

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Active
Туре	SC3850 Single Core
Interface	Ethernet, I ² C, PCI, RGMII, Serial RapidIO, SGMII, SPI, UART/USART
Clock Rate	1GHz
Non-Volatile Memory	ROM (96kB)
On-Chip RAM	576kB
Voltage - I/O	2.50V
Voltage - Core	1.00V
Operating Temperature	-40°C ~ 105°C
Mounting Type	Surface Mount
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=msc8151tag1000b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Pin Assignment

This section includes diagrams of the MSC8151 package ball grid array layouts and tables showing how the pinouts are allocated for the package.

1.1 FC-PBGA Ball Layout Diagram

The top view of the FC-PBGA package is shown in Figure 3 with the ball location index numbers.

Top View

Figure 3. MSC8151 FC-PBGA Package, Top View

MSC8151 Single-Core Digital Signal Processor Data Sheet, Rev. 6

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
G7	M2CKE0	0	GVDD2
G8	M2A11	0	GVDD2
G9	M2A7	0	GVDD2
G10	M2CK2	0	GVDD2
G11	M2APAR_OUT	0	GVDD2
G12	M2ODT1	0	GVDD2
G13	M2APAR_IN	I	GVDD2
G14	M2DQ43	I/O	GVDD2
G15	M2DM5	0	GVDD2
G16	M2DQ44	I/O	GVDD2
G17	M2DQ40	I/O	GVDD2
G18	M2DQ59	I/O	GVDD2
G19	M2DM7	0	GVDD2
G20	M2DQ60	I/O	GVDD2
G21	Reserved	NC	_
G22	Reserved	NC	_
G23	SXPVSS1	Ground	N/A
G24	SXPVDD1	Power	N/A
G25	SR1_IMP_CAL_TX	I	SXCVDD1
G26	SXCVSS1	Ground	N/A
G27	Reserved	NC	_
G28	Reserved	NC	_
H1	GVDD2	Power	N/A
H2	VSS	Ground	N/A
H3	M2DQ18	I/O	GVDD2
H4	GVDD2	Power	N/A
H5	VSS	Ground	N/A
H6	M2DQ20	I/O	GVDD2
H7	GVDD2	Power	N/A
H8	VSS	Ground	N/A
H9	M2A15	0	GVDD2
H10	M2CK2	0	GVDD2
H11	M2MDIC0	I/O	GVDD2
H12	M2VREF	I	GVDD2
H13	M2MDIC1	I/O	GVDD2
H14	M2DQ46	I/O	GVDD2
H15	M2DQ47	I/O	GVDD2
H16	M2DQ45	I/O	GVDD2
H17	M2DQ41	I/O	GVDD2
H18	M2DQ62	I/O	GVDD2
H19	M2DQ63	I/O	GVDD2
H20	M2DQ61	I/O	GVDD2
H21	Reserved	NC	_
H22	Reserved	NC	_
H23	SR1_TXD3/SG2_TX ⁴	0	SXPVDD1
H24	SR1_TXD3/SG2_TX ⁴	0	SXPVDD1
1		L	1

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
K15	VDD	Power	N/A
K16	VSS	Ground	N/A
K17	VSS	Ground	N/A
K18	VSS	Ground	N/A
K19	VDD	Power	N/A
K20	Reserved	NC	—
K21	Reserved	NC	—
K22	Reserved	NC	—
K23	SXPVDD2	Power	N/A
K24	SXPVSS2	Ground	N/A
K25	SXCVDD2	Power	N/A
K26	SXCVSS2	Ground	N/A
K27	SXCVDD2	Power	N/A
K28	SXCVSS2	Ground	N/A
L1	M2DQ9	I/O	GVDD2
L2	M2DQ12	I/O	GVDD2
L3	M2DQ13	I/O	GVDD2
L4	M2DQS0	I/O	GVDD2
L5	M2DQS0	I/O	GVDD2
L6	M2DM0	0	GVDD2
L7	M2DQ3	I/O	GVDD2
L8	M2DQ2	I/O	GVDD2
L9	M2DQ4	I/O	GVDD2
L10	VDD	Power	N/A
L11	VSS	Ground	N/A
L12	M3VDD	Power	N/A
L13	VSS	Ground	N/A
L14	VSS	Ground	N/A
L15	VSS	Ground	N/A
L16	VSS	Ground	N/A
L17	VSS	Ground	N/A
L18	VDD	Power	N/A
L19	VSS	Ground	N/A
L20	Reserved	NC	—
L21	Reserved	NC	—
L22	Reserved	NC	—
L23	SR2_TXD3/PE_TXD3/SG2_TX ⁴	0	SXPVDD2
L24	SR2_TXD3/PE_TXD3/SG2_TX ⁴	0	SXPVDD2
L25	SXCVSS2	Ground	N/A
L26	SXCVDD2	Power	N/A
L27	SR2_RXD3/PE_RXD3/SG2_RX ⁴	I	SXCVDD2
L28	SR2_RXD3/PE_RXD3/SG2_RX ⁴	I	SXCVDD2
M1	M2DQ8	I/O	GVDD2
M2	VSS	Ground	N/A
M3	GVDD2	Power	N/A
M4	M2DQ15	I/O	GVDD2

MSC8151 Single-Core Digital Signal Processor Data Sheet, Rev. 6

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
N23	SR2_TXD2/PE_TXD2/SG1_TX ⁴	0	SXPVDD2
N24	SR2_TXD2/PE_TXD2/SG1_TX ⁴	0	SXPVDD2
N25	SXCVDD2	Power	N/A
N26	SXCVSS2	Ground	N/A
N27	SR2_RXD2/PE_RXD2/SG1_RX ⁴	I	SXCVDD2
N28	SR2_RXD2/PE_RXD2/SG1_RX ⁴	I	SXCVDD2
P1	CLKIN	I	QVDD
P2	EE0	I	QVDD
P3	QVDD	Power	N/A
P4	VSS	Ground	N/A
P5	STOP_BS	I	QVDD
P6	QVDD	Power	N/A
P7	VSS	Ground	N/A
P8	PLL0_AVDD ⁹	Power	VDD
P9	PLL2_AVDD ⁹	Power	VDD
P10	VSS	Ground	N/A
P11	VDD	Power	N/A
P12	VSS	Ground	N/A
P13	VDD	Power	N/A
P14	VSS	Ground	N/A
P15	MVDD	Power	N/A
P16	VSS	Ground	N/A
P17	MVDD	Power	N/A
P18	VSS	Ground	N/A
P19	VDD	Power	N/A
P20	Reserved	NC	—
P21	Reserved	NC	—
P22	Reserved	NC	—
P23	SXPVDD2	Power	N/A
P24	SXPVSS2	Ground	N/A
P25	SR2_PLL_AGND ⁹	Ground	SXCVSS2
P26	SR2_PLL_AVDD ⁹	Power	SXCVDD2
P27	SXCVSS2	Ground	N/A
P28	SXCVDD2	Power	N/A
R1	VSS	Ground	N/A
R2	NMI	I	QVDD
R3	NMI_OUT ⁶	0	QVDD
R4	HRESET ^{6,7}	I/O	QVDD
R5	INT_OUT ⁶	0	QVDD
R6	EE1	0	QVDD
R7	VSS	Ground	N/A
R8	PLL1_AVDD ⁹	Power	VDD
R9	VSS	Ground	N/A
R10	VDD	Power	N/A
R11	VSS	Non-user	N/A
R12	VDD	Power	N/A

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
U3	GVDD1	Power	N/A
U4	M1DQ15	I/O	GVDD1
U5	M1DQ1	I/O	GVDD1
U6	VSS	Ground	N/A
U7	GVDD1	Power	N/A
U8	M1DQ7	I/O	GVDD1
U9	M1DQ6	I/O	GVDD1
U10	VDD	Power	N/A
U11	VSS	Ground	N/A
U12	M3VDD	Power	N/A
U13	VSS	Ground	N/A
U14	VDD	Power	N/A
U15	VSS	Ground	N/A
U16	VDD	Power	N/A
U17	VSS	Ground	N/A
U18	VDD	Power	N/A
U19	VSS	Ground	N/A
U20	VSS	Ground	N/A
U21	VSS	Ground	N/A
U22	VSS	Non-user	N/A
U23	SR2_TXD0/PE_TXD0 ⁴	0	SXPVDD2
U24	SR2_TXD0/PE_TXD0 ⁴	0	SXPVDD2
U25	SXCVDD2	Power	N/A
U26	SXCVSS2	Ground	N/A
U27	SR2_RXD0/PE_RXD0 ⁴	I	SXCVDD2
U28	SR2_RXD0/PE_RXD0 ⁴	I	SXCVDD2
V1	M1DQ9	I/O	GVDD1
V2	M1DQ12	I/O	GVDD1
V3	M1DQ13	I/O	GVDD1
V4	M1DQS0	I/O	GVDD1
V5	M1DQS0	I/O	GVDD1
V6	M1DM0	0	GVDD1
V7	M1DQ3	I/O	GVDD1
V8	M1DQ2	I/O	GVDD1
V9	M1DQ4	I/O	GVDD1
V10	VSS	Ground	N/A
V11	VDD	Power	N/A
V12	VSS	Ground	N/A
V13	VDD	Power	N/A
V14	VSS	Ground	N/A
V15	VDD	Power	N/A
V16	VSS	Ground	N/A
V17	VDD	Power	N/A
V18	VSS	Ground	N/A
V19	VDD	Power	N/A
V20	NVDD	Power	N/A

AB1 MIDGS2 I/O GVDD1 AB2 MIDQS2 I/O GVDD1 AB3 MIDQ19 I/O GVDD1 AB4 MIDM2 0 GVDD1 AB5 MIDQ21 I/O GVDD1 AB5 MIDQ22 I/O GVDD1 AB7 MICKE0 0 GVDD1 AB8 MIA11 0 GVDD1 AB8 MIA1 0 GVDD1 AB9 MIA7 0 GVDD1 AB10 MICK2 0 GVDD1 AB11 MIAPR_QUT 0 GVDD1 AB13 MIAPR_IN 1 GVDD1 AB13 MIAPR_IN 1 GVDD1 AB14 MIDQ43 I/O GVDD1 AB15 MIDQ40 I/O GVDD1 AB17 MIDQ40 I/O GVDD1 AB18 MIDQ59 I/O GVDD1 AB20 MIDQ60 I/O N/D	Ball Number	Signal Name ^{1,2}	Signal Name ^{1,2} Pin Type ¹⁰	
AB2 MIDOS2 I/O GVDD1 AB3 MIDO19 I/O GVDD1 AB4 MIDM2 0 GVDD1 AB6 MIDO21 I/O GVDD1 AB6 MIDO21 I/O GVDD1 AB6 MIDO21 I/O GVDD1 AB7 MICKE0 0 GVDD1 AB8 MIA11 0 GVDD1 AB9 MIA7 0 GVDD1 AB1 MIAPAR_OUT 0 GVDD1 AB12 MIOD19 0 GVDD1 AB13 MIAPAR_OUT 0 GVDD1 AB14 MIDO43 I/O GVD1 AB13 MIAPAR_IN 1 GVD1 AB14 MIDQ43 I/O GVD1 AB15 MIDM3 0 GVD1 AB16 MIDQ40 I/O GVD1 AB18 MIDC40 I/O GVD1 AB19 MIDM60 I/O N/A	AB1	M1DQS2	I/O	GVDD1
AB3 M1D019 UO GVDD1 AB4 M1D021 UO GVDD1 AB6 M1D021 UO GVDD1 AB6 M1D022 UO GVDD1 AB7 M1CKE0 O GVDD1 AB8 M1A1 O GVDD1 AB9 M1A7 O GVDD1 AB9 M1A7 O GVDD1 AB10 M1CK2 O GVDD1 AB11 M1APAR_OUT O GVDD1 AB12 M1D011 O GVDD1 AB13 M1APAR_IN I GVDD1 AB14 M1D043 UO GVDD1 AB15 M1D04 UO GVDD1 AB16 M1D240 UO GVDD1 AB18 M1D260 UO GVDD1 AB12 VSS Ground NA AB22 GPIO271MR4RCW_SRC5 ^{5.8} IO NVDD AB23 GPIO271MR4RCW_SRC5 ^{5.8} IO <td< td=""><td>AB2</td><td>M1DQS2</td><td>I/O</td><td>GVDD1</td></td<>	AB2	M1DQS2	I/O	GVDD1
AB4 M1M2 O GVDD1 AB5 M1DQ21 I/O GVDD1 AB6 M1DQ22 I/O GVDD1 AB7 M1CKE0 O GVDD1 AB8 M1A1 O GVDD1 AB8 M1A7 O GVDD1 AB8 M1A7 O GVDD1 AB10 M1CK2 O GVDD1 AB11 M1APAR_DUT O GVDD1 AB13 M1APAR_IN I GVDD1 AB13 M1APAR_IN I GVDD1 AB14 M1D043 I/O GVD1 AB16 M1D044 I/O GVD1 AB16 M1D040 I/O GVD1 AB19 M1DM7 O GVD1 AB22 GPI031/12_SDA ^{5,8} I/O NVD AB23 GPI031/12_SDA ^{5,8} I/O NVD AB24 GPI031/12_SDA ^{5,8} I/O NVDD AB25 GPI003/172_SDA ^{5,8} I/	AB3	M1DQ19	I/O	GVDD1
AB5 M10Q21 I/O GVDD1 AB6 M1DQ22 I/O GVDD1 AB7 M1CKE0 0 GVDD1 AB8 M1A1 0 GVDD1 AB9 M1A7 0 GVDD1 AB9 M1A7 0 GVDD1 AB10 M1CK2 0 GVDD1 AB11 M1APAR_OUT 0 GVDD1 AB12 M10D11 0 GVDD1 AB13 M1APAR_IN I GVDD1 AB14 M1D43 I/O GVDD1 AB15 M1D45 0 GVDD1 AB16 M1D040 I/O GVDD1 AB17 M1D240 I/O GVDD1 AB18 M1D260 I/O GVDD1 AB20 M1D460 I/O GVDD1 AB21 VSS Ground NA AB22 GPI027/TMR4/RCW_SRC2^5.8 I/O NVDD AB23 GPI02/FMR2/RCW_SRC2^5.8 I/O	AB4	M1DM2	0	GVDD1
AB6 M1022 I/O GVD11 AB7 M1CKE0 O GVD01 AB8 M1A1 O GVD01 AB8 M1A7 O GVD01 AB9 M1A7 O GVD01 AB10 MTCKE O GVD01 AB11 M1APAR_OUT O GVD01 AB12 M10DT1 O GVD01 AB13 M1APAR_DIN I GVD01 AB14 M10A3 I/O GVD01 AB16 M1DQ40 I/O GVD01 AB17 M1DQ40 I/O GVD01 AB18 M1DQ55 I/O GVD01 AB19 M1DQ60 I/O GVD01 AB20 M1DQ60 I/O GVD01 AB23 GPI031/2C, SDA ^{5,8} I/O NVDD AB24 GPI031/2C, SDA ^{5,8} I/O NVDD AB25 GPI031/2C, SDA ^{5,8} I/O NVDD AB26 GPI01/MR1/RCW_SRC2 ^{5,8} </td <td>AB5</td> <td>M1DQ21</td> <td>I/O</td> <td>GVDD1</td>	AB5	M1DQ21	I/O	GVDD1
AB7 MCKE0 O GVDD1 AB8 M1A11 O GVDD1 AB9 M1A7 O GVDD1 AB10 MTCK2 O GVDD1 AB10 MTCK2 O GVDD1 AB11 M1APAR_OUT O GVDD1 AB12 M1ODT1 O GVDD1 AB13 MTAPAR_IN I GVDD1 AB14 M1DQ43 I/O GVDD1 AB16 M1DQ44 I/O GVDD1 AB16 M1DQ44 I/O GVDD1 AB18 M1DQ59 I/O GVDD1 AB19 M1DM7 O GVDD1 AB20 M1DQ69 I/O GVDD1 AB21 VSS I/O NVDD AB22 GPI03/I2C_SDA ^{5,8} I/O NVDD AB23 GPI02/TMR4/RCW_SRC2 ^{5,8} I/O NVDD AB24 GPI02/TMR4/RCW_SRC2 ^{5,8} I/O NVDD AB26 GPI00/IRG0/RC5 ^{6,6,}	AB6	M1DQ22	I/O	GVDD1
AB8 M1A1 O GVDD1 AB9 M1A7 O GVDD1 AB10 M1GK2 O GVDD1 AB11 M1APAR_OUT O GVDD1 AB12 M1ODT1 O GVDD1 AB13 M1APAR_IN I GVDD1 AB14 M1DQ43 I/O GVDD1 AB16 M1DQ43 I/O GVDD1 AB16 M1DQ40 I/O GVDD1 AB18 M1DQ59 I/O GVDD1 AB19 M1DM7 O GVDD1 AB21 VSS Ground N/A AB22 GPIO31/2C_SDA ^{8,3} I/O N/DD AB23 GPIO27/MR4/RCW_SRC6 ^{5,8} I/O N/DD AB24 GPIO27/MR4/RCW_SRC6 ^{5,8} I/O N/DD AB25 GPIO21/MR1/RCW_SRC5 ^{5,8} I/O N/DD AB26 GPIO03/RG3/RC5 ^{5,8} I/O N/DD AC1 VSS Ground N/A AC2 <td>AB7</td> <td>M1CKE0</td> <td>0</td> <td>GVDD1</td>	AB7	M1CKE0	0	GVDD1
AB9 M1A7 O GVDD1 AB10 MTCRZ O GVDD1 AB11 M1APAR_OUT O GVDD1 AB12 M1ODT1 O GVDD1 AB13 M1APAR_IN I GVDD1 AB14 M1DQ43 I/O GVDD1 AB15 M1DM5 O GVDD1 AB16 M1DQ44 I/O GVDD1 AB17 M1DQ59 I/O GVDD1 AB18 M1DQ59 I/O GVDD1 AB20 M1DQ59 I/O GVDD1 AB21 VSS Ground N/A AB22 GPI027/TMR4/RCW_SRC0 ^{5,8} I/O NVDD AB23 GPI027/TMR4/RCW_SRC0 ^{5,8} I/O NVDD AB24 GPI027/TMR4/RCW_SRC2 ^{5,8} I/O NVDD AB25 GPI00/IRQ16/RC16,8 I/O NVDD AB26 GPI00/IRQ16/RC16,8 I/O NVDD AB27 GPI05/IRQ5/RC5,8 I/O NVDD	AB8	M1A11	0	GVDD1
AB10 MTCK2 O GVDD1 AB11 M1APAR_OUT O GVDD1 AB12 M1ODT1 O GVDD1 AB13 MTAPAR_IN I GVDD1 AB14 M1DC43 IO GVDD1 AB15 M1DM5 O GVDD1 AB16 M1DC43 IO GVDD1 AB16 M1DC44 IO GVDD1 AB17 M1DC40 IO GVDD1 AB18 M1DC49 O GVDD1 AB18 M1DC40 IO GVDD1 AB20 M1DC60 I/O GVDD1 AB21 VSS Ground N/A AB22 GPI031/2C_SDA ^{5,8} I/O NVDD AB23 GPI025/TMR2/RCW_SRC1 ^{5,8} I/O NVDD AB24 GPI025/TMR2/RCW_SRC1 ^{5,8} I/O NVDD AB25 GPI00/IRG0/RC0 ^{6,8} I/O NVDD AB28 GPI00/IRG0/RC0 ^{6,8} I/O NVD AC1 </td <td>AB9</td> <td>M1A7</td> <td>0</td> <td>GVDD1</td>	AB9	M1A7	0	GVDD1
AB11 M1APAR_OUT O GVDD1 AB12 M1ODT1 O GVDD1 AB13 M1APAR_IN I GVDD1 AB14 M1DQ43 I/O GVDD1 AB15 M1DQ43 I/O GVDD1 AB16 M1DQ44 I/O GVDD1 AB16 M1DQ40 I/O GVDD1 AB18 M1DQ40 I/O GVDD1 AB19 M1DQ40 I/O GVDD1 AB20 M1DQ60 I/O GVD1 AB21 VSS Ground N/A AB22 GPIO2/TMR4/RCW_SRC5 ^{5,8} I/O NVDD AB23 GPIO2/TMR4/RCW_SRC5 ^{5,8} I/O NVDD AB24 GPIO2/TMR4/RCW_SRC5 ^{5,8} I/O NVDD AB25 GPIO2/TMR4/RCW_SRC5 ^{5,8} I/O NVDD AB26 GPIO10/RGG/RC5 ^{6,8} I/O NVDD AB27 GPIO5/RGG/RC5 ^{5,8} I/O NVD AC1 VSS Ground N/A <td>AB10</td> <td>M1CK2</td> <td>0</td> <td>GVDD1</td>	AB10	M1CK2	0	GVDD1
AB12 M10DT1 O GVDD1 AB13 M1APAR_IN I GVDD1 AB14 M1D043 I/O GVDD1 AB15 M1DM5 O GVDD1 AB16 M1D044 I/O GVDD1 AB17 M1DQ40 I/O GVDD1 AB18 M1DQ40 I/O GVDD1 AB18 M1DQ40 I/O GVDD1 AB18 M1DQ40 O GVD1 AB18 M1DQ59 I/O GVD1 AB20 M1DQ60 I/O GVD1 AB21 VSS Ground N/A AB22 GPI031/I2C_SDA ^{5,8} I/O NVDD AB23 GPI02/TIMR/RCW_SRC0 ^{5,8} I/O NVDD AB24 GPI02/TIMR/RCW_SRC2 ^{5,8} I/O NVDD AB25 GPI02/TIMR/RCW_SRC2 ^{5,8} I/O NVDD AB26 GPI00/IRQ0/RC10 ^{5,8} I/O NVDD AB27 GPI00/IRQ0/RC10 ^{5,8} I/O NVDD	AB11	M1APAR_OUT	0	GVDD1
AB13 M1APAR_IN I GVDD1 AB14 M1DQ43 I/O GVDD1 AB15 M1DMS O GVDD1 AB15 M1DQ44 I/O GVDD1 AB16 M1DQ44 I/O GVDD1 AB17 M1DQ40 I/O GVDD1 AB18 M1DQ59 I/O GVDD1 AB19 M1DM7 O GVDD1 AB20 M1DQ60 I/O GVDD1 AB21 VSS Ground N/A AB22 GPIO3/I2C_SDA ^{5,8} I/O NVDD AB23 GPIO2/TIME4/RCW_SRC0 ^{5,8} I/O NVDD AB24 GPIO2/TIME4/RCW_SRC2 ^{5,8} I/O NVDD AB25 GPIO2/TIME4/RCW_SRC2 ^{5,8} I/O NVDD AB26 GPIO1/IRG10/RC10 ^{5,8} I/O NVDD AB27 GPIO3/IRG2/RC5 ^{5,8} I/O NVDD AB28 GPIO1/IRG10/RC10 ^{5,8} I/O NVDD AB29 GPIO1/IRG3/RC10 ^{5,8} I/O	AB12	M1ODT1	0	GVDD1
AB14 M1DQ43 I/O GVDD1 AB15 M1DM5 O GVDD1 AB16 M1DQ44 I/O GVDD1 AB17 M1DQ40 I/O GVDD1 AB18 M1DQ59 I/O GVDD1 AB19 M1DA7 O GVDD1 AB20 M1DQ60 I/O GVDD1 AB20 M1DQ60 I/O GVDD1 AB21 VSS Ground N/A AB22 GPIO31/I2C_SDA ^{5,8} I/O NVDD AB23 GPIO27/TMR4/RCW_SRC0 ^{5,8} I/O NVDD AB24 GPIO25/TMR2/RCW_SRC1 ^{5,8} I/O NVDD AB25 GPIO24/TMR1/RCW_SRC2 ^{5,8} I/O NVDD AB26 GPIO10/IRQ10/RC16 ^{5,3} I/O NVDD AB27 GPIO5/IRQ5/RC5 ^{5,8} I/O NVDD AB28 GPIO1/IRQ10/RC16 ^{5,8} I/O NVDD AC1 VSS Ground N/A AC2 GVD1 Power N/A	AB13	M1APAR_IN	I	GVDD1
AB15 M1DM5 O GVD1 AB16 M1D044 I/O GVD1 AB17 M1D040 I/O GVD1 AB17 M1D059 I/O GVD1 AB18 M1D059 I/O GVD1 AB19 M1DM7 O GVD1 AB20 M1D060 I/O GVD1 AB21 VSS Ground N/A AB22 GPI031/I2C_SDA ^{5,8} I/O NVDD AB23 GPI027/TMR4/RCW_SRC0 ^{5,8} I/O NVDD AB24 GPI025/TMR2/RCW_SRC1 ^{5,8} I/O NVDD AB25 GPI024/TMR1/RCW_SRC2 ^{5,8} I/O NVDD AB26 GPI00/IRQ10/RC10 ^{6,8} I/O NVDD AB27 GPI03/IRQ5/RC5 ^{5,8} I/O NVDD AC1 VSS Ground N/A AC2 GVD1 Power N/A AC2 GVD1 Power N/A AC3 M1D016 I/O GVD1	AB14	M1DQ43	I/O	GVDD1
AB16 M1DQ44 I/O GVDD1 AB17 M1DQ40 I/O GVDD1 AB18 M1DQ59 I/O GVDD1 AB18 M1DQ59 I/O GVDD1 AB18 M1DQ60 I/O GVDD1 AB20 M1DQ60 I/O GVDD1 AB21 VSS Ground N/A AB22 GPI031/I2C_SDA ^{5,8} I/O NVDD AB23 GPI027/TMR4/RCW_SRC0 ^{5,8} I/O NVDD AB24 GPI026/TMR2/RCW_SRC1 ^{5,8} I/O NVDD AB25 GPI02/TRQ7/RC10 ^{5,8} I/O NVDD AB26 GPI01/IRQ10/RC10 ^{5,8} I/O NVDD AB27 GPI06/IRQ5/RC5 ^{6,8} I/O NVDD AB28 GPI00/IRQ1/RQ6/RC5 ^{6,8} I/O NVDD AB28 GPI00/IRQ1/RQ6/RC5 ^{6,8} I/O NVDD AC2 GVD1 Power N/A AC3 M1DQ16 I/O GVD1 AC4 VSS Ground	AB15	M1DM5	0	GVDD1
AB17 M1DQ40 I/O GVDD1 AB18 M1DQ59 I/O GVDD1 AB19 M1DM7 O GVDD1 AB20 M1DQ60 I/O GVDD1 AB20 M1DQ60 I/O GVDD1 AB21 VSS Ground NA AB22 GPIO31/I2C_SDA ^{5,8} I/O NVDD AB23 GPIO27/TMR4/RCW_SRC0 ^{5,8} I/O NVDD AB24 GPIO25/TMR2/RCW_SRC5 ^{5,8} I/O NVDD AB25 GPIO24/TMR1/RCW_SRC2 ^{5,8} I/O NVDD AB26 GPIO10/IRQ10/RC10 ^{5,8} I/O NVDD AB27 GPIO5/IRQ5/RC5 ^{5,8} I/O NVDD AB28 GPIO0/IRQ10/RC0 ^{5,8} I/O NVDD AC1 VSS Ground N/A AC2 GVD1 Power N/A AC3 M1DQ16 I/O GVD1 AC4 VSS Ground N/A AC5 GVD1 Power N/A </td <td>AB16</td> <td>M1DQ44</td> <td>I/O</td> <td>GVDD1</td>	AB16	M1DQ44	I/O	GVDD1
AB18 M1DQ59 I/O GVDD1 AB19 M1DM7 O GVDD1 AB20 M1DQ60 I/O GVDD1 AB20 M1DQ60 I/O GVDD1 AB21 VSS Ground N/A AB22 GPI031/12C_SDA ^{5.8} I/O NVDD AB23 GPI027/TIMR4/RCW_SRC0 ^{5.8} I/O NVDD AB24 GPI025/TMR2/RCW_SRC1 ^{5.8} I/O NVDD AB25 GPI021/IRQ10/RC10 ^{5.8} I/O NVDD AB26 GPI010/IRQ10/RC10 ^{5.8} I/O NVDD AB27 GPI05/IRQ5/RC5 ^{5.8} I/O NVDD AB28 GPI00/IRQ0/RC0 ^{5.8} I/O NVDD AC1 VSS Ground N/A AC2 GVDD1 Power N/A AC3 M1DQ16 I/O GVD1 AC4 VSS Ground N/A AC6 M1DQ17 I/O GVD1 AC4 VSS Ground N/A	AB17	M1DQ40	I/O	GVDD1
AB19 M1DM7 O GVDD1 AB20 M1DQ60 I/O GVDD1 AB21 VSS Ground N/A AB22 GPI031/I2C_SDA ^{5,8} I/O NVDD AB23 GPI027/TMR4/RCW_SRC0 ^{5,8} I/O NVDD AB24 GPI027/TMR2/RCW_SRC1 ^{5,8} I/O NVDD AB25 GPI024/TMR1/RCW_SRC2 ^{5,8} I/O NVDD AB26 GPI010/IRQ10/RC10 ^{5,8} I/O NVDD AB27 GPI05/IRG6/RC5 ^{5,8} I/O NVDD AB28 GPI00/IRQ0/RC0 ^{5,8} I/O NVDD AB28 GPI00/IRQ0/RC0 ^{5,8} I/O NVDD AC1 VSS Ground N/A AC2 GVD1 Power N/A AC3 M1DQ16 I/O GVD1 AC4 VSS Ground N/A AC6 M1DQ17 I/O GVD1 AC6 M1DQ17 I/O GVD1 AC10 VSS Ground N/A <td>AB18</td> <td>M1DQ59</td> <td>I/O</td> <td>GVDD1</td>	AB18	M1DQ59	I/O	GVDD1
AB20 M1DQ80 I/O GVD1 AB21 VSS Ground N/A AB22 GPI031/I2C_SDA ^{5.8} I/O NVDD AB23 GPI025/TIMR2/KCW_SRC0 ^{5.8} I/O NVDD AB24 GPI025/TIMR2/RCW_SRC1 ^{5.8} I/O NVDD AB25 GPI024/TIMR1/RCW_SRC2 ^{5.8} I/O NVDD AB26 GPI001/RQT0/RC10 ^{5.8} I/O NVDD AB27 GPI05//RQ5/RC5 ^{5.8} I/O NVDD AB28 GPI00//RQ0/RC0 ^{5.8} I/O NVDD AC1 VSS Ground N/A AC2 GVD1 Power N/A AC3 M1DQ16 I/O GVD1 AC4 VSS Ground N/A AC5 GVD1 Power N/A AC6 M1DQ17 I/O GVD1 AC7 VSS Ground N/A AC6 GVD1 Power N/A AC6 GVD1 Power N/A	AB19	M1DM7	0	GVDD1
AB21 VSS Ground N/A AB22 GPI031/I2C_SDA ^{5.8} I/O NVDD AB23 GPI027/TMR4/RCW_SRC0 ^{5.8} I/O NVDD AB24 GPI028/TMR2/RCW_SRC1 ^{5.8} I/O NVDD AB25 GPI024/TMR1/RCW_SRC2 ^{5.8} I/O NVDD AB26 GPI010/IRC10/RC10 ^{5.8} I/O NVDD AB27 GPI05/IRC5/RC5 ^{5.8} I/O NVDD AB28 GPI00/IRC0/RC0 ^{5.8} I/O NVDD AC1 VSS Ground N/A AC2 GVDD1 Power N/A AC3 MIDQ16 I/O GVDD1 AC4 VSS Ground N/A AC5 GVDD1 Power N/A AC6 MIDQ17 I/O GVD1 AC5 GVDD1 Power N/A AC6 MIDQ17 I/O GVD1 AC6 MIDQ17 I/O GVD1 AC6 MIDQ1 Power N/A	AB20	M1DQ60	I/O	GVDD1
AB22 GPI031/J2C_SDA ^{5,8} I/O NVDD AB23 GPI027/TMR4/RCW_SRC0 ^{5,8} I/O NVDD AB24 GPI025/TMR2/RCW_SRC1 ^{5,8} I/O NVDD AB25 GPI024/TMR1/RCW_SRC2 ^{5,8} I/O NVDD AB26 GPI010/IRQ10/RC10 ^{6,8} I/O NVDD AB27 GPI05/IRQ5/RC5 ^{5,8} I/O NVDD AB28 GPI00/IRQ0/RC0 ^{5,8} I/O NVDD AC1 VSS Ground N/A AC2 GVDD1 Power N/A AC3 M1DQ16 I/O GVDD1 AC4 VSS Ground N/A AC5 GVD1 Power N/A AC6 M1DQ17 I/O GVD11 AC7 VSS Ground N/A AC8 GVD1 Power N/A AC9 M1BA2 O GVD11 AC1 VSS Ground N/A AC1 GVS1 Power N/A <t< td=""><td>AB21</td><td>VSS</td><td>Ground</td><td>N/A</td></t<>	AB21	VSS	Ground	N/A
AB23 GPI027/TMR4/RCW_SRC0 ^{5,8} I/O NVDD AB24 GPI025/TMR2/RCW_SRC1 ^{5,8} I/O NVDD AB25 GPI024/TMR1/RCW_SRC2 ^{5,8} I/O NVDD AB26 GPI010//RQ10/RC10 ^{5,8} I/O NVDD AB27 GPI05//RQ3//RC5 ^{5,8} I/O NVDD AB28 GPI00//RQ3//RC5 ^{5,8} I/O NVDD AC1 VSS Ground N/A AC2 GVDD1 Power N/A AC3 M1D016 I/O GVD1 AC4 VSS Ground N/A AC5 GVD1 Power N/A AC6 M1D016 I/O GVD1 AC6 M1D017 I/O GVD1 AC6 M1D017 I/O GVD1 AC6 M1D017 I/O GVD1 AC7 VSS Ground N/A AC8 GVD1 Power N/A AC9 M1BA2 O GVD1 <t< td=""><td>AB22</td><td>GPIO31/I2C_SDA^{5,8}</td><td>I/O</td><td>NVDD</td></t<>	AB22	GPIO31/I2C_SDA ^{5,8}	I/O	NVDD
AB24 GPI025/TMR2/RCW_SRC1 ^{5,8} I/O NVDD AB25 GPI024/TMR1/RCW_SRC2 ^{5,8} I/O NVDD AB26 GPI010/IRQ10/RC10 ^{5,8} I/O NVDD AB27 GPI05/IRQ5/RC5 ^{5,8} I/O NVDD AB28 GPI00/IRQ0/RC0 ^{5,8} I/O NVDD AC1 VSS Ground N/A AC2 GVDD1 Power N/A AC3 M1DQ16 I/O GVDD1 AC4 VSS Ground N/A AC5 GVDD1 Power N/A AC6 M1DQ17 I/O GVD1 AC7 VSS Ground N/A AC8 GVD1 Power N/A AC10 VSS Ground N/A AC11	AB23	GPIO27/TMR4/RCW_SRC0 ^{5,8}	I/O	NVDD
AB25 GPI024/TMR1/RCW_SRC2 ^{5,8} I/O NVDD AB26 GPI010/IRQ10/RC10 ^{5,8} I/O NVDD AB27 GPI05/IRQ5/RC5 ^{5,8} I/O NVDD AB28 GPI00/IRQ0/RC0 ^{5,8} I/O NVDD AC1 VSS Ground N/A AC2 GVDD1 Power N/A AC3 M1DQ16 I/O GVDD1 AC4 VSS Ground N/A AC5 GVD1 Power N/A AC6 M1DQ17 I/O GVD1 AC7 VSS Ground N/A AC8 GVD1 Power N/A AC9 M1BA2 O GVD1 AC10 VSS Ground N/A AC11 GVD1 Power N/A AC8 GVD1 Power N/A AC9 M1BA2 O GVD1 AC10 VSS Ground N/A AC11 GVD1 <td< td=""><td>AB24</td><td>GPIO25/TMR2/RCW_SRC1^{5,8}</td><td>I/O</td><td>NVDD</td></td<>	AB24	GPIO25/TMR2/RCW_SRC1 ^{5,8}	I/O	NVDD
AB26GPI010/IRQ10/RC10 ^{5.8} I/ONVDDAB27GPI05/IRQ5/RC5 ^{5.8} I/ONVDDAB28GPI00/IRQ0/RC0 ^{5.8} I/ONVDDAC1VSSGroundN/AAC2GVDD1PowerN/AAC3M1DQ16I/OGVDD1AC4VSSGroundN/AAC5GVDD1PowerN/AAC6M1DQ17I/OGVDD1AC7VSSGroundN/AAC8GVDD1PowerN/AAC9M1BA2OGVDD1AC11GVDD1PowerN/AAC3M1A2OGVDD1AC4VSSGroundN/AAC5GVD1PowerN/AAC6M1DQ17I/OGVDD1AC7VSSGroundN/AAC8GVD1PowerN/AAC9M1BA2OGVD1AC11GVD1PowerN/AAC12M1A4OGVD1AC13VSSGroundN/AAC14GVD1PowerN/AAC15M1DQ42I/OGVD1AC16VSSGroundN/AAC17GVD1PowerN/AAC18M1DQ58I/OGVD1	AB25	GPIO24/TMR1/RCW_SRC2 ^{5,8}	I/O	NVDD
AB27GPIO5/IRQ5/RC5 ^{5.8} I/ONVDDAB28GPIO0/IRQ0/RC0 ^{5.8} I/ONVDDAC1VSSGroundN/AAC2GVD1PowerN/AAC3M1DQ16I/OGVDD1AC4VSSGroundN/AAC5GVD1PowerN/AAC6M1DQ17I/OGVDD1AC7VSSGroundN/AAC8GVD1PowerN/AAC9M1BA2OGVD11AC11GVD1PowerN/AAC12M1A4OGVD11AC13VSSGroundN/AAC14GVD1PowerN/AAC15M1DQ42I/OGVD11AC16VSSGroundN/AAC17GVD1PowerN/AAC18M1DQ58I/OGVD14	AB26	GPIO10/IRQ10/RC10 ^{5,8}	I/O	NVDD
AB28 GPIOUÍRQO/RC0 ^{5,8} I/O NVDD AC1 VSS Ground N/A AC2 GVDD1 Power N/A AC3 M1DQ16 I/O GVDD1 AC4 VSS Ground N/A AC5 GVDD1 GVD1 O GVD1 AC6 M1DQ17 I/O GVD1 AC7 VSS Ground N/A AC8 GVD1 O GVD1 AC7 VSS Ground N/A AC8 GVD1 O GVD1 AC10 VSS Ground N/A AC11 GVD1 O GVD1 AC12 M1A4 O GVD1 AC14 GVD1 O GVD1 AC15 M1DQ42 I/O GVD1 AC16 VSS Ground N/A AC17 GVD1 GVD1 Power N/A	AB27	GPI05/IRQ5/RC5 ^{5,8}	I/O	NVDD
AC1 VSS Ground N/A AC2 GVDD1 Power N/A AC3 M1DQ16 I/O GVDD1 AC4 VSS Ground N/A AC5 GVDD1 Power N/A AC6 M1DQ17 Power N/A AC6 M1DQ17 I/O GVDD1 AC7 VSS Ground N/A AC8 GVDD1 Power N/A AC9 M1BA2 O GVDD1 AC10 VSS Ground N/A AC11 GVDD1 Power N/A AC12 M1A4 O GVDD1 AC13 VSS Ground N/A AC14 GVDD1 Power N/A AC15 M1DQ42 I/O GVDD1 AC16 VSS Ground N/A AC17 GVDD1 MA GVD1 MA	AB28	GPIO0/IRQ0/RC0 ^{5,8}	I/O	NVDD
AC2GVDD1PowerN/AAC3M1DQ16I/OGVDD1AC4VSSGroundN/AAC5GVDD1PowerN/AAC6M1DQ17I/OGVDD1AC7VSSGroundN/AAC8GVDD1PowerN/AAC9M1BA2OGVDD1AC10VSSGroundN/AAC11GVDD1PowerN/AAC12M1A4OGVDD1AC13VSSGroundN/AAC14GVD1PowerN/AAC15M1DQ42I/OGVDD1AC16VSSGroundN/AAC17GVDD1PowerN/AAC18M1DQ58I/OGVDD1	AC1	VSS	Ground	N/A
AC3M1DQ16I/OGVDD1AC4VSSGroundN/AAC5GVDD1PowerN/AAC6M1DQ17I/OGVDD1AC7VSSGroundN/AAC8GVDD1PowerN/AAC9M1BA2OGVDD1AC10VSSGroundN/AAC11GVDD1PowerN/AAC12M1A4OGVDD1AC13VSSGroundN/AAC14GVDD1PowerN/AAC15M1DQ42I/OGVDD1AC16VSSGroundN/AAC17GVDD1PowerN/A	AC2	GVDD1	Power	N/A
AC4VSSGroundN/AAC5GVDD1PowerN/AAC6M1DQ17I/OGVDD1AC7VSSGroundN/AAC8GVDD1PowerN/AAC9M1BA2OGVDD1AC10VSSGroundN/AAC11GVDD1PowerN/AAC12M1A4OGVDD1AC13VSSGroundN/AAC14GVDD1PowerN/AAC15M1DQ42I/OGVDD1AC16VSSGroundN/AAC17GVDD1PowerN/AAC18M1DQ58I/OGVDD1	AC3	M1DQ16	I/O	GVDD1
AC5GVDD1PowerN/AAC6M1DQ17I/OGVDD1AC7VSSGroundN/AAC8GVDD1PowerN/AAC9M1BA2OGVDD1AC10VSSGroundN/AAC11GVDD1PowerN/AAC12M1A4OGVDD1AC13VSSGroundN/AAC14GVDD1PowerN/AAC15M1DQ42I/OGVDD1AC16VSSGroundN/AAC17GVDD1PowerN/A	AC4	VSS	Ground	N/A
AC6M1DQ17I/OGVDD1AC7VSSGroundN/AAC8GVDD1PowerN/AAC9M1BA2OGVDD1AC10VSSGroundN/AAC11GVDD1PowerN/AAC12M1A4OGVDD1AC13VSSGroundN/AAC14GVDD1PowerN/AAC15M1DQ42I/OGVDD1AC16VSSGroundN/AAC17GVDD1PowerN/A	AC5	GVDD1	Power	N/A
AC7VSSGroundN/AAC8GVDD1PowerN/AAC9M1BA2OGVDD1AC10VSSGroundN/AAC11GVDD1PowerN/AAC12M1A4OGVDD1AC13VSSGroundN/AAC14GVDD1PowerN/AAC15M1DQ42I/OGVDD1AC16VSSGroundN/AAC17GVDD1PowerN/A	AC6	M1DQ17	I/O	GVDD1
AC8GVDD1PowerN/AAC9M1BA2OGVDD1AC10VSSGroundN/AAC11GVDD1PowerN/AAC12M1A4OGVDD1AC13VSSGroundN/AAC14GVDD1PowerN/AAC15M1DQ42I/OGVDD1AC16VSSGroundN/AAC17GVDD1PowerN/AAC18M1DQ58I/OGVDD1	AC7	VSS	Ground	N/A
AC9M1BA2OGVDD1AC10VSSGroundN/AAC11GVDD1PowerN/AAC12M1A4OGVDD1AC13VSSGroundN/AAC14GVDD1PowerN/AAC15M1DQ42I/OGVDD1AC16VSSGroundN/AAC17GVDD1PowerN/AAC18M1DQ58I/OGVDD1	AC8	GVDD1	Power	N/A
AC10VSSGroundN/AAC11GVDD1PowerN/AAC12M1A4OGVDD1AC13VSSGroundN/AAC14GVDD1PowerN/AAC15M1DQ42I/OGVDD1AC16VSSGroundN/AAC17GVDD1PowerN/AAC18M1DQ58I/OGVDD1	AC9	M1BA2	0	GVDD1
AC11GVDD1PowerN/AAC12M1A4OGVDD1AC13VSSGroundN/AAC14GVDD1PowerN/AAC15M1DQ42I/OGVDD1AC16VSSGroundN/AAC17GVDD1PowerN/AAC18M1DQ58I/OGVDD1	AC10	VSS	Ground	N/A
AC12M1A4OGVDD1AC13VSSGroundN/AAC14GVDD1PowerN/AAC15M1DQ42I/OGVDD1AC16VSSGroundN/AAC17GVDD1PowerN/AAC18M1DQ58I/OGVDD1	AC11	GVDD1	Power	N/A
AC13VSSGroundN/AAC14GVDD1PowerN/AAC15M1DQ42I/OGVDD1AC16VSSGroundN/AAC17GVDD1PowerN/AAC18M1DQ58I/OGVDD1	AC12	M1A4	0	GVDD1
AC14 GVDD1 Power N/A AC15 M1DQ42 I/O GVDD1 AC16 VSS Ground N/A AC17 GVDD1 Power N/A AC18 M1DQ58 I/O GVDD1	AC13	VSS	Ground	N/A
AC15 M1DQ42 I/O GVDD1 AC16 VSS Ground N/A AC17 GVDD1 Power N/A AC18 M1DQ58 I/O GVDD1	AC14	GVDD1	Power	N/A
AC16 VSS Ground N/A AC17 GVDD1 Power N/A AC18 M1DQ58 I/O GVDD1	AC15	M1DQ42	I/O	GVDD1
AC17 GVDD1 Power N/A AC18 M1DQ58 I/O GVDD1	AC16	VSS	Ground	N/A
AC18 M1DQ58 I/O GVDD1	AC17	GVDD1	Power	N/A
	AC18	M1DQ58	I/O	GVDD1

Electrical Characteristics 2

This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the MSC8151 Reference Manual.

Maximum Ratings 2.1

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device with a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 2 describes the maximum electrical ratings for the MSC8151.

Rating	Power Rail Name	Symbol	Value	Unit
Core supply voltage	VDD	V _{DD}	-0.3 to 1.1	V
PLL supply voltage ³		V _{DDPLL0} V _{DDPLL1} V _{DDPLL2}	-0.3 to 1.1 -0.3 to 1.1 -0.3 to 1.1	V V V
M3 memory supply voltage	M3VDD	V _{DDM3}	-0.3 to 1.1	V
MAPLE-B supply voltage	MVDD	V _{DDM}	-0.3 to 1.1	V
DDR memory supply voltage • DDR2 mode • DDR3 mode	GVDD1, GVDD2	V _{ddddr}	-0.3 to 1.98 -0.3 to 1.65	V V
DDR reference voltage	MVREF	MV _{REF}	–0.3 to 0.51 \times V_{DDDDR}	V
Input DDR voltage		V _{INDDR}	–0.3 to V _{DDDDR} + 0.3	V
I/O voltage excluding DDR and RapidIO lines	NVDD, QVDD	V _{DDIO}	-0.3 to 2.625	V
Input I/O voltage		V _{INIO}	–0.3 to V _{DDIO} + 0.3	V
RapidIO pad voltage	SXPVDD1, SXPVDD2	V _{DDSXP}	-0.3 to 1.26	V
Rapid I/O core voltage	SXCVDD1, SXCVDD2	V _{DDSXC}	-0.3 to 1.21	V
Rapid I/O PLL voltage ³		V _{DDRIOPLL}	-0.3 to 1.21	V
Input RapidIO I/O voltage		V _{INRIO}	–0.3 to V _{DDSXC} + 0.3	V
Operating temperature		Тј	-40 to 105	°C
Storage temperature range		T _{STG}	-55 to +150	°C
Notes: 1. Eunctional operating conditions are	e given in Table 3.			

Table 2. Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond 2. the listed limits may affect device reliability or cause permanent damage.

3. PLL supply voltage is specified at input of the filter and not at pin of the MSC8151 (see Figure 37 and Figure 38)

2.3 Thermal Characteristics

Table 4 describes thermal characteristics of the MSC8151 for the FC-PBGA packages.

Characteristic	Symbol	FC-P 29 × 2	Unit	
	Symbol	Natural Convection	200 ft/min (1 m/s) airflow	Unit
Junction-to-ambient ^{1, 2}	R _{θJA}	18	12	°C/W
Junction-to-ambient, four-layer board ^{1, 2}	$R_{ ext{ heta}JA}$	13	9	°C/W
Junction-to-board (bottom) ³	$R_{ heta JB}$	5		°C/W
Junction-to-case ⁴	$R_{ ext{ heta}JC}$	0.6		°C/W

Table 4. Thermal Characteristics for the MSC8151

Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESDC51-6. Thermal test board meets JEDEC specification for the specified package.

3. Junction-to-board thermal resistance determined per JEDEC JESD 51-8. Thermal test board meets JEDEC specification for the specified package.

4. Junction-to-case at the top of the package determined using MIL- STD-883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer

2.4 CLKIN Requirements

Table 5 summarizes the required characteristics for the CLKIN signal.

Table 5. CLKIN Requirements

	Р	arameter/Condition ¹	Symbol	Min	Тур	Max	Unit	Notes
CLKIN duty cycle		—	40	_	60	%	2	
CLKIN s	slew r	ate	—	1	—	4	V/ns	3
CLKIN peak period jitter		—	—	—	±150	ps	—	
CLKIN jitter phase noise at –56 dBc		—	—	—	500	KHz	4	
AC input swing limits		ΔV_{AC}	1.5	—	—	V	—	
Input capacitance		C _{IN}	—	—	15	pf	—	
Notes:	1. 2. 3. 4.	For clock frequencies, see the <i>Clock</i> Measured at the rising edge and/or Slew rate as measured from ±20% t Phase noise is calculated as FET of	k chapter in the the falling edge to 80% of voltag	MSC8151 Refe at V _{DDIO} /2. ge swing at cloc	erence Manual. k input.			

rical Characteristics

2.5.1.4 DDR Reference Current Draw

Table 9 lists the current draw characteristics for MV_{REF}.

Note: Values when used at recommended operating conditions (see Table 3).

Parameter / Condition	Symbol	Min	Max	Unit
Current draw for MV _{REFn} • DDR2 SDRAM • DDR3 SDRAM	I _{MVREFn}		300 250	μΑ μΑ

Table 9. Current Draw Characteristics for MV_{REF}

2.5.2 High-Speed Serial Interface (HSSI) DC Electrical Characteristics

The MSC8151 features an HSSI that includes two 4-channel SerDes ports used for high-speed serial interface applications (PCI Express, Serial RapidIO interfaces, and SGMII). This section and its subsections describe the common portion of the SerDes DC, including the DC requirements for the SerDes reference clocks and the SerDes data lane transmitter (Tx) and receiver (Rx) reference circuits. The data lane circuit specifications are specific for each supported interface, and they have individual subsections by protocol. The selection of individual data channel functionality is done via the Reset Configuration Word High Register (RCWHR) SerDes Protocol selection fields (S1P and S2P). Specific AC electrical characteristics are defined in Section 2.6.2, "HSSI AC Timing Specifications."

2.5.2.1 Signal Term Definitions

The SerDes interface uses differential signalling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals. Figure 4 shows how the signals are defined. For illustration purposes only, one SerDes lane is used in the description. Figure 4 shows the waveform for either a transmitter output (SR[1–2]_TX and $\overline{SR[1–2]}_TX$) or a receiver input (SR[1–2]_RX and $\overline{SR[1–2]}_RX$). Each signal swings between A volts and B volts where A > B.

Figure 4. Differential Voltage Definitions for Transmitter or Receiver

Using this waveform, the definitions are listed in Table 10. To simplify the illustration, the definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signalling environment.

Term	Definition
Single-Ended Swing	The transmitter output signals and the receiver input signals $SR[1-2]_TX$, $\overline{SR[1-2]_TX}$, $SR[1-2]_RX$ and $\overline{SR[1-2]_RX}$ each have a peak-to-peak swing of A – B volts. This is also referred to as each signal wire's single-ended swing.
Differential Output Voltage, V _{OD} (or Differential Output Swing):	The differential output voltage (or swing) of the transmitter, V _{OD} , is defined as the difference of the two complimentary output voltages: $V_{SR[1-2]_TX} - V_{\overline{SR[1-2]_TX}}$. The V _{OD} value can be either positive or negative.
Differential Input Voltage, V _{ID} (or Differential Input Swing)	The differential input voltage (or swing) of the receiver, V_{ID} , is defined as the difference of the two complimentary input voltages: $V_{SR[1-2]_RX} - V_{\overline{SR[1-2]_RX}}$. The V_{ID} value can be either positive or negative.
Differential Peak Voltage, V _{DIFFp}	The peak value of the differential transmitter output signal or the differential receiver input signal is defined as the differential peak voltage, $V_{DIFFp} = A - B $ volts.
Differential Peak-to-Peak, V _{DIFFp-p}	Since the differential output signal of the transmitter and the differential input signal of the receiver each range from A – B to –(A – B) volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver input signal is defined as differential peak-to-peak voltage, $V_{DIFFp-p} = 2 \times V_{DIFFp} = 2 \times (A - B) $ volts, which is twice the differential swing in amplitude, or twice of the differential peak. For example, the output differential peak-peak voltage can also be calculated as $V_{TX-DIFFp-p} = 2 \times V_{OD} $.
Differential Waveform	The differential waveform is constructed by subtracting the inverting signal ($\overline{SR[1-2]}_{TX}$, for example) from the non-inverting signal ($\overline{SR[1-2]}_{TX}$, for example) within a differential pair. There is only one signal trace curve in a differential waveform. The voltage represented in the differential waveform is not referenced to ground. Refer to Figure 16 as an example for differential waveform.
Common Mode Voltage, V _{cm}	The common mode voltage is equal to half of the sum of the voltages between each conductor of a balanced interchange circuit and ground. In this example, for SerDes output, $V_{cm_out} = (V_{SR[1-2]_TX} + V_{SR[1-2]_TX}) \div 2 = (A + B) \div 2$, which is the arithmetic mean of the two complimentary output voltages within a differential pair. In a system, the common mode voltage may often differ from one component's output to the other's input. It may be different between the receiver input and driver output circuits within the same component. It is also referred to as the DC offset on some occasions.

Table 10. Differential Signal Definitions

To illustrate these definitions using real values, consider the example of a current mode logic (CML) transmitter that has a common mode voltage of 2.25 V and outputs, TD and TD. If these outputs have a swing from 2.0 V to 2.5 V, the peak-to-peak voltage swing of each signal (TD or TD) is 500 mV p-p, which is referred to as the single-ended swing for each signal. Because the differential signaling environment is fully symmetrical in this example, the transmitter output differential swing (V_{OD}) has the same amplitude as each signal single-ended swing. The differential output signal ranges between 500 mV and -500 mV. In other words, V_{OD} is 500 mV in one phase and -500 mV in the other phase. The peak differential voltage (V_{DIFFp}) is 500 mV. The peak-to-peak differential voltage (V_{DIFFp}) is 1000 mV p-p.

rical Characteristics

2.5.2.2 SerDes Reference Clock Receiver Characteristics

The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clock inputs are SR1_REF_CLK/SR1_REF_CLK or SR2_REF_CLK/SR2_REF_CLK. Figure 5 shows a receiver reference diagram of the SerDes reference clocks.

Figure 5. Receiver of SerDes Reference Clocks

The characteristics of the clock signals are as follows:

- The supply voltage requirements for V_{DDSXC} are as specified in Table 3.
- The SerDes reference clock receiver reference circuit structure is as follows:
 - The SR[1–2]_REF_CLK and SR[1–2]_REF_CLK are internally AC-coupled differential inputs as shown in Figure 5. Each differential clock input (SR[1–2]_REF_CLK or SR[1–2]_REF_CLK) has on-chip 50-Ω termination to GND_{SXC} followed by on-chip AC-coupling.
 - The external reference clock driver must be able to drive this termination.
 - The SerDes reference clock input can be either differential or single-ended. Refer to the differential mode and single-ended mode descriptions below for detailed requirements.
- The maximum average current requirement also determines the common mode voltage range.
 - When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA because the input is AC-coupled on-chip.
 - This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V / 50 = 8 mA) while the minimum common mode input level is 0.1 V above GND_{SXC}. For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 mA to 16 mA (0-0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.
 - If the device driving the SR[1–2]_REF_CLK and $\overline{SR[1-2]}_REF_CLK$ inputs cannot drive 50 Ω to GND_{SXC} DC or the drive strength of the clock driver chip exceeds the maximum input current limitations, it must be AC-coupled externally.
- The input amplitude requirement is described in detail in the following sections.

2.5.2.3 SerDes Transmitter and Receiver Reference Circuits

Figure 6 shows the reference circuits for SerDes data lane transmitter and receiver.

Note: The [1–2] indicates the specific SerDes Interface (1 or 2) and the m indicates the specific channel within that interface (0,1,2,3). Actual signals are assigned by the HRCW assignments at reset (see **Chapter 5**, *Reset* in the reference manual for details)

Figure 6. SerDes Transmitter and Receiver Reference Circuits

2.5.3 DC-Level Requirements for SerDes Interfaces

The following subsections define the DC-level requirements for the SerDes reference clocks, the PCI Express data lines, the Serial RapidIO data lines, and the SGMII data lines.

2.5.3.1 DC-Level Requirements for SerDes Reference Clocks

The DC-level requirement for the SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs, as described below:

- Differential Mode
 - The input amplitude of the differential clock must be between 400 mV and 1600 mV differential peak-peak (or between 200 mV and 800 mV differential peak). In other words, each signal wire of the differential pair must have a single-ended swing of less than 800 mV and greater than 200 mV. This requirement is the same for both external DC-coupled or AC-coupled connection.
 - For an external DC-coupled connection, the maximum average current requirements sets the requirement for average voltage (common mode voltage) as between 100 mV and 400 mV. Figure 7 shows the SerDes reference clock input requirement for DC-coupled connection scheme.

MSC8151 Single-Core Digital Signal Processor Data Sheet, Rev. 6

Figure 11 shows the DDR2 and DDR3 SDRAM interface input timing diagram.

Figure 11. DDR2 and DDR3 SDRAM Interface Input Timing Diagram

2.6.1.2 DDR SDRAM Output AC Timing Specifications

Table 21 provides the output AC timing specifications for the DDR SDRAM interface.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time	t _{MCK}	2.5	5	ns	2
ADDR/CMD output setup with respect to MCK • 800 MHz data rate • 667 MHz data rate	^t DDKHAS	0.917 1.10		ns ns	3
ADDR/CMD output hold with respect to MCK • 800 MHz data rate • 667 MHz data rate	^t DDKHAX	0.767 1.02		ns ns	3
MCSn output setup with respect to MCK • 800 MHz data rate • 667 MHz data rate	^t DDKHCS	0.917 1.10		ns ns	3
MCSn output hold with respect to MCK • 800 MHz data rate • 667 MHz data rate	tddkhcx	0.767 1.02		ns ns	3
MCK to MDQS Skew • 800 MHz data rate • 667 MHz data rate	t _{DDKHMH}	-0.4 -0.6	0.375 0.6	ns	4
MDQ/MECC/MDM output setup with respect to MDQS 800 MHz 667 MHz 	^t DDKHDS, ^t DDKLDS	300 375		ps ps	5
MDQ/MECC/MDM output hold with respect to MDQS 800 MHz 667 MHz 	t _{DDKHDX,} t _{DDKLDX}	300 375	_	ps ps	5
MDQS preamble	t _{DDKHMP}	$-0.9 \times t_{MCK}$	_	ns	_
MDQS postamble	t _{DDKHME}	$-0.4 imes t_{MCK}$	$-0.6 imes t_{MCK}$	ns	—

Table 21. DDR SDRAM Output AC Timing Specifications

MSC8151 Single-Core Digital Signal Processor Data Sheet, Rev. 6

_

Table 21. DDR SDRAM Output AC Timing Specifications (continued)

		Parameter	Symbol ¹	Min	Max	Unit	Notes	
Notes:	1. 2. 3. 4.	Parameter Symbol Min Max Unit Notes The symbols used for timing specifications follow the pattern of t _{(first two letters of functional block)(signal)(state)} for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, tDDKHAS symbolizes DDR timing (DD) for the time t _{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t _{DDKLDX} symbolizes DDR timing (DD) for the time t _{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time. All MCK/MCK referenced measurements are made from the crossing of the two signals. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS.						
	5.	from the rising edge of the MCK(n) clock (KH the DQSS override bits in the TIMING_CFG_ CLK_CNTL register. The timing parameters adjustment value. See the <i>MSC8151 Refere</i> enabled by use of these bits. Determined by maximum possible skew betw (MECC), or data mask (MDM). The data stro At recommended operating conditions with V	I) until the MDQS _2 register. This listed in the table <i>ince Manual</i> for a ween a data strol obe should be ce / _{DDDDR} (1.5 V or	signal is valid (MH). t will typically be set to a assume that these tw a description and under be (MDQS) and any contered inside of the dat $1,8 \text{ V}) \pm 5\%$.	DDKNMH can be modified DDKHMH can be modified the same delay as the vo parameters have be erstanding of the timing orresponding bit of data ata eye at the pins of the	ed through of clock adjust een set to th modification ta (MDQ), E ne MSC815	Control of st in the ne same ons CCC 1.	

Note: For the ADDR/CMD setup and hold specifications in Table 21, it is assumed that the clock control register is set to adjust the memory clocks by ¹/₂ applied cycle.

Figure 12 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

Figure 12. MCK to MDQS Timing

Figure 13 shows the DDR SDRAM output timing diagram.

Figure 13. DDR SDRAM Output Timing

Figure 14 provides the AC test load for the DDR2 and DDR3 controller bus.

Figure 14. DDR2 and DDR3 Controller Bus AC Test Load

2.6.1.3 DDR2 and DDR3 SDRAM Differential Timing Specifications

This section describes the DC and AC differential timing specifications for the DDR2 and DDR3 SDRAM controller interface. Figure 15 shows the differential timing specification.

Figure 15. DDR2 and DDR3 SDRAM Differential Timing Specifications

Note: VTR specifies the true input signal (such as MCK or MDQS) and VCP is the complementary input signal (such as \overline{MCK} or \overline{MDQS}).

Figure 21 shows the TDM transmit signal timing.

Figure 21. TDM Transmit Signals

Figure 22 provides the AC test load for the TDM/SI.

Figure 22. TDM AC Test Load

2.6.4 Timers AC Timing Specifications

Table 32 lists the timer input AC timing specifications.

Table 32. Timers Input AC Timing Specifications

		Characteristics	Symbol	Minimum	Unit	Notes	
Timers inputs—minimum pulse width			T _{TIWID}	8	ns	1, 2	
Notes:	1.	The maximum allowed frequency of timer outputs is 125 MHz. Configure the timer modules appropriately.					
	2.	Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by any					
		external synchronous logic. Timer inputs are required to be valid for at least t _{TIWID} ns to ensure proper operation.					

Note: For recommended operating conditions, see Table 3.

Figure 23 shows the AC test load for the timers.

Figure 23. Timer AC Test Load

rical Characteristics

2.6.6 SPI Timing

Table 36 lists the SPI input and output AC timing specifications.

Table 36. SPI AC Timing Specifications

Parameter	Symbol ¹	Min	Max	Unit	Note
SPI outputs valid—Master mode (internal clock) delay	t _{NIKHOV}		6	ns	2
SPI outputs hold—Master mode (internal clock) delay	t _{NIKHOX}	0.5	—	ns	2
SPI outputs valid—Slave mode (external clock) delay	t _{NEKHOV}	—	12	ns	2
SPI outputs hold—Slave mode (external clock) delay	t _{NEKHOX}	2	—	ns	2
SPI inputs—Master mode (internal clock) input setup time	t _{NIIVKH}	12	—	ns	—
SPI inputs—Master mode (internal clock) input hold time	t _{NIIXKH}	0	—	ns	—
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4	—	ns	—
SPI inputs—Slave mode (external clock) input hold time	t _{NEIXKH}	2	—	ns	—

Notes: 1. The symbols used for timing specifications follow the pattern of t_(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{NIKHOX} symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).

2. Output specifications are measured from the 50% level of the rising edge of SPICLK to the 50% level of the signal. Timings are measured at the pin.

Figure 26 provides the AC test load for the SPI.

Figure 26. SPI AC Test Load

Figure 27 and Figure 28 represent the AC timings from Table 36. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 27 shows the SPI timings in slave mode (external clock).

Note: measured with SPMODE[CI] = 0, SPMODE[CP] = 0

Figure 27. SPI AC Timing in Slave Mode (External Clock)

Figure 28 shows the SPI timings in master mode (internal clock).

NP

ware Design Considerations

3 Hardware Design Considerations

The following sections discuss areas to consider when the MSC8151 device is designed into a system.

3.1 Power Supply Ramp-Up Sequence

The following subsections describe the required device initialization sequence.

3.1.1 Clock, Reset, and Supply Coordination

Starting the device requires coordination between several inputs including: clock, reset, and power supplies. Follow this guidelines when starting up an MSC8151 device:

- <u>PORESET</u> and <u>TRST</u> must be asserted externally for the duration of the supply ramp-up, using the V_{DDIO} supply. <u>TRST</u> deassertion does not have to be synchronized with <u>PORESET</u> deassertion. However, <u>TRST</u> must be deasserted before normal operation begins to ensure correct functionality of the device.
- CLKIN should toggle at least 32 cycles before PORESET deassertion to guarantee correct device operation. The 32 cycles should only be counted from the time after V_{DDIO} reaches its nominal value (see timing 1 in Figure 33).
- CLKIN should either be stable low during ramp-up of V_{DDIO} supply (and start its swings after ramp-up) or should swing within V_{DDIO} range during V_{DDIO} ramp-up, so its amplitude grows as V_{DDIO} grows during ramp-up.

Figure 33 shows a sequence in which V_{DDIO} ramps-up after V_{DD} and CLKIN begins to toggle with the raise of V_{DDIO} supply.

Figure 33. Supply Ramp-Up Sequence with V_{DD} Ramping Before V_{DDIO} and CLKIN Starting With V_{DDIO}

Note: For details on power-on reset flow and duration, see the Reset chapter in the MSC8151 Reference Manual.

2. After the above rails rise to 90% of their nominal voltage, the following I/O power rails may rise in any sequence (see Figure 34): QVDD, NVDD, GVDD1, and GVDD2.

Figure 34. Supply Ramp-Up Sequence

- Notes: 1. If the M3 memory is not used, M3VDD can be tied to GND.
 - 2. If the MAPLE-B is not used, MVDD can be tied to GND.
 - 3. If the HSSI port1 is not used, SXCVDD1 and SXPVDD1 must be connected to the designated power supplies.
 - 4. If the HSSI port2 is not used, SXCVDD2 and SXPVDD2 must be connected to the designated power supplies.
 - 5. If the DDR port 1 interface is not used, it is recommended that GVDD1 be left unconnected.
 - 6. If the DDR port 2 interface is not used, it is recommended that GVDD2 be left unconnected.

3.1.4 Reset Guidelines

When a debugger is not used, implement the connection scheme shown in Figure 35.

Figure 35. Reset Connection in Functional Application

When a debugger is used, implement the connection scheme shown in Figure 36.

Figure 36. Reset Connection in Debugger Application

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, ColdFire, ColdFire+, StarCore are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2010–2013 Freescale Semiconductor, Inc.

> Document Number: MSC8151 Rev. 6 08/2013