

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	CapSense, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x20b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	48-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3866pva-047

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

For more details on the peripherals see the "Example Peripherals" section on page 40 of this data sheet. For information on UDBs, DSI, and other digital blocks, see the "Digital Subsystem" section on page 40 of this data sheet.

PSoC's analog subsystem is the second half of its unique configurability. All analog performance is based on a highly accurate absolute voltage reference with less than 0.1-percent error over temperature and voltage. The configurable analog subsystem includes:

- Analog muxes
- Comparators
- Voltage references
- Analog-to-digital converter (ADC)
- Digital-to-analog converters (DACs)
- Digital filter block (DFB)

All GPIO pins can route analog signals into and out of the device using the internal analog bus. This allows the device to interface up to 62 discrete analog signals. The heart of the analog subsystem is a fast, accurate, configurable delta-sigma ADC with these features ^[5]:

- Less than 100 µV offset
- A gain error of 0.2 percent
- INL less than ±2 LSB
- DNL less than ±1 LSB
- SINAD better than 83 dB in 16-bit mode

This converter addresses a wide variety of precision analog applications, including some of the most demanding sensors. The output of the ADC can optionally feed the programmable DFB through the DMA without CPU intervention. You can configure the DFB to perform IIR and FIR digital filters and several user-defined custom functions. The DFB can implement filters with up to 64 taps. It can perform a 48-bit multiply-accumulate (MAC) operation in one clock cycle.

Four high-speed voltage or current DACs support 8-bit output signals at an update rate of up to 8 Msps. They can be routed out of any GPIO pin. You can create higher resolution voltage PWM DAC outputs using the UDB array. This can be used to create a pulse width modulated (PWM) DAC of up to 10 bits, at up to 48 kHz. The digital DACs in each UDB support PWM, PRS, or delta-sigma algorithms with programmable widths. In addition to the ADC, DACs, and DFB, the analog subsystem provides multiple:

- Uncommitted opamps
- Configurable switched capacitor/continuous time (SC/CT) blocks. These support:
 - Transimpedance amplifiers
 - Deprogrammable gain amplifiers
 - Mixers
 - Dother similar analog components

See the "Analog Subsystem" section on page 51 of this data sheet for more details.

PSoC's 8051 CPU subsystem is built around a single cycle pipelined 8051 8-bit processor running at up to 67 MHz. The CPU subsystem includes a programmable nested vector interrupt controller, DMA controller, and RAM. PSoC's nested vector interrupt controller provides low latency by allowing the CPU to vector directly to the first address of the interrupt service routine, bypassing the jump instruction required by other architectures. The DMA controller enables peripherals to exchange data without CPU involvement. This allows the CPU to run slower (saving power) or use those CPU cycles to improve the performance of firmware algorithms. The single cycle 8051 CPU runs ten times faster than a standard 8051 processor. The processor speed itself is configurable, allowing you to tune active power consumption for specific applications.

PSoC's nonvolatile subsystem consists of flash, byte-writeable EEPROM, and nonvolatile configuration options. It provides up to 64 KB of on-chip flash. The CPU can reprogram individual blocks of flash, enabling bootloaders. You can enable an error correcting code (ECC) for high reliability applications. A powerful and flexible protection model secures the user's sensitive information, allowing selective memory block locking for read and write protection. Up to 2 KB of byte-writeable EEPROM is available on-chip to store application data. Additionally, selected configuration options such as boot speed and pin drive mode are stored in nonvolatile memory. This allows settings to activate immediately after POR.

The three types of PSoC I/O are extremely flexible. All I/Os have many drive modes that are set at POR. PSoC also provides up to four I/O voltage domains through the VDDIO pins. Every GPIO has analog I/O, LCD drive^[6], CapSense^[7], flexible interrupt generation, slew rate control, and digital I/O capability. The SIOs on PSoC allow V_{OH} to be set independently of Vddio when used as outputs. When SIOs are in input mode they are high impedance. This is true even when the device is not powered or when the pin voltage goes above the supply voltage. This makes the SIO ideally suited for use on an I²C bus where the PSoC may not be powered when other devices on the bus are. The SIO pins also have high current sink capability for applications such as LED drives. The programmable input threshold feature of the SIO can be used to make the SIO function as a general purpose analog comparator. For devices with Full-Speed USB the USB physical interface is also provided (USBIO). When not using USB these pins may also be used for limited digital functionality and device programming. All of the features of the PSoC I/Os are covered in detail in the "I/O System and Routing" section on page 33 of this data sheet.

The PSoC device incorporates flexible internal clock generators, designed for high stability and factory trimmed for high accuracy. The internal main oscillator (IMO) is the clock base for the system, and has 1-percent accuracy at 3 MHz. The IMO can be configured to run from 3 MHz up to 62 MHz. Multiple clock derivatives can be generated from the main clock frequency to meet application needs. The device provides a PLL to generate clock frequencies up to 67 MHz from the IMO, external crystal, or external reference clock.

Notes

^{5.} Refer Electrical Specifications on page 65 for the detailed ADC specification across entire voltage range and temperature.

^{6.} This feature on select devices only. See Ordering Information on page 135 for details.

^{7.} GPIOs with opamp outputs are not recommended for use with CapSense.

Table 4-4. Boolean Instructions (continued)

Mnemonic	Description	Bytes	Cycles
ANL C, /bit	AND complement of direct bit to carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to carry	2	2
MOV C, bit	Move direct bit to carry	2	2
MOV bit, C	Move carry to direct bit	2	3
JC rel	Jump if carry is set	2	3
JNC rel	Jump if no carry is set	2	3
JB bit, rel	Jump if direct bit is set	3	5
JNB bit, rel	Jump if direct bit is not set	3	5
JBC bit, rel	Jump if direct bit is set and clear bit	3	5

5.7 Memory Map

The CY8C38 8051 memory map is very similar to the MCS-51 memory map.

5.7.1 Code Space

The CY8C38 8051 code space is 64 KB. Only main flash exists in this space. See the Flash Program Memory on page 21.

5.7.2 Internal Data Space

The CY8C38 8051 internal data space is 384 bytes, compressed within a 256-byte space. This space consists of 256 bytes of RAM (in addition to the SRAM mentioned in Static RAM on page 21) and a 128-byte space for special function registers (SFR). See Figure 5-2. The lowest 32 bytes are used for 4 banks of registers R0-R7. The next 16 bytes are bit-addressable.

Figure 5-2. 8051 Internal Data Space

In addition to the register or bit address modes used with the lower 48 bytes, the lower 128 bytes can be accessed with direct or indirect addressing. With direct addressing mode, the upper 128 bytes map to the SFRs. With indirect addressing mode, the upper 128 bytes map to RAM. Stack operations use indirect addressing; the 8051 stack space is 256 bytes. See the "Addressing Modes" section on page 10.

5.7.3 SFRs

The SFR space provides access to frequently accessed registers. The memory map for the SFR memory space is shown in Table 5-4.

Address	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
0×F8	SFRPRT15DR	SFRPRT15PS	SFRPRT15SEL	-	-	-	-	-
0×F0	В	-	SFRPRT12SEL	-	-	-	-	-
0×E8	SFRPRT12DR	SFRPRT12PS	MXAX	-	-	-	-	-
0×E0	ACC	-	-	-	-	-	-	-
0×D8	SFRPRT6DR	SFRPRT6PS	SFRPRT6SEL	-	-	-	-	-
0×D0	PSW	-	-	-	-	-	-	-
0×C8	SFRPRT5DR	SFRPRT5PS	SFRPRT5SEL	-	-	-	-	-
0×C0	SFRPRT4DR	SFRPRT4PS	SFRPRT4SEL	-	-	-	-	-
0×B8				-	-	-	-	-
0×B0	SFRPRT3DR	SFRPRT3PS	SFRPRT3SEL	-	-	-	-	-
0×A8	IE	-	-	-	-	-	-	-
0×A0	P2AX	-	SFRPRT1SEL	-	-	-	-	-
0×98	SFRPRT2DR	SFRPRT2PS	SFRPRT2SEL	-	-	-	-	-
0×90	SFRPRT1DR	SFRPRT1PS	-	DPX0	-	DPX1	-	-
0×88	-	SFRPRT0PS	SFRPRT0SEL	-	-	-	-	-
0×80	SFRPRT0DR	SP	DPL0	DPH0	DPL1	DPH1	DPS	-

Table 5-4. SFR Map

The CY8C38 family provides the standard set of registers found on industry standard 8051 devices. In addition, the CY8C38 devices add SFRs to provide direct access to the I/O ports on the device. The following sections describe the SFRs added to the CY8C38 family.

7. Digital Subsystem

The digital programmable system creates application specific combinations of both standard and advanced digital peripherals and custom logic functions. These peripherals and logic are then interconnected to each other and to any pin on the device, providing a high level of design flexibility and IP security.

The features of the digital programmable system are outlined here to provide an overview of capabilities and architecture. You do not need to interact directly with the programmable digital system at the hardware and register level. PSoC Creator provides a high level schematic capture graphical interface to automatically place and route resources similar to PLDs.

The main components of the digital programmable system are:

- UDB These form the core functionality of the digital programmable system. UDBs are a collection of uncommitted logic (PLD) and structural logic (Datapath) optimized to create all common embedded peripherals and customized functionality that are application or design specific.
- Universal digital block array UDB blocks are arrayed within a matrix of programmable interconnect. The UDB array structure is homogeneous and allows for flexible mapping of digital functions onto the array. The array supports extensive and flexible routing interconnects between UDBs and the Digital System Interconnect.
- Digital system interconnect (DSI) Digital signals from UDBs, fixed function peripherals, I/O pins, interrupts, DMA, and other system core signals are attached to the digital system interconnect to implement full featured device connectivity. The DSI allows any digital function to any pin or other feature routability when used with the universal digital block array.

Figure 7-1. CY8C38 Digital Programmable Architecture

7.1 Example Peripherals

The flexibility of the CY8C38 family's UDBs and analog blocks allow the user to create a wide range of components (peripherals). The most common peripherals were built and characterized by Cypress and are shown in the PSoC Creator component catalog, however, users may also create their own custom components using PSoC Creator. Using PSoC Creator, users may also create their own components for reuse within their organization, for example sensor interfaces, proprietary algorithms, and display interfaces.

The number of components available through PSoC Creator is too numerous to list in the data sheet, and the list is always growing. An example of a component available for use in CY8C38 family, but, not explicitly called out in this data sheet is the UART component.

7.1.1 Example Digital Components

The following is a sample of the digital components available in PSoC Creator for the CY8C38 family. The exact amount of hardware resources (UDBs, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- Communications
 - □ I²C
 - u UART
 - 🛛 SPI
- Functions
 - B EMIF
 - □ PWMs
 - Timers
 - Counters
- Logic
 - NOT
 - ם OR
 - □ XOR
 - AND

7.1.2 Example Analog Components

The following is a sample of the analog components available in PSoC Creator for the CY8C38 family. The exact amount of hardware resources (SC/CT blocks, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- Amplifiers
- 🛛 TIA
- 🛛 PGA
- □ opamp
- ADC
- Delta-sigma
- DACs
- Current
- □ Voltage
- Comparators
- Mixers

7.2.3.2 Clock Generation

Each subcomponent block of a UDB including the two PLDs, the datapath, and Status and Control, has a clock selection and control block. This promotes a fine granularity with respect to allocating clocking resources to UDB component blocks and allows unused UDB resources to be used by other functions for maximum system efficiency.

7.3 UDB Array Description

Figure 7-7 shows an example of a 16 UDB array. In addition to the array core, there are a DSI routing interfaces at the top and bottom of the array. Other interfaces that are not explicitly shown include the system interfaces for bus and clock distribution. The UDB array includes multiple horizontal and vertical routing channels each comprised of 96 wires. The wire connections to UDBs, at horizontal/vertical intersection and at the DSI interface are highly permutable providing efficient automatic routing in PSoC Creator. Additionally the routing allows wire by wire segmentation along the vertical and horizontal routing to further increase routing flexibility and capability.

Figure 7-7. Digital System Interface Structure

7.3.1 UDB Array Programmable Resources

Figure 7-8 shows an example of how functions are mapped into a bank of 16 UDBs. The primary programmable resources of the UDB are two PLDs, one datapath and one status/control register. These resources are allocated independently, because they have independently selectable clocks, and therefore unused blocks are allocated to other unrelated functions. An example of this is the 8-bit timer in the upper left corner of the array. This function only requires one datapath in the UDB, and therefore the PLD resources may be allocated to another function. A function such as a Quadrature Decoder may require more PLD logic than one UDB can supply and in this case can utilize the unused PLD blocks in the 8-bit Timer UDB. Programmable resources in the UDB array are generally homogeneous so functions can be mapped to arbitrary boundaries in the array.

Figure 7-8. Function Mapping Example in a Bank of UDBs

7.4 DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and vertical routing channels at the top and bottom of the UDB array core. It provides general purpose programmable routing between device peripherals, including UDBs, I/Os, analog peripherals, interrupts, DMA and fixed function peripherals.

Figure 7-9 illustrates the concept of the digital system interconnect, which connects the UDB array routing matrix with other device peripherals. Any digital core or fixed function peripheral that needs programmable routing is connected to this interface.

Signals in this category include:

- Interrupt requests from all digital peripherals in the system.
- DMA requests from all digital peripherals in the system.
- Digital peripheral data signals that need flexible routing to I/Os.
- Digital peripheral data signals that need connections to UDBs.
- Connections to the interrupt and DMA controllers.
- Connection to I/O pins.
- Connection to analog system digital signals.

7.8 I²C

The I²C peripheral provides a synchronous two wire interface designed to interface the PSoC device with a two wire I²C serial communication bus. It is compatible^[16] with I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I2C-bus specification and user manual (UM10204). The I2C bus I/O may be implemented with GPIO or SIO in open-drain modes. Additional I²C interfaces can be instantiated using Universal Digital Blocks (UDBs) in PSoC Creator, as required.

To eliminate the need for excessive CPU intervention and overhead, I²C specific support is provided for status detection and generation of framing bits. I²C operates as a slave, a master, or multimaster (Slave and Master)^[17]. In slave mode, the unit always listens for a start condition to begin sending or receiving data. Master mode supplies the ability to generate the Start and Stop conditions and initiate transactions. Multimaster mode provides clock synchronization and arbitration to allow multiple masters on the same bus. If Master mode is enabled and Slave mode is not enabled, the block does not generate interrupts on externally generated Start conditions. I²C interfaces through DSI routing and allows direct connections to any GPIO or SIO pins.

I²C provides hardware address detect of a 7-bit address without CPU intervention. Additionally the device can wake from low-power modes on a 7-bit hardware address match. If wakeup functionality is required, $\mathsf{I}^2\mathsf{C}$ pin connections are limited to the two special sets of SIO pins.

I²C features include:

- Slave and master, transmitter, and receiver operation
- Byte processing for low CPU overhead
- Interrupt or polling CPU interface
- Support for bus speeds up to 1 Mbps
- 7 or 10-bit addressing (10-bit addressing requires firmware support)
- SMBus operation (through firmware support SMBus supported in hardware in UDBs)
- 7-bit hardware address compare
- Wake from low-power modes on address match
- Glitch filtering (active and alternate-active modes only)

Data transfers follow the format shown in Figure 7-18. After the START condition (S), a slave address is sent. This address is 7 bits long followed by an eighth bit which is a data direction bit (R/W) - a 'zero' indicates a transmission (WRITE), a 'one' indicates a request for data (READ). A data transfer is always terminated by a STOP condition (P) generated by the master.

Figure 7-18. I²C Complete Transfer Timing

Notes

^{16.} The I²C peripheral is non-compliant with the NXP I²C specification in the following areas: analog glitch filter, I/O V_{OL}/I_{OL}, I/O hysteresis. The I²C Block has a digital glitch filter (not available in sleep mode). The Fast-mode minimum fall-time specification can be met by setting the I/Os to slow speed mode. See the I/O Electrical Specifications in "Inputs and Outputs" section on page 74 for details.

^{17.} Fixed-block I²C does not support undefined bus conditions, nor does it support Repeated Start in Slave mode. These conditions should be avoided, or the UDB-based I²C component should be used instead.

7.9 Digital Filter Block

Some devices in the CY8C38 family of devices have a dedicated HW accelerator block used for digital filtering. The DFB has a dedicated multiplier and accumulator that calculates a 24-bit by 24-bit multiply accumulate in one bus clock cycle. This enables the mapping of a direct form FIR filter that approaches a computation rate of one FIR tap for each clock cycle. The MCU can implement any of the functions performed by this block, but at a slower rate that consumes MCU bandwidth.

The heart of the DFB is a datapath (DP), which is the numerical calculation unit of the DFB. The DP is a 24-bit fixed-point numerical processor containing a 48-bit multiply and accumulate function (MAC), a multi-function ALU, sample and coefficient data RAMs as well as data routing, shifting, holding and rounding functions.

In the MAC, two 24-bit values can be multiplied and the result added to the 48-bit accumulator in each bus clock cycle. The MAC is the only portion of the DP that is wider than 24 bits. All results from the MAC are passed on to the ALU as 24-bit values representing the high-order 24 bits in the accumulator shifted by one (bits 46:23). The MAC assumes an implied binary point after the most significant bit.

The DP also contains an optimized ALU that supports add, subtract, comparison, threshold, absolute value, squelch, saturation, and other functions. The DP unit is controlled by seven control fields totaling 18 bits coming from the DFB Controller. For more information see the TRM.

The PSoC Creator interface provides a wizard to implement FIR and IIR digital filters with coefficients for LPF, BPF, HPF, Notch and arbitrary shape filters. 64 pairs of data and coefficients are stored. This enables a 64 tap FIR filter or up to 4 16 tap filters of either FIR or IIR formulation.

Figure 7-19. DFB Application Diagram (pwr/gnd not shown)

The typical use model is for data to be supplied to the DFB over the system bus from another on-chip system data source such as an ADC. The data typically passes through main memory or is directly transferred from another chip resource through DMA. The DFB processes this data and passes the result to another on chip resource such as a DAC or main memory through DMA on the system bus.

Data movement in or out of the DFB is typically controlled by the system DMA controller but can be moved directly by the MCU.

8. Analog Subsystem

The analog programmable system creates application specific combinations of both standard and advanced analog signal processing blocks. These blocks are then interconnected to each other and also to any pin on the device, providing a high level of design flexibility and IP security. The features of the analog subsystem are outlined here to provide an overview of capabilities and architecture.

- Flexible, configurable analog routing architecture provided by analog globals, analog mux bus, and analog local buses.
- High resolution delta-sigma ADC.
- Up to four 8-bit DACs that provide either voltage or current output.
- Four comparators with optional connection to configurable LUT outputs.
- Up to four configurable switched capacitor/continuous time (SC/CT) blocks for functions that include opamp, unity gain buffer, programmable gain amplifier, transimpedance amplifier, and mixer.
- Up to four opamps for internal use and connection to GPIO that can be used as high current output buffers.
- CapSense subsystem to enable capacitive touch sensing.
- Precision reference for generating an accurate analog voltage for internal analog blocks.

Figure 8-2. CY8C38 Analog Interconnect

To preserve detail of this figure, this figure is best viewed with a PDF display program or printed on a 11" × 17" paper.

Figure 9-1. JTAG Interface Connections between PSoC 3 and Programmer

Figure 11-24. Delta-sigma ADC IDD vs sps, Range = ±1.024 V, Continuous Sample Mode, Input Buffer Bypassed

Figure 11-25. Delta-sigma ADC Noise Histogram, 1000 Samples, 20-Bit, 187 sps, Ext Ref, V_{IN} = V_{REF}/2, Range = ±1.024 V

Figure 11-26. Delta-sigma ADC Noise Histogram, 1000 Samples, 16-bit, 48 ksps, Ext Ref, V_{IN} = V_{REF}/2, Range = ±1.024 V

11.5.3 Voltage Reference

Table 11-24. Voltage Reference Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Vref ^[39]	Precision reference	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	1.021 (-0.3%)	1.024	1.027 (+0.3%)	V
	Precision reierence	-40°C \leq Ta \leq 125°C and Tj \leq 150°C	1.018 (–0.6%)	1.024	1.030 (+0.6%)	V
	After typical PCB assembly, post reflow	Typical (non-optimized) board layout and 250 °C solder reflow. Device may be calibrated after assembly to improve performance.				
		–40 °C		±0.5		%
		25 °C		±0.2		%
		85 °C		±0.2		%
	Temperature drift ^[40]	Box method	-	-	30	ppm/°C
	Long term drift		-	100	-	ppm/khr
	Thermal cycling drift (stability) ^[40, 41]		_	100	_	ppm

Figure 11-30. Voltage Reference vs. Temperature and V_{CCA}

Notes

39. V_{REF} is measured after packaging, and thus accounts for substrate and die attach stresses.

40. Based on device characterization (Not production tested).

41. After eight full cycles between -40 °C and 100 °C.

11.5.6 IDAC

All specifications are based on use of the low-resistance IDAC output pins (see Pin Descriptions on page 9 for details). See the IDAC component data sheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

Table 11-28. ID	OAC (Current Did	gital-to-Analog	Converter)	DC S	pecifications
			/		

Parameter	Description	Conditions	Min	Тур	Max	Units
Resolution			-	8	-	
I _{OUT}	Output current at code = 255	$\label{eq:response} \begin{array}{l} \mbox{Range} = 2.04 \mbox{ mA, code} = 255, \\ \mbox{V}_{\mbox{DDA}} \geq 2.7 \mbox{ V, Rload} = 600 \ \Omega \end{array}$	_	2.04	_	mA
		Range = 2.04 mA, high speed mode, code = 255, V_{DDA} \leq 2.7 V, Rload = 300 Ω	-	2.04	-	mA
		Range = 255 μ A, code = 255, Rload = 600 Ω	_	255	_	μA
	Monotonicity	Range = 31.875 μ A, code = 255, Rload = 600 Ω	_	31.875	_	μA
	Monotonicity		-	-	Yes	
INL	Integral nonlinearity	Sink mode, range = 255 μA, Codes 8 – 255, Rload = 2.4 kΩ, Cload = 15 pF	-	±0.9	±1	LSB
		Source mode, range = 255 μ A, Codes 8 – 255, Rload = 2.4 k Ω , Cload = 15 pF	-	±1.2	±1.6	LSB
DNL	Differential nonlinearity	Sink mode, range = 255 μ A, Rload = 2.4 k Ω , Cload = 15 pF	-	±0.3	±1	LSB
		Source mode, range = 255 μ A, Rload = 2.4 k Ω , Cload = 15 pF	_	±0.3	±1	LSB
Ezs	Zero scale error	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	-	0	±1	LSB
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	-	-	±2	LSB
Eg	Gain error	Range = 2.04 mA, 25 °C	_	-	±2.5	%
		Range = 255 µA, 25 ° C	_	-	±2.5	%
		Range = 31.875 µA, 25 ° C	-	-	±3.5	%
TC_Eg	Temperature coefficient of gain error	Range = 2.04 mA	_	-	0.04	% / °C
		Range = 255 µA	-	-	0.04	% / °C
		Range = 31.875 µA	-	-	0.05	% / °C
Vcompliance	Dropout voltage, source or sink mode	Voltage headroom at max current, Rload to Vdda or Rload to Vssa, Vdiff from Vdda	1	-	-	V

11.6.3 Pulse Width Modulation

Table 11-45. PWM DC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
	Block current consumption	16-bit PWM, at listed input clock frequency	-	_	-	μA
	3 MHz		-	15	_	μA
	12 MHz		-	60	-	μA
	50 MHz		-	260	_	μA
	67 MHz		-	350	_	μA

Table 11-46. Pulse Width Modulation (PWM) AC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
	Operating frequency	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	DC	-	67 ^[49]	MHz
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	DC	-	50	MHz
	Pulse width	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns
	Kill pulse width	$-40^{\circ}C \leq Ta \leq 85^{\circ}C \text{ and } Tj \leq 100^{\circ}C$	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Kill pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30			ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns
	Enable pulse width	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Enable pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns
	Reset pulse width	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Reset pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		$-40^\circ C \leq Ta \leq 125^\circ C$ and $Tj \leq 150^\circ C$	42	-	-	ns

49. Applicable at -40°C to 85°C; 50 MHz at -40°C to 125°C.

11.6.4 I²C

Table 11-47. Fixed I²C DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	Enabled, configured for 100 kbps	-	-	250	μA
	-	Enabled, configured for 400 kbps	-	-	260	μA
	_	Wake from sleep mode	-	-	30	μA

Table 11-48. Fixed I²C AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Bit rate		-	-	1	Mbps

11.6.5 Controller Area Network^[50]

Table 11-49. CAN DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	500 kbps	-	-	285	μA
		1 Mbps	-	-	330	μA

Table 11-50. CAN AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Bit rate	Minimum 8 MHz clock	-	-	1	Mbit

11.6.6 Digital Filter Block

Table 11-51. DFB DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	DFB operating current	64-tap FIR at Fdfb				
		500 kHz (6.7 ksps)	-	0.16	0.27	mA
		1 MHz (13.4 ksps)	-	0.33	0.53	mA
		10 MHz (134 ksps)	-	3.3	5.3	mA
		50 MHz (644 ksps)	-	15.7	25.5	mA
		67 MHz (900 ksps) ^[51]	-	21.8	35.6	mA

Table 11-52. DFB AC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
Fdfb	DFB operating frequency	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	DC	-	67 ^[51]	MHz
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	DC	-	50 ^[51]	MHz

Note 50. Refer to ISO 11898 specification for details. 51. Applicable at -40°C to 85°C; 50 MHz at -40°C to 125°C.

11.6.7 USB

Table 11-53. USB DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{USB_5}	Device supply for USB operation	USB configured, USB regulator enabled	4.35	-	5.25	V
V _{USB_3.3}		USB configured, USB regulator bypassed	3.15	_	3.6	V
V _{USB_3}		USB configured, USB regulator bypassed ^[52]	2.85	-	3.6	V
IUSB_Configured	Device supply current in device	V _{DDD} = 5 V, F _{CPU} = 1.5 MHz	-	10	-	mA
	active mode, bus clock and IMO = 24 MHz	V _{DDD} = 3.3 V, F _{CPU} = 1.5 MHz	-	8	-	mA
IUSB_Suspended	Device supply current in device sleep mode	V _{DDD} = 5 V, connected to USB host, PICU configured to wake on USB resume signal	-	0.5	-	mA
		V _{DDD} = 5 V, disconnected from USB host	-	0.3	-	mA
		V _{DDD} = 3.3 V, connected to USB host, PICU configured to wake on USB resume signal	-	0.5	-	mA
		V _{DDD} = 3.3 V, disconnected from USB host	-	0.3	_	mA

11.6.8 Universal Digital Blocks (UDBs)

PSoC Creator provides a library of pre-built and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, AND, OR, and so on) that are mapped to the UDB array. See the component data sheets in PSoC Creator for full AC/DC specifications, APIs, and example code.

Table 11-54. UDB AC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units		
Datapath Per	Datapath Performance							
Fmax_timer	Maximum frequency of 16-bit timer in a	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	-	-	67	MHz		
	UDB pair	-40°C \leq Ta \leq 125°C and Tj \leq 150°C	-	-	50	MHz		
Fmax_adder	Maximum frequency of 16-bit adder in a	$-40^{\circ}C \leq Ta \leq 85^{\circ}C \text{ and } Tj \leq 100^{\circ}C$	-	-	67	MHz		
	UDB pair	-40°C \leq Ta \leq 125°C and Tj \leq 150°C	-	-	50	MHz		
Fmax_CRC	Maximum frequency of 16-bit CRC/PRS	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	-	-	67	MHz		
	in a UDB pair	-40°C \leq Ta \leq 125°C and Tj \leq 150°C	-	-	50	MHz		
PLD Perform	ance							
Fmax_PLD	Maximum frequency of a two-pass PLD function in a UDB pair	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	-	-	67	MHz		
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	-	-	50	MHz		
Clock to Output Performance								
t _{clk_out}	Propogation delay for clock in to data out, see Figure 11-60.	25 °C, Vddd \ge 2.7 V	-	20	25	ns		
t _{clk_out}	Propogation delay for clock in to data out, see Figure 11-60.	Worst-case placement, routing, and pin selection	-	_	55	ns		

Note 52. Rise/fall time matching (TR) not guaranteed, see .

11.7.5 External Memory Interface

Figure 11-61. Asynchronous Read Cycle Timing

Table 11-63. Asynchronous Read Cycle Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
Т	EMIF clock period ^[56]	Vdda \geq 3.3 V	30.3	-	_	ns
Tcel	EM_CEn low time		2T – 5	_	2T+ 5	ns
Taddrv	EM_CEn low to EM_Addr valid		_	_	5	ns
Taddrh	Address hold time after EM_Wen high		Т	-	_	ns
Toel	EM_OEn low time		2T – 5	-	2T + 5	ns
Tdoesu	Data to EM_OEn high setup time		T + 15	_	_	ns
Tdoeh	Data hold time after EM_OEn high		3	_	_	ns

11.9 Clocking

Specifications are valid for -40°C \leq Ta \leq 125°C and Tj \leq 150°C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.9.1 Internal Main Oscillator

Table 11-75. IMO DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Supply current					
	62.6 MHz		-	-	600	μA
	48 MHz		-	-	500	μA
	24 MHz – USB mode	With oscillator locking to USB bus	-	-	500	μA
	24 MHz – non USB mode		-	-	300	μA
	12 MHz		-	-	200	μA
	6 MHz		-	-	180	μA
	3 MHz		_	_	150	μA

Figure 11-67. IMO Current vs. Frequency

11.9.2 Internal Low Speed Oscillator

Table 11-77. ILO DC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
	Operating current ^[64]	F _{OUT} = 1 kHz	-	_	1.7	μA
I _{CC}		F _{OUT} = 33 kHz	-	_	2.6	μA
		F _{OUT} = 100 kHz	-	-	2.6	μA
	Leakage current ^[64]	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	-	2.0	15	nA
		Power down mode				
	Leakage current ^[64]	-40°C \leq Ta \leq 125°C and Tj \leq 150°C	-	-	200	nA
		Power down mode				

Table 11-78. ILO AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Startup time	Turbo mode	-	-	2	ms
	ILO frequencies (trimmed)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C				
	100 kHz		45	100	200	kHz
Filo	1 kHz		0.5	1	2	kHz
1 110	ILO frequencies (untrimmed)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C				
	100 kHz		30	100	300	kHz
	1 kHz		0.3	1	3.5	kHz
	ILO frequencies (trimmed)	-40°C \leq Ta \leq 125°C and Tj \leq 150°C				
	100 kHz		45	-	450	kHz
Filo	1 kHz		0.5	-	5	kHz
	ILO frequencies (untrimmed)	-40°C \leq Ta \leq 125°C and Tj \leq 150°C				
	100 kHz		150	-	500	kHz
-	1 kHz		0.3	-	6.5	kHz

Figure 11-70. ILO Frequency Variation vs. V_{DD}

Note 64. This value is calculated, not measured.

65. Based on device characterization (Not production tested).

17. Revision History (continued)

Descriptio Document	n Title: PSo Number: 00	C [®] 3: CY8C38 01-54683	Automotive	e Family Datasheet, Programmable System-on-Chip (PSoC [®])
Rev.	ECN	Submission Date	Orig. of Change	Description of Change
*H (cont.)	4094193	08/30/2013	NFB / ANMD	Updated Electrical Specifications: Updated Device Level Specifications: Updated Table 11-2. Updated Table 11-3. Updated Table 11-7. Removed figure "GPIO Output Rise and Fall Times, Fast Strong Mode, V _{DDIO} = 3.3 V, 25 pF Load" and figure "GPIO Output Rise and Fall Times, Slow Strong Mode, V _{DDIO} = 3.3 V, 25 pF Load". Updated Analog Peripherals: Updated Delta-Sigma ADC: Updated Table 11-17. Updated Table 11-18. Updated Table 11-18. Updated Table 11-24. Updated Table 11-28. Updated Table 11-28. Updated Table 11-56. Updated Table 11-56. Updated Table 11-76. Updated Table 11-76. Updated Packaging: spec 51-85048 – Changed revision from *G to *H. Updated in new template. Completing Sunset Review.
*	4174912	10/26/2013	NFB / ANMD	Updated Pinouts: Added Note 8 and referred the same note in 100 mA in description. Updated Electrical Specifications: Updated Absolute Maximum Ratings: Updated Table 11-1. Added Note 18 and referred the same note in Table 11-1. Added Note 20 and referred the same note in Ivddio parameter in Table 11-1. Updated Device Level Specifications: Updated Table 11-2. Updated Analog Peripherals: Updated Opamp: Updated Table 11-15. Updated Voltage Reference: Updated Table 11-24. Updated Packaging: Updated Table 13-1.
*J	4188568	11/14/2013	WKA	No content update.

17. Revision History (continued)

Description Document	Description Title: PSoC [®] 3: CY8C38 Automotive Family Datasheet, Programmable System-on-Chip (PSoC [®]) Document Number: 001-54683						
Rev.	ECN	Submission Date	Orig. of Change	Description of Change			
*К	4296459	03/03/2014	ANMD	Updated Digital Subsystem: Updated I ² C: Updated Note 17. Updated Electrical Specifications: Updated Analog Peripherals: Updated Delta-Sigma ADC: Updated Table 11-17: Updated Conditions of Vos parameter. Updated Memory: Updated Flash: Updated Table 11-56: Added Note 55 and referred the same note in "Flash data retention time" in description column. Replaced "Tjavg" with "T _A " in last row in conditions column. Updated Packaging: spec 51-85048 – Changed revision from *H to *I.			