
Microchip Technology - ATMEGA16A-MU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-VFQFN Exposed Pad

Supplier Device Package 44-VQFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega16a-mu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega16a-mu-4393881
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

6. AVR CPU

6.1 Overview
This section discusses the Atmel AVR core architecture in general. The main function of the CPU core is to
ensure correct program execution. The CPU must therefore be able to access memories, perform calculations,
control peripherals, and handle interrupts.

Figure 6-1. Block Diagram of the AVR MCU Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate
memories and buses for program and data. Instructions in the program memory are executed with a single level
pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory.
This concept enables instructions to be executed in every clock cycle. The program memory is In-System
Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle
access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two
operands are output from the Register File, the operation is executed, and the result is stored back in the
Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing
– enabling efficient address calculations. One of the these address pointers can also be used as an address
pointer for look up tables in Flash Program memory. These added function registers are the 16-bit X-, Y-, and Z-
register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register.
Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is
updated to reflect information about the result of the operation.

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Control Lines

32 x 8
General
Purpose

Registrers

ALU

Status
and Control

I/O Lines

EEPROM

Data Bus 8-bit

Data
SRAM

D
ir
e
ct

 A
d
d
re

ss
in

g

In
d
ir
e
ct

 A
d
d
re

ss
in

g

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

I/O Module 2

I/O Module1

I/O Module n
8ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. A Stack PUSH command will
decrease the Stack Pointer.

The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or
interrupts are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the Stack
Pointer must be set to point above start of the SRAM, see Figure 7-2 on page 17.

See Table 6-1 for Stack Pointer details.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used
is implementation dependent. Note that the data space in some implementations of the AVR architecture is so
small that only SPL is needed. In this case, the SPH Register will not be present.

6.5.1 SPH and SPL – Stack Pointer High and Low Register

6.6 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by
the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is
used.

Figure 6-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture
and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz
with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit.

Table 6-1. Stack Pointer instructions

Instruction Stack pointer Description

PUSH Decremented by 1 Data is pushed onto the stack

CALL
ICALL
RCALL

Decremented by 2
Return address is pushed onto the stack with a subroutine call or
interrupt

POP Incremented by 1 Data is popped from the stack

RET
RETI

Incremented by 2 Return address is popped from the stack with return from
subroutine or return from interrupt

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
12ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in Table 8-10.

When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to
ensure stable operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next
can lead to unpredictable behavior. It is required to ensure that the MCU is kept in reset during such changes in
the clock frequency.

8.9 Timer/Counter Oscillator
For microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC2), the crystal is connected directly
between the pins. No external capacitors are needed. The Oscillator is optimized for use with a 32.768kHz
watch crystal. Applying an external clock source to TOSC1 is not recommended.
Note: The Timer/Counter Oscillator uses the same type of crystal oscillator as Low-Frequency Oscillator and the internal

capacitors have the same nominal value of 36pF.

8.10 Register Description

8.10.1 OSCCAL – Oscillator Calibration Register

• Bits 7:0 – CAL7:0: Oscillator Calibration Value
Writing the calibration byte to this address will trim the Internal Oscillator to remove process variations from the
Oscillator frequency. This is done automatically during Chip Reset. When OSCCAL is zero, the lowest available
frequency is chosen. Writing non-zero values to this register will increase the frequency of the Internal
Oscillator. Writing $FF to the register gives the highest available frequency. The calibrated Oscillator is used to
time EEPROM and Flash access. If EEPROM or Flash is written, do not calibrate to more than 10% above the
nominal frequency. Otherwise, the EEPROM or Flash write may fail. Note that the Oscillator is intended for
calibration to 1.0, 2.0, 4.0, or 8.0MHz. Tuning to other values is not guaranteed, as indicated in Table 8-11.

Table 8-10. Start-up Times for the External Clock Selection

SUT1:0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

00 6 CK – BOD enabled

01 6 CK 4.1ms Fast rising power

10 6 CK 65ms Slowly rising power

11 Reserved

Bit 7 6 5 4 3 2 1 0

CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Table 8-11. Internal RC Oscillator Frequency Range.

OSCCAL Value
Min Frequency in Percentage of

Nominal Frequency (%)
Max Frequency in Percentage of

Nominal Frequency (%)

$00 50 100

$7F 75 150

$FF 100 200
30ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

clear Clear TCNT2 (set all bits to zero).

clkT2 Timer/Counter clock.

top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer
clock (clkT2). clkT2 can be generated from an external or internal clock source, selected by the Clock Select bits
(CS22:0). When no clock source is selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can
be accessed by the CPU, regardless of whether clkT2 is present or not. A CPU write overrides (has priority over)
all counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in the
Timer/Counter Control Register (TCCR2). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare output OC2. For more details about
advanced counting sequences and waveform generation, see “Modes of Operation” on page 116.

The Timer/Counter Overflow (TOV2) Flag is set according to the mode of operation selected by the WGM21:0
bits. TOV2 can be used for generating a CPU interrupt.

17.5 Output Compare Unit
The 8-bit comparator continuously compares TCNT2 with the Output Compare Register (OCR2). Whenever
TCNT2 equals OCR2, the comparator signals a match. A match will set the Output Compare Flag (OCF2) at the
next timer clock cycle. If enabled (OCIE2 = 1), the Output Compare Flag generates an output compare interrupt.
The OCF2 Flag is automatically cleared when the interrupt is executed. Alternatively, the OCF2 Flag can be
cleared by software by writing a logical one to its I/O bit location. The waveform generator uses the match signal
to generate an output according to operating mode set by the WGM21:0 bits and Compare Output mode
(COM21:0) bits. The max and bottom signals are used by the waveform generator for handling the special
cases of the extreme values in some modes of operation (“Modes of Operation” on page 116). Figure 17-3
shows a block diagram of the output compare unit.

Figure 17-3. Output Compare Unit, Block Diagram

OCFn (Int.Req.)

= (8-bit Comparator)

OCRn

OCxy

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMn1:0

bottom
114ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

the time before re-entering Power-save or Extended Standby mode is sufficient, the following algorithm
can be used to ensure that one TOSC1 cycle has elapsed:

1. Write a value to TCCR2, TCNT2, or OCR2.
2. Wait until the corresponding Update Busy Flag in ASSR returns to zero.
3. Enter Power-save or Extended Standby mode.

When the asynchronous operation is selected, the 32.768 kHz Oscillator for Timer/Counter2 is always
running, except in Power-down and Standby modes. After a Power-up Reset or wake-up from Power-
down or Standby mode, the user should be aware of the fact that this Oscillator might take as long as one
second to stabilize. The user is advised to wait for at least one second before using Timer/Counter2 after
power-up or wake-up from Power-down or Standby mode. The contents of all Timer/Counter2 Registers
must be considered lost after a wake-up from Power-down or Standby mode due to unstable clock signal
upon start-up, no matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.
Description of wake up from Power-save or Extended Standby mode when the timer is clocked
asynchronously: When the interrupt condition is met, the wake up process is started on the following cycle
of the timer clock, that is, the timer is always advanced by at least one before the processor can read the
counter value. After wake-up, the MCU is halted for four cycles, it executes the interrupt routine, and
resumes execution from the instruction following SLEEP.
Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect result.
Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be done through a
register synchronized to the internal I/O clock domain. Synchronization takes place for every rising
TOSC1 edge. When waking up from Power-save mode, and the I/O clock (clkI/O) again becomes active,
TCNT2 will read as the previous value (before entering sleep) until the next rising TOSC1 edge. The
phase of the TOSC clock after waking up from Power-save mode is essentially unpredictable, as it
depends on the wake-up time. The recommended procedure for reading TCNT2 is thus as follows:

1. Write any value to either of the registers OCR2 or TCCR2.
2. Wait for the corresponding Update Busy Flag to be cleared.
3. Read TCNT2.

During asynchronous operation, the synchronization of the Interrupt Flags for the asynchronous timer
takes three processor cycles plus one timer cycle. The timer is therefore advanced by at least one before
the processor can read the timer value causing the setting of the Interrupt Flag. The output compare pin is
changed on the timer clock and is not synchronized to the processor clock.
123ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

18.3.2 Master Mode

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the direction of the SS
pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI system. Typically,
the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin is driven low by
peripheral circuitry when the SPI is configured as a Master with the SS pin defined as an input, the SPI system
interprets this as another Master selecting the SPI as a Slave and starting to send data to it. To avoid bus
contention, the SPI system takes the following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of the SPI becom-
ing a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is set, the interrupt
routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possibility that SS is
driven low, the interrupt should always check that the MSTR bit is still set. If the MSTR bit has been cleared by
a Slave Select, it must be set by the user to re-enable SPI Master mode.

18.4 Data Modes
There are four combinations of SCK phase and polarity with respect to serial data, which are determined by
control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure 18-2 and Figure 18-3. Data
bits are shifted out and latched in on opposite edges of the SCK signal, ensuring sufficient time for data signals
to stabilize. This is clearly seen by summarizing Table 18-3 and Table 18-4, as done below:

Figure 18-2. SPI Transfer Format with CPHA = 0

Table 18-2. CPOL and CPHA Functionality

Leading Edge Trailing Edge SPI Mode

CPOL = 0, CPHA = 0 Sample (Rising) Setup (Falling) 0

CPOL = 0, CPHA = 1 Setup (Rising) Sample (Falling) 1

CPOL = 1, CPHA = 0 Sample (Falling) Setup (Rising) 2

CPOL = 1, CPHA = 1 Setup (Falling) Sample (Rising) 3

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)
135ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

18.5.2 SPSR – SPI Status Register

• Bit 7 – SPIF: SPI Interrupt Flag
When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in SPCR is set and
global interrupts are enabled. If SS is an input and is driven low when the SPI is in Master mode, this will also
set the SPIF Flag. SPIF is cleared by hardware when executing the corresponding interrupt handling vector.
Alternatively, the SPIF bit is cleared by first reading the SPI Status Register with SPIF set, then accessing the
SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag
The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The WCOL bit (and the
SPIF bit) are cleared by first reading the SPI Status Register with WCOL set, and then accessing the SPI Data
Register.

• Bit 5:1 – Res: Reserved Bits
These bits are reserved bits in the ATmega16A and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed Bit
When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI is in Master
mode (see Table 18-5). This means that the minimum SCK period will be two CPU clock periods. When the SPI
is configured as Slave, the SPI is only guaranteed to work at fosc/4 or lower.

The SPI interface on the ATmega16A is also used for program memory and EEPROM downloading or
uploading. See page 262 for SPI Serial Programming and Verification.

Table 18-5. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4
0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2
1 0 1 fosc/8
1 1 0 fosc/32

1 1 1 fosc/64

Bit 7 6 5 4 3 2 1 0

SPIF WCOL – – – – – SPI2X SPSR
Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
138ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

20.3.5 Combining Address and Data Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets and a STOP
condition. An empty message, consisting of a START followed by a STOP condition, is illegal. Note that the
wired-ANDing of the SCL line can be used to implement handshaking between the Master and the Slave. The
Slave can extend the SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the
Master is too fast for the Slave, or the Slave needs extra time for processing between the data transmissions.
The Slave extending the SCL low period will not affect the SCL high period, which is determined by the Master.
As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the SCL duty cycle.

Figure 20-6 shows a typical data transmission. Note that several data bytes can be transmitted between the
SLA+R/W and the STOP condition, depending on the software protocol implemented by the application
software.

Figure 20-6. Typical Data Transmission

20.4 Multi-master Bus Systems, Arbitration and Synchronization
The TWI protocol allows bus systems with several Masters. Special concerns have been taken in order to
ensure that transmissions will proceed as normal, even if two or more Masters initiate a transmission at the
same time. Two problems arise in multi-master systems:

An algorithm must be implemented allowing only one of the Masters to complete the transmission. All
other Masters should cease transmission when they discover that they have lost the selection process.
This selection process is called arbitration. When a contending Master discovers that it has lost the
arbitration process, it should immediately switch to Slave mode to check whether it is being addressed by
the winning Master. The fact that multiple Masters have started transmission at the same time should not
be detectable to the Slaves, i.e., the data being transferred on the bus must not be corrupted.
Different Masters may use different SCL frequencies. A scheme must be devised to synchronize the serial
clocks from all Masters, in order to let the transmission proceed in a lockstep fashion. This will facilitate
the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from all Masters will
be wired-ANDed, yielding a combined clock with a high period equal to the one from the Master with the
shortest high period. The low period of the combined clock is equal to the low period of the Master with the
longest low period. Note that all Masters listen to the SCL line, effectively starting to count their SCL high and
low time-out periods when the combined SCL line goes high or low, respectively.

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP
170ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

21. Analog Comparator
The Analog Comparator compares the input values on the positive pin AIN0 and negative pin AIN1. When the
voltage on the positive pin AIN0 is higher than the voltage on the negative pin AIN1, the Analog Comparator
Output, ACO, is set. The comparator’s output can be set to trigger the Timer/Counter1 Input Capture function. In
addition, the comparator can trigger a separate interrupt, exclusive to the Analog Comparator. The user can
select Interrupt triggering on comparator output rise, fall or toggle. A block diagram of the comparator and its
surrounding logic is shown in Figure 21-1.

Figure 21-1. Analog Comparator Block Diagram(2)

Notes: 1. See Table 1 on page 193.
2. Refer to Figure 1-1 on page 3 and Table 12-6 on page 57 for Analog Comparator pin placement.

21.1 Analog Comparator Multiplexed Input
It is possible to select any of the ADC7:0 pins to replace the negative input to the Analog Comparator. The ADC
multiplexer is used to select this input, and consequently, the ADC must be switched off to utilize this feature. If
the Analog Comparator Multiplexer Enable bit (ACME in SFIOR) is set and the ADC is switched off (ADEN in
ADCSRA is zero), MUX2:0 in ADMUX select the input pin to replace the negative input to the Analog
Comparator, as shown in Table 1. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the
Analog Comparator.

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

(1)

Table 1. Analog Comparator Multiplexed Input

ACME ADEN MUX2:0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3
193ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

state 0x01 is shifted out on the TDO pin. The JTAG Instruction selects a particular Data Register as path
between TDI and TDO and controls the circuitry surrounding the selected Data Register.
Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched onto the
parallel output from the Shift Register path in the Update-IR state. The Exit-IR, Pause-IR, and Exit2-IR
states are only used for navigating the state machine.
At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data Register –
Shift-DR state. While in this state, upload the selected Data Register (selected by the present JTAG
instruction in the JTAG Instruction Register) from the TDI input at the rising edge of TCK. In order to
remain in the Shift-DR state, the TMS input must be held low during input of all bits except the MSB. The
MSB of the data is shifted in when this state is left by setting TMS high. While the Data Register is shifted
in from the TDI pin, the parallel inputs to the Data Register captured in the Capture-DR state is shifted out
on the TDO pin.
Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data Register has a
latched parallel-output, the latching takes place in the Update-DR state. The Exit-DR, Pause-DR, and
Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting JTAG instruction
and using Data Registers, and some JTAG instructions may select certain functions to be performed in the Run-
Test/Idle, making it unsuitable as an Idle state.
Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be entered by holding

TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibliography” on page 218.

23.5 Using the Boundary-scan Chain
A complete description of the Boundary-scan capabilities are given in the section “IEEE 1149.1 (JTAG)
Boundary-scan” on page 219.

23.6 Using the On-chip Debug System
As shown in Figure 23-1, the hardware support for On-chip Debugging consists mainly of:

A scan chain on the interface between the internal AVR CPU and the internal peripheral units
Break Point unit
Communication interface between the CPU and JTAG system

All read or modify/write operations needed for implementing the Debugger are done by applying AVR
instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O memory mapped location
which is part of the communication interface between the CPU and the JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, 2 Program Memory
Break Points, and 2 combined Break Points. Together, the 4 Break Points can be configured as either:

4 single Program Memory Break Points
3 Single Program Memory Break Point + 1 single Data Memory Break Point
2 single Program Memory Break Points + 2 single Data Memory Break Points
2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range Break Point”)
2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range Break Point”)

A debugger, like the AVR Studio, may however use one or more of these resources for its internal purpose,
leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Specific JTAG Instructions” on
page 217.
216ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 24-5. Additional Scan Signal for the Two-wire Interface

24.5.3 Scanning the RESET Pin

The RESET pin accepts 5V active low logic for standard reset operation, and 12V active high logic for High
Voltage Parallel Programming. An observe-only cell as shown in Figure 24-6 is inserted both for the 5V reset
signal; RSTT, and the 12V reset signal; RSTHV.

Figure 24-6. Observe-only Cell

24.5.4 Scanning the Clock Pins

The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscillator, External RC,
External Clock, (High Frequency) Crystal Oscillator, Low Frequency Crystal Oscillator, and Ceramic Resonator.

Figure 24-7 shows how each Oscillator with external connection is supported in the scan chain. The Enable
signal is supported with a general boundary-scan cell, while the Oscillator/Clock output is attached to an
observe-only cell. In addition to the main clock, the Timer Oscillator is scanned in the same way. The output
from the internal RC Oscillator is not scanned, as this Oscillator does not have external connections.

Pxn

PUExn

ODxn

IDxn

TWIEN

OCxn

Slew-rate Limited

SRC

0

1
D Q

From
Previous

Cell

ClockDR

ShiftDR

To
Next
Cell

From System Pin To System Logic

FF1
225ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

As an example, consider the task of verifying a 1.5V ± 5% input signal at ADC channel 3 when the power supply
is 5.0V and AREF is externally connected to VCC.

The recommended values from Table 24-5 are used unless other values are given in the algorithm in Table 24-
6. Only the DAC and Port Pin values of the Scan-chain are shown. The column “Actions” describes what JTAG
instruction to be used before filling the Boundary-scan Register with the succeeding columns. The verification
should be done on the data scanned out when scanning in the data on the same row in the table.

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock frequency. As the
algorithm keeps HOLD high for five steps, the TCK clock frequency has to be at least five times the number of
scan bits divided by the maximum hold time, thold,max.

24.6 Boundary-scan Order
Table 24-7 shows the scan order between TDI and TDO when the Boundary-scan chain is selected as data
path. Bit 0 is the LSB; the first bit scanned in, and the first bit scanned out. The scan order follows the pin-out
order as far as possible. Therefore, the bits of Port A is scanned in the opposite bit order of the other ports.
Exceptions from the rules are the Scan chains for the analog circuits, which constitute the most significant bits of
the scan chain regardless of which physical pin they are connected to. In Figure 24-3, PXn. Data corresponds to

Table 24-6. Algorithm for Using the ADC

Step Actions ADCEN DAC MUXEN HOLD PRECH
PA3.
Data

PA3.
Control

PA3.
Pullup_
Enable

1 SAMPLE_
PRELOAD

1 0x200 0x08 1 1 0 0 0

2 EXTEST 1 0x200 0x08 0 1 0 0 0

3 1 0x200 0x08 1 1 0 0 0

4 1 0x123 0x08 1 1 0 0 0

5 1 0x123 0x08 1 0 0 0 0

6 Verify the
COMP bit
scanned
out to be 0

1 0x200 0x08 1 1 0 0 0

7 1 0x200 0x08 0 1 0 0 0

8 1 0x200 0x08 1 1 0 0 0

9 1 0x143 0x08 1 1 0 0 0

10 1 0x143 0x08 1 0 0 0 0

11 Verify the
COMP bit
scanned
out to be 1

1 0x200 0x08 1 1 0 0 0

The lower limit is: 1024 1,5V 0,95 5V⁄⋅ ⋅ 291 0x123= =
The upper limit is: 1024 1,5V 1,05 5V⁄⋅ ⋅ 323 0x143= =
231ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

25.8.10 Preventing Flash Corruption

During periods of low VCC, the Flash program can be corrupted because the supply voltage is too low for the
CPU and the Flash to operate properly. These issues are the same as for board level systems using the Flash,
and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a regular write
sequence to the Flash requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute
instructions incorrectly, if the supply voltage for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one is sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock bits to pre-
vent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done
by enabling the internal Brown-out Detector (BOD) if the operating voltage matches the detection level. If
not, an external low VCC Reset Protection circuit can be used. If a reset occurs while a write operation is in
progress, the write operation will be completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down Sleep mode during periods of low VCC. This will prevent the CPU from
attempting to decode and execute instructions, effectively protecting the SPMCR Register and thus the
Flash from unintentional writes.

25.8.11 Programming Time for Flash when using SPM

The Calibrated RC Oscillator is used to time Flash accesses. Table 25-5 shows the typical programming time
for Flash accesses from the CPU.

25.8.12 Simple Assembly Code Example for a Boot Loader
;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z pointer
;-error handling is not included
;-the routine must be placed inside the boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during self-programming (page erase and page write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ; PAGESIZEB is page size in
BYTES, not
; words

.org SMALLBOOTSTART
Write_page:

; page erase
ldi spmcrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section

Table 25-5. SPM Programming Time.

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write,
and write Lock bits by SPM) 3.7 ms 4.5 ms
247ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Notes: 1. Program the Fuse bits before programming the Lock bits.
2. “1” means unprogrammed, “0” means programmed

26.2 Fuse Bits
The ATmega16A has two fuse bytes. Table 26-3 and Table 26-4 describe briefly the functionality of all the fuses
and how they are mapped into the fuse bytes. Note that the fuses are read as logical zero, “0”, if they are
programmed.

Notes: 1. The SPIEN Fuse is not accessible in SPI Serial Programming mode.
2. The CKOPT Fuse functionality depends on the setting of the CKSEL bits. See See “Clock Sources” on

page 25. for details.
3. The default value of BOOTSZ1:0 results in maximum Boot Size. See Table 25-6 on page 249.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits and the

JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system to be running in all sleep
modes. This may increase the power consumption.

5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be disabled. This to avoid static
current at the TDO pin in the JTAG interface.

BLB1 Mode BLB12 BLB11

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read
from the Boot Loader section. If interrupt vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If interrupt vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

Table 26-2. Lock Bit Protection Modes (Continued)

Memory Lock Bits(2) Protection Type

Table 26-3. Fuse High Byte

Fuse High
Byte Bit No. Description Default Value

OCDEN(4) 7 Enable OCD 1 (unprogrammed, OCD disabled)

JTAGEN(5) 6 Enable JTAG 0 (programmed, JTAG enabled)

SPIEN(1) 5 Enable SPI Serial Program and
Data Downloading 0 (programmed, SPI prog. enabled)

CKOPT(2) 4 Oscillator options 1 (unprogrammed)

EESAVE 3 EEPROM memory is preserved
through the Chip Erase

1 (unprogrammed, EEPROM not
preserved)

BOOTSZ1 2 Select Boot Size (see Table 25-6
for details) 0 (programmed)(3)

BOOTSZ0 1 Select Boot Size (see Table 25-6
for details) 0 (programmed)(3)

BOOTRST 0 Select reset vector 1 (unprogrammed)
252ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 26-6. Mapping between BS1, BS2 and the Fuse- and Lock Bits during Read

26.7.12 Reading the Signature Bytes

The algorithm for reading the Signature bytes is as follows (refer to “Programming the Flash” on page 257 for
details on Command and Address loading):

1. A: Load Command “0000 1000”.
2. B: Load Address Low Byte ($00 - $02).
3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at DATA.
4. Set OE to “1”.

26.7.13 Reading the Calibration Byte

The algorithm for reading the Calibration byte is as follows (refer to “Programming the Flash” on page 257 for
details on Command and Address loading):

1. A: Load Command “0000 1000”.
2. B: Load Address Low Byte, $00.
3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.
4. Set OE to “1”.

26.8 Serial Downloading
Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while RESET is
pulled to GND. The serial interface consists of pins SCK, MOSI (input), and MISO (output). After RESET is set
low, the Programming Enable instruction needs to be executed first before program/erase operations can be
executed. NOTE, in Table 26-11 on page 262, the pin mapping for SPI programming is listed. Not all parts use
the SPI pins dedicated for the internal SPI interface.

26.8.1 SPI Serial Programming Pin Mapping

Fuse Low Byte

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Table 26-11. Pin Mapping SPI Serial Programming

Symbol Pins I/O Description

MOSI PB5 I Serial Data in

MISO PB6 O Serial Data out

SCK PB7 I Serial Clock
262ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

After data is loaded to the page buffer, program the EEPROM page, see Figure 26-8 on page 266.

Figure 26-8. Serial Programming Instruction example

Byte 1 Byte 2 Byte 3 Byte 4

Adr MSB Adr LSB

Bit 15 B 0

Serial Programming Instruction

Program Memory/
EEPROM Memory

Page 0

Page 1

Page 2

Page N-1

Page Buffer

Write Program Memory Page/
Write EEPROM Memory Page

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (page access)

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15 B 0

Adr MSB Adr LSB

Page Offset

Page Number

Adrdr Mr MSSBA AAdrdr LS LSBSB
266ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 26-9. State Machine Sequence for Changing the Instruction Word

26.10.2 AVR_RESET ($C)

The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking the device out
from the Reset Mode. The TAP controller is not reset by this instruction. The one bit Reset Register is selected
as Data Register. Note that the Reset will be active as long as there is a logic “one” in the Reset Chain. The
output from this chain is not latched.

The active states are:

Shift-DR: The Reset Register is shifted by the TCK input.

26.10.3 PROG_ENABLE ($4)

The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-bit Programming
Enable Register is selected as Data Register. The active states are the following:

Shift-DR: The programming enable signature is shifted into the Data Register.
Update-DR: The programming enable signature is compared to the correct value, and Programming
mode is entered if the signature is valid.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11
268ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

27.3 Speed Grades

Figure 27-1. Maximum Frequency vs VCC.

27.4 Clock Characteristics

27.4.1 External Clock Drive Waveforms

Figure 27-2. External Clock Drive Waveforms

27.4.2 External Clock Drive

2.7V 4.5V 5.5V

Safe Operating Area

16 MHz

8 MHz

VIL1

VIH1

Figure 27-3. External Clock Drive(1)

Symbol Parameter

VCC = 2.7V to 5.5V VCC = 4.5V to 5.5V

UnitsMin Max Min Max

1/tCLCL Oscillator Frequency 0 8 0 16 MHz

tCLCL Clock Period 125 62.5 ns

tCHCX High Time 50 25 ns

tCLCX Low Time 50 25 ns
281ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

27.9 ADC Characteristics

Table 27-6. ADC Characteristics

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units

Resolution

Single Ended Conversion 10 Bits

Differential Conversion
Gain = 1x or 10x 8 Bits

Differential Conversion
Gain = 200x 7 Bits

Absolute Accuracy (Including INL, DNL,
Quantization Error, Gain, and Offset Error).

Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200kHz

1.5 2.5 LSB

Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 1MHz

3 4 LSB

Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200kHz
Noise Reduction mode

1.5 LSB

Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 1MHz
Noise Reduction mode

3 LSB

Integral Non-linearity (INL)
Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200kHz

1 LSB

Differential Non-linearity (DNL)
Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200kHz

0.5 LSB

Gain Error
Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200kHz

1 LSB

Offset Error
Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200kHz

LSB

Conversion Time Free Running Conversion 13 260 µs

Clock Frequency 50 1000 kHz

AVCC Analog Supply Voltage VCC - 0.3(2) VCC + 0.3(3) V

VREF Reference Voltage
Single Ended Conversion 2.0 AVCC V

Differential Conversion 2.0 AVCC - 0.2 V

VIN

Input voltage
Single ended channels GND VREF V

Differential channels 0 VREF V

Input bandwidth
Single ended channels 38.5 kHz

Differential channels 4 kHz

VINT Internal Voltage Reference 2.3 2.6 2.9 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ
287ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

32.3 44M1

TITLE DRAWING NO.GPC REV.
 Package Drawing Contact:
 packagedrawings@atmel.com 44M1ZWS H

44M1, 44-pad, 7 x 7 x 1.0mm body, lead
pitch 0.50mm, 5.20mm exposed pad, thermally
enhanced plastic very thin quad flat no
lead package (VQFN)

02/13/2014

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOT E

 A 0.80 0.90 1.00

 A1 – 0.02 0.05

 A3 0.20 REF

 b 0.18 0.23 0.30

 D

 D2 5.00 5.20 5.40

6.90 7.00 7.10

6.90 7.00 7.10

 E

 E2 5.00 5.20 5.40

 e 0.50 BSC

 L 0.59 0.64 0.69

K 0.20 0.26 0.41Note: JEDEC Standard MO-220, Fig . 1 (S AW Singulation) VKKD-3 .

TOP VIE W

SIDE VIEW

B OT TOM VIE W

D

E

Marked Pin# 1 I D

E2

D2

b e

Pin #1 Co rner
L

A1

A3

A

SE ATING PLAN E

Pin #1
Triangle

Pin #1
Cham fer
(C 0.30)

Option A

Option B

Pin #1
Notch
(0.20 R)

Option C

K

K

1
2
3

327ATmega16A [DATASHEET]
Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

