (AMUXBUSR), as shown in Figure 8-2 on page 53.

Table 11-2. DC Specifications (continued)

Parameter	Description	Conditions	Min	Тур	Мах	Units
ldd ^[24, 25]	Active Mode, VDD = 1.71 V - 5.	5 V				
	Execute from CPU instruction buffer, see Flash Program Memory on page 21					
	CPU at 3 MHz	T = -40 °C	-	1.3	2.9	mA
		T = 25 °C	-	1.6	3.2	mA
		T = 85 °C	-	4.8	7.5	mA
		T = 125 °C	-	4.9	7.7	mA
	CPU at 6 MHz	T = -40 °C	-	2.1	3.7	mA
		T = 25 °C	-	2.3	3.9	mA
		T = 85 °C	-	5.6	8.5	mA
		T = 125 °C	-	5.8	8.7	mA
	CPU at 12 MHz	T = -40 °C	-	3.5	5.2	mA
		T = 25 °C	-	3.8	5.5	mA
		T = 85 °C	-	7.1	9.8	mA
		T = 125 °C	-	9.0	10	mA
	CPU at 24 MHz	T = -40 °C	-	6.3	8.1	mA
		T = 25 °C	-	6.6	8.3	mA
		T = 85 °C	-	10	13	mA
		T = 125 °C	-	12	14	mA
	CPU at 48 MHz	T = -40 °C	-	11.5	13.5	mA
		T = 25 °C	-	12	14	mA
		T = 85 °C	-	15.5	18.5	mA
		T = 125 °C	-	16.5	19	mA
	CPU at 62 MHz	T = -40 °C	-	16	18	mA
		T = 25 °C	_	16	18	mA
		T = 85 °C	_	19.5	23	mA
		T = 125 °C	_	20	24	mA

Notes

24. The current consumption of additional peripherals that are implemented only in programmed logic blocks can be found in their respective data sheets, available in PSoC Creator, the integrated design environment. To compute total current, find CPU current at frequency of interest and add peripheral currents for your particular system from the device data sheet and component data sheets.
 25. Total current for all power domains: digital (I_{DDD}), analog (I_{DDA}), and I/Os (I_{DDIO0, 1, 2, 3}). All I/Os floating.


Table 11-2. DC Specifications (continued)

Parameter	Description	Conditions		Min	Тур	Max	Units
	Hibernate Mode ^[28]						
		V _{DD} = V _{DDIO} = 4.5 V–5.5 V	T = -40 °C	-	0.2	1.6	μA
			T = 25 °C	-	0.5	1.5	μA
			T = 85 °C	-	4.1	5.3	μA
			T = 125 °C	-	6.3	10	μA
	Hibernate mode current All regulators and oscillators off.	V _{DD} = V _{DDIO} = 2.7 V–3.6 V	T = -40 °C	-	0.2	1.5	μA
	SRAM retention GPIO interrupts are active		T = 25 °C	-	0.2	1.5	μA
			T = 85 °C	-	3.2	4.2	μA
	SIO Pins in single ended input, unregulated output mode		T = 125 °C	-	6	10	μA
		V _{CC} = V _{DDIO} = 1.71 V–1.95 V	T = -40 °C	-	0.2	1.5	μA
		1.71 V–1.95 V	T = 25 °C	-	0.2	1.5	μA
			T = 85 °C	-	2.8	4.3	μA
			T = 125 °C	-	5.4	10	μA
I _{DDAR}	Analog current consumption while device is reset ^[29]	V _{DDA} <u>≤</u> 3.6 V		-	0.3	1	mA
	while device is reset ^[29]	V _{DDA} > 3.6 V		-	1.4	3.3	mA
IDDDR	Digital current consumption while device is reset ^[29]	V _{DDD} <u><</u> 3.6 V		-	1.1	6	mA
	device is reset ^[29]	V _{DDD} > 3.6 V		-	0.7	6	mA
I _{IB}	Input bias current ^[29]		T = 25 °C	-	10	-	pА

Notes

28. If Vccd and Vcca are externally regulated, the voltage difference between Vccd and Vcca must be less than 50 mV.
29. Based on device characterization (not production tested). USBIO pins tied to ground (V_{SSD}).

Figure 11-1. Active Mode Current vs F_{CPU} , V_{DD} = 3.3 V, Temperature = 25 °C

Figure 11-6. GPIO Output High Voltage and Current

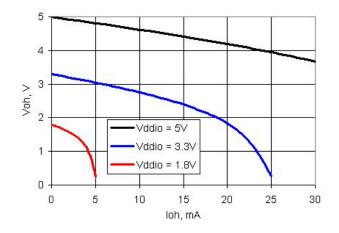
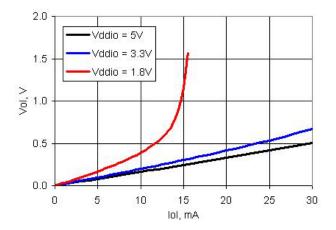



Figure 11-7. GPIO Output Low Voltage and Current

11.4.4 XRES

Table 11-13. XRES DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Vih	Input voltage high threshold	CMOS Input, PRT[x]CTL = 0	$0.7 \times Vddio$	-	-	V
Vil	Input voltage low threshold	CMOS Input, PRT[x]CTL = 0	-	-	$0.3 \times Vddio$	V
Rpullup	Pull up resistor		3.5	5.6	8.5	kΩ
Cin	Input capacitance ^[30]		-	3	-	pF
Vh	Input voltage hysteresis (Schmitt-Trigger) ^[30]		-	100	-	mV
ldiode	Current through protection diode to Vddio and Vssio		-	-	100	μA

Table 11-14. XRES AC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
Treset	Reset pulse width		1	-	-	μs

Figure 11-44. IDAC PSRR vs Frequency

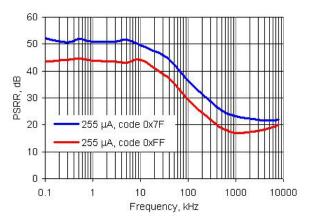


Figure 11-45. IDAC Current Noise, 255 µA Mode, Source Mode, High speed mode, Vdda = 5 V

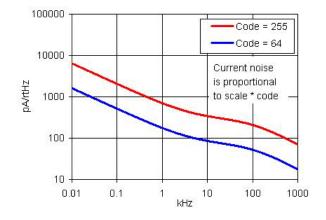
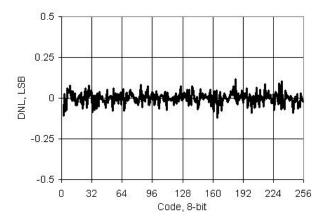



Figure 11-47. VDAC DNL vs Input Code, 1 V Mode

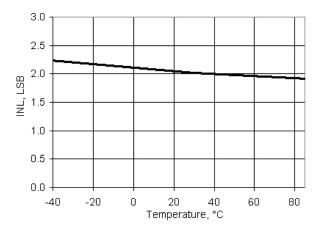
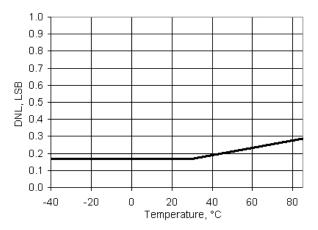
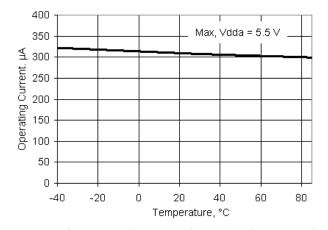




Figure 11-49. VDAC DNL vs Temperature, 1 V Mode

11.5.9 Transimpedance Amplifier

The TIA is created using a SC/CT Analog Block, see the TIA component data sheet in PSoC Creator for full AC/DC specifications, and APIs and example code.

Table 11-34. Transimpedance Amplifier (TIA) DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Vioff	Input offset voltage		-	-	10	mV
	Conversion resistance ^[46]	·				
	R = 20K	40 pF load	-25	-	+35	%
	R = 30K	40 pF load	-25	-	+35	%
	R = 40K	40 pF load	-25	-	+35	%
Rconv	R = 80K	40 pF load	-25	-	+35	%
	R = 120K	40 pF load	-25	-	+35	%
	R = 250K	40 pF load	-25	-	+35	%
	R= 500K	40 pF load	-25	-	+35	%
	R = 1M	40 pF load	-25	-	+35	%
	Quiescent current		_	1.1	2	mA

Table 11-35. Transimpedance Amplifier (TIA) AC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
BW	Input bandwidth (–3 dB)	R = 20K; –40 pF load	1000	-	-	kHz
		R = 120K;	220	-	-	kHz
		R = 1M; –40 pF load	25	-	-	kHz

^{46.} Conversion resistance values are not calibrated. Calibrated values and details about calibration are provided in PSoC Creator component data sheets. External precision resistors can also be used.

11.7.2 EEPROM

Table 11-57. EEPROM DC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
	Erase and program voltage		1.71	-	5.5	V

Table 11-58. EEPROM AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
T _{WRITE}	Single row erase/write cycle time		_	2	20	ms
	EEPROM data retention time, retention period measured from last erase cycle	Average ambient temp, T _A ≤ 25 °C, 1M erase/program cycles	20	-	-	years
		Average ambient temp, T _A ≤ 55 °C, 100 K erase/program cycles	20	-	-	
		Average ambient temp. T _A ≤ 85 °C, 10 K erase/program cycles	10	-	-	

11.7.3 Nonvolatile Latches (NVL)

Table 11-59. NVL DC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
	Erase and program voltage	Vddd pin	1.71	-	5.5	V

Table 11-60. NVL AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	NVL endurance	Programmed at 25°C	1K	-	-	program/ erase cycles
		Programmed at 0-70°C	100	-	-	program/ erase cycles
	NVL data retention time	Programmed at 55°C	20	-	-	years
		Programmed at 0-70°C	10	-	-	years

11.7.4 SRAM

Table 11-61. SRAM DC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
Vsram	SRAM retention voltage		1.2	-	-	V

Table 11-62. SRAM AC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
Fsram	SRAM operating frequency	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	DC	-	67	MHz
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	DC	-	50	MHz

14. Acronyms

Table 14-1. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
АНВ	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
ARM [®]	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
EMIF	external memory interface
EOC	end of conversion
EOF	end of frame
EPSR	execution program status register
ESD	electrostatic discharge
ETM	embedded trace macrocell

Table 14-1. Acronyms Used in this Document (continued)

Acronym	Description
FIR	finite impulse response, see also IIR
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output, applies to a PSoC pin
HVI	high-voltage interrupt, see also LVI, LVD
IC	integrated circuit
IDAC	current DAC, see also DAC, VDAC
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
lir	infinite impulse response, see also FIR
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
INL	integral nonlinearity, see also DNL
I/O	input/output, see also GPIO, DIO, SIO, USBIO
IPOR	initial power-on reset
IPSR	interrupt program status register
IRQ	interrupt request
ITM	instrumentation trace macrocell
LCD	liquid crystal display
LIN	Local Interconnect Network, a communications protocol.
LR	link register
LUT	lookup table
LVD	low-voltage detect, see also LVI
LVI	low-voltage interrupt, see also HVI
LVTTL	low-voltage transistor-transistor logic
MAC	multiply-accumulate
MCU	microcontroller unit
MISO	master-in slave-out
NC	no connect
NMI	nonmaskable interrupt
NRZ	non-return-to-zero
NVIC	nested vectored interrupt controller
NVL	nonvolatile latch, see also WOL
opamp	operational amplifier
PAL	programmable array logic, see also PLD
PC	program counter
РСВ	printed circuit board
PGA	programmable gain amplifier

16. Document Conventions

16.1 Units of Measure

Table 16-1. Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
dB	decibels
fF	femtofarads
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohours
kHz	kilohertz
kΩ	kilohms
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	megaohms
Msps	megasamples per second
μA	microamperes
μF	microfarads
μH	microhenrys
μs	microseconds
μV	microvolts
μW	microwatts
mA	milliamperes
ms	milliseconds
mV	millivolts
nA	nanoamperes
ns	nanoseconds
nV	nanovolts
Ω	ohms
pF	picofarads
ppm	parts per million
ps	picoseconds
S	seconds
sps	samples per second
sqrtHz	square root of hertz
V	volts

17. Revision History (continued)

Rev. *H (cont.) 4	ECN 4094193	Submission Date 08/30/2013	Orig. of Change NFB / ANMD	Description of Change Updated Electrical Specifications: Updated Device Level Specifications: Updated Table 11-2. Updated Table 11-3. Updated Inputs and Outputs: Updated GPIO: Updated Table 11-7. Removed figure "GPIO Output Rise and Fall Times, Fast Strong Mode, V _{DDIO} = 3.3 V, 25 pF Load" and figure "GPIO Output Rise and Fall Times, Slow Strong Mode, V _{DDIO} = 3.3 V, 25 pF Load". Updated Analog Peripherals: Updated Delta-Sigma ADC: Updated Table 11-17.
*H (cont.) 4	4094193	08/30/2013		Updated Device Level Specifications: Updated Table 11-2. Updated Table 11-3. Updated Inputs and Outputs: Updated GPIO: Updated Table 11-7. Removed figure "GPIO Output Rise and Fall Times, Fast Strong Mode, V _{DDIO} = 3.3 V, 25 pF Load" and figure "GPIO Output Rise and Fall Times, Slow Strong Mode, V _{DDIO} = 3.3 V, 25 pF Load". Updated Analog Peripherals: Updated Delta-Sigma ADC:
				Updated Table 11-18. Updated Voltage Reference: Updated Table 11-24. Updated IDAC: Updated Table 11-28. Updated Memory: Updated Flash: Updated Table 11-56. Updated Clocking: Updated Internal Main Oscillator: Updated Internal Main Oscillator: Updated Table 11-76. Updated Packaging: spec 51-85048 – Changed revision from *G to *H. Updated in new template. Completing Sunset Review.
*1 4	4174912	10/26/2013	NFB / ANMD	Updated Pinouts: Added Note 8 and referred the same note in 100 mA in description. Updated Electrical Specifications: Updated Absolute Maximum Ratings: Updated Table 11-1. Added Note 18 and referred the same note in Table 11-1. Added Note 20 and referred the same note in Ivddio parameter in Table 11-1 Updated Device Level Specifications: Updated Table 11-2. Updated Analog Peripherals: Updated Opamp: Updated Table 11-15. Updated Voltage Reference: Updated Table 11-24. Updated Packaging:
*J 4	4188568	11/14/2013	WKA	Updated Table 13-1. No content update.