

Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are Embedded - Microcontrollers - Application Specific?

Application charific microcontrollars are angineered to

Details	
Product Status	Active
Applications	Automotive Mirror Control
Core Processor	HC08
Program Memory Type	FLASH (16kB)
Controller Series	908E
RAM Size	512 x 8
Interface	SCI, SPI
Number of I/O	16
Voltage - Supply	5.5V ~ 18V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	54-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	54-SOIC
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mm908e624acpew

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN CONNECTIONS

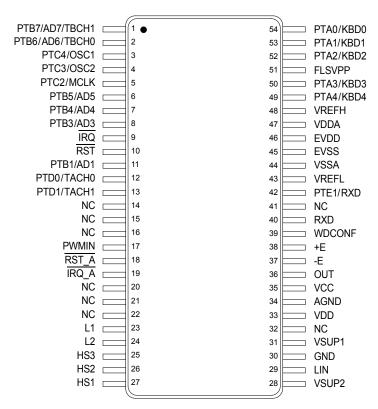
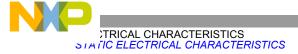


Figure 3. Pin Connections

Table 1. Pin Definitions

A functional description of each pin can be found in the Functional Pin Description section beginning on page 16.

Die	Pin	Pin Name	Formal Name	Definition
MCU	1 2 6 7 8 11	PTB7/AD7/TBCH1 PTB6/AD6/TBCH0 PTB5/AD5 PTB4/AD4 PTB3/AD3 PTB1/AD1	Port B I/Os	These pins are special function, bidirectional I/O port pins, that are shared with other functional modules in the MCU.
MCU	3 4 5	PTC4/OSC1 PTC3/OSC2 PTC2/MCLK	Port C I/Os	These pins are special function, bidirectional I/O port pins, that are shared with other functional modules in the MCU.
MCU	9	IRQ	External Interrupt Input	This pin is an asynchronous external interrupt input pin.
MCU	10	RST	External Reset	This pin is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted.
MCU	12 13	PTD0/TACH0 PTD1/TACH1	Port D I/Os	These pins are special function, bidirectional I/O port pins, that are shared with other functional modules in the MCU.
_	14, 15, 16, 20, 21, 22, 32, 41	NC	No Connect	Not connected.
MCU	42	PTE1/RXD	Port E I/O	This pin is a special function, bidirectional I/O port pin, that can is shared with other functional modules in the MCU.


Table 2. Maximum Ratings (continued)

All voltages are with respect to ground unless otherwise noted. Exceeding limits on any pin may cause permanent damage to the device.

Rating	Symbol	Value	Unit
THERMAL RATINGS			
Package Operating Ambient Temperature (4)	T _A		°C
MM908E624ACPEW MM908E624AYPEW		-40 to 85 -40 to 125	
Operating Junction Temperature (2)(4)	T _J		°C
MM908E624ACPEW		-40 to 125	
MM908E624AYPEW		-40 to 125	
Storage Temperature	T _{STG}	-40 to 150	°C
Peak Package Reflow Temperature During Reflow ⁽³⁾⁽⁵⁾	T _{PPRT}	Note 5	°C

Notes

- 2. The temperature of analog and MCU die is strongly linked via the package, but can differ in dynamic load conditions, usually because of higher power dissipation of the analog die. The analog die junction temperature must not exceed 150°C under these conditions.
- 3. Pin soldering temperature is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.
- 4. Independent of T_{A_i} device parametrics are only guaranteed for -40 < T_J < 125 °C. Please see note 2. T_J is a factor of power dissipation, package thermal resistance, and available heat sinking.
- 5. Freescale's Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts. (i.e. MC33xxxD enter 33xxx), and review parametrics.

Table 3. Static Electrical Characteristics (continued)

All characteristics are for the analog chip only. Refer to the 68HC908EY16 data sheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V $_{SUP}$ \leq 16 V, -40 °C \leq T $_{J}$ \leq 125 °C, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T $_{A}$ = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
SYSTEM RESETS AND INTERRUPTS	, ,			1	•
Low-voltage Reset (LVR)	V _{LVRON}				V
Threshold		3.6	4.0	4.4	
Low-voltage Interrupt (LVI)					V
Threshold	V_{LVI}	5.7	6.0	6.6	
Hysteresis	V _{LVI_HYS}	_	1.0	_	
High-voltage Interrupt (HVI)					
Threshold	V_{HVI}	18	19.25	20.5	V
Hysteresis	V _{HVI_HYS}	_	220	_	mV
VOLTAGE REGULATOR (10)					
Normal Mode Output Voltage	V _{DDRUN}				V
$2.0 \text{ mA} < I_{DD} < 50 \text{ mA}, 5.5 \text{ V} < V_{SUP} < 27 \text{ V}$		4.75	5.0	5.25	
Normal Mode Output Current Limitation (11)	I _{DDRUN}	50	110	200	mA
Dropout Voltage	V _{DDDROP}				V
$V_{SUP} = 4.9 \text{ V}, I_{DD} = 50 \text{ mA}$		_	0.1	0.2	
Stop Mode Output Voltage (12)	V _{DDSTOP}	4.75	5.0	5.25	V
Stop Mode Regulator Current Limitation	I _{DDSTOP}	4.0	8.0	14	mA
Line Regulation					mV
Normal Mode, 5.5 V $<$ V _{SUP} $<$ 27 V, I _{DD} = 10 mA	V_{LRRUN}	_	20	150	
Stop Mode, 5.5 V < V_{SUP} < 27 V, I_{DD} = 2.0 mA	V _{LRSTOP}	_	10	100	
Load Regulation					mV
Normal Mode, 1.0 mA < I_{DD} < 50 mA, V_{SUP} = 18 V	V_{LRRUN}	_	40	150	
Stop Mode, 1.0 mA < I_{DD} < 5.0 mA, V_{SUP} = 18 V	V _{LDSTOP}	_	40	150	
Over-temperature Prewarning (Junction) (13)	T _{PRE}	120	135	160	°C
Thermal Shutdown Temperature (Junction) (13)	T _{SD}	155	170	_	°C
Temperature Threshold Difference	ΔT _{SD-} T _{PRE}				°C
T _{SD} -T _{PRE}		20	30	45	

Notes

- 10. Specification with external capacitor 2.0 μ F< C < 10 μ F and 200 m Ω \leq ESR \leq 10 Ω . Capacitor value up to 47 μ F can be used.
- 11. Total V_{DD} regulator current. A 5.0 mA current for current sense operational amplifier is included. Digital output supplied from VDD.
- 12. When switching from Normal to Stop mode or from Stop mode to Normal mode, the output voltage can vary within the output voltage specification.
- 13. This parameter is guaranteed by process monitoring but not production tested

Table 3. Static Electrical Characteristics (continued)

All characteristics are for the analog chip only. Refer to the 68HC908EY16 data sheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40 °C \leq T_J \leq 125 °C, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25°C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
HIGH SIDE OUTPUT HS3	<u> </u>				
Switch On Resistance	R _{DS(ON)}				Ω
T_J = 25 °C, I_{LOAD} = 50 m A, V_{SUP} > 9.0 V	, ,	_	_	7.0	
T_J = 125 °C, I_{LOAD} = 50 mA, V_{SUP} > 9.0 V		_	_	10	
T_J = 125 °C, I_{LOAD} = 30 mA, 5.5 V < V_{SUP} > 9.0 V		_	_	14	
Output Current Limitation	I _{LIM}	60	100	200	mA
Over-temperature Shutdown (17), (18)	T _{HSSD}	155	_	190	°C
Leakage Current	I _{LEAK}	_	_	10	μА
CURRENT SENSE OPERATIONAL AMPLIFIER	•				
Rail-to-Rail Input Voltage	V _{IMC}	-0.1	_	V _{CC} +0.1	V
Output Voltage Range					V
Output Current ±1.0 mA	V _{OUT1}	0.1	_	V _{CC} -0.1	
Output Current ±5.0 mA	V _{OUT2}	0.3	_	V _{CC} -0.3	
Input Bias Current	I _B	_	_	250	nA
Input Offset Current	Io	-100	_	100	nA
Input Offset Voltage	V _{IO}	-25	_	25	mV
L1 AND L2 INPUTS	•				
Low Detection Threshold	V_{THL}				V
5.5 V < V _{SUP} < 6.0 V		2.0	2.5	3.0	
6.0 V < V _{SUP} < 18 V		2.5	3.0	3.5	
18 V < V _{SUP} < 27 V		2.7	3.2	3.7	
High Detection Threshold	V _{THH}				V
5.5 V < V _{SUP} < 6.0 V		2.7	3.3	3.8	
6.0 V < V _{SUP} < 18 V		3.0	4.0	4.5	
18 V < V _{SUP} < 27 V		3.5	4.2	4.7	
Hysteresis	V _{HYS}				V
5.5 V < V _{SUP} < 27 V		0.5	_	1.3	
Input Current	I _{IN}				μА
-0.2 V < V _{IN} < 40 V		-10	_	10	

Notes

- 17. This parameter is guaranteed by process monitoring but it is not production tested
- 18. When over-temperature occurs, switch is turned off and latched off. Flag is set in SPI.

Table 4. Dynamic Electrical Characteristics (continued)

All characteristics are for the analog chip only. Please refer to the 68HC908EY16 data sheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40 °C \leq T_J \leq 125 °C, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit			
CURRENT SENSE OPERATIONAL AMPLIFIER								
Supply Voltage Rejection Ratio (29)	SVR	60	_	_	dB			
Common Mode Rejection Ratio (29)	CMR	70	_	_	dB			
Gain Bandwidth ⁽²⁹⁾	GBP	1.0	_	_	MHz			
Slew Rate	SR	0.5	_	_	V/μs			
Phase Margin (for Gain = 1, Load 100 pF/ $5.0 \text{ k}\Omega^{(29)}$	PHMO	40	_	_	٥			
Open Loop Gain	OLG	_	85	_	dB			

Notes

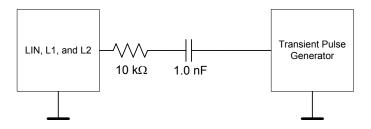

MICROCONTROLLER PARAMETRICS

Table 5. Microcontroller

For a detailed microcontroller description, refer to the MC68HC908EY16 data sheet.

Module	Description
Core	High-Performance HC08 Core with a Maximum Internal Bus Frequency of 8.0 MHz
Timer	Two 16-Bit Timers with 2 Channels (TIM A and TIM B)
Flash	16 K Bytes
RAM	512 Bytes
ADC	10-Bit Analog-to-Digital Converter
SPI	SPI Module
ESCI	Standard Serial Communication Interface (SCI) Module Bit-Time Measurement Arbitration Prescaler with Fine Baud-Rate Adjustment
ICG	Internal Clock Generation Module

TIMING DIAGRAMS

Note Waveform in accordance with ISO7637 Part 1, Test Pulses 1, 2, 3a, and 3b.

Figure 4. Test Circuit for Transient Test Pulses

^{29.} This parameter is guaranteed by process monitoring but it is not production tested.

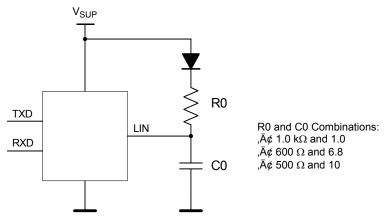


Figure 5. Test Circuit for LIN Timing Measurements

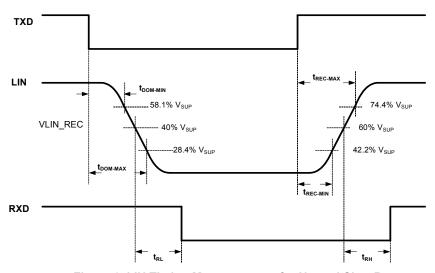


Figure 6. LIN Timing Measurements for Normal Slew Rate

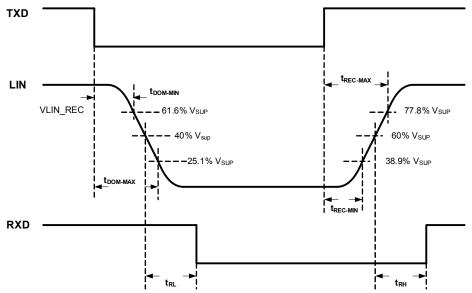


Figure 7. LIN Timing Measurements for Slow Slew Rate

Figure 8. Wake-up Sleep Mode Timing

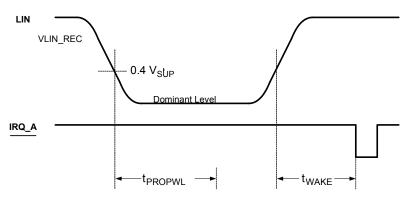


Figure 9. Wake-up Stop Mode Timing

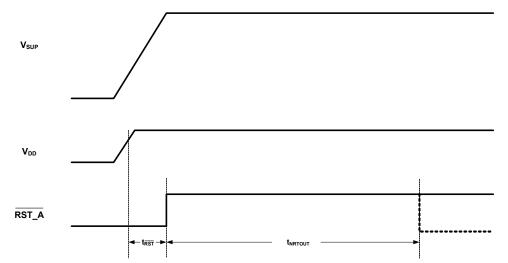


Figure 10. Power On Reset and Normal Request Timeout Timing

ADC SUPPLY PINS (VDDA AND VSSA)

VDDA and VSSA are the power supply pins for the analogto-digital converter (ADC). It is recommended that a highquality ceramic decoupling capacitor be placed between these pins.

Important VDDA is the supply for the ADC and should be tied to the same potential as EVDD via separate traces. VSSA is the ground pin for the ADC and should be tied to the same potential as EVSS via separate traces.

For details, refer to the 68HC908EY16 data sheet.

ADC REFERENCE PINS (VREFL AND VREFH)

VREFL and VREFH are the reference voltage pins for the ADC. It is recommended that a high quality ceramic decoupling capacitor be placed between these pins.

Important VREFH is the high reference supply for the ADC and should be tied to the same potential as VDDA via separate traces. VREFL is the low reference supply for the ADC and should be tied to the same potential as VSSA via separate traces.

For details, refer to the 68HC908EY16 data sheet.

TEST PIN (FLSVPP)

This pin is for test purposes only. Do not connect in the application or connect to GND.

PWMIN PIN (PWMIN)

This pin is the direct PWM input for high side outputs 1 and 2 (HS1 and HS2). If no PWM control is required, PWMIN must be connected to VDD to enable the HS1 and HS2 outputs.

LIN TRANSCEIVER OUTPUT PIN (RXD)

This pin is the output of LIN transceiver. The pin must be connected to the microcontroller's Enhanced Serial Communications Interface (ESCI) module (RXD pin).

RESET PIN (RST A)

RST_A is the reset output pin of the analog die and must be connected to the RST pin of the MCU.

Important To ensure proper operation, do not add any external pull-up resistor.

INTERRUPT PIN (IRQ A)

IRQ_A is the interrupt output pin of the analog die indicating errors or wake-up events. This pin must be connected to the IRQ pin of the MCU.

WINDOW WATCHDOG CONFIGURATION PIN (WDCONF)

This pin is the configuration pin for the internal watchdog. A resistor is connected to this pin. The resistor value defines

the watchdog period. If the pin is open, the watchdog period is fixed to its default value.

The watchdog can be disabled (e.g., for flash programming or software debugging) by connecting this pin to GND.

POWER SUPPLY PINS (VSUP1 AND VSUP2)

This VSUP1 power supply pin supplies the voltage regulator, the internal logic, and LIN transceiver.

This VSUP2 power supply pin is the positive supply for the high side switches.

POWER GROUND PIN (GND)

This pin is the device ground connection.

HIGH SIDE OUTPUT PINS (HS1 AND HS2)

These pins are high side switch outputs to drive loads such as relays or lamps. Each switch is protected with over-temperature and current limit (over-current). The output has an internal clamp circuitry for inductive load. The HS1 and HS2 outputs are controlled by the SPI and have a direct enabled input (PWMIN) for PWM capability.

HIGH SIDE OUTPUT PIN (HS3)

This high side switch can be used to drive small lamps, Hall-effect sensors, or switch pull-up resistors. The switch is protected with over-temperature and current limit (over-current). The output is controlled only by the SPI.

LIN BUS PIN (LIN)

The LIN pin represents the single-wire bus transmitter and receiver. It is suited for automotive bus systems and is based on the LIN bus specification.

WAKE-UP PINS (L1 AND L2)

These pins are high-voltage capable inputs used to sense external switches and to wake-up the device from Sleep or Stop mode. During Normal mode the state of these pins can be read through the SPI.

Important If unused, these pins should be connected to VSUP or GND to avoid parasitic transitions. In Low Power Mode, this could lead to random wake-up events.

CURRENT SENSE OPERATIONAL AMPLIFIER PINS (E+, E-, OUT, VCC)

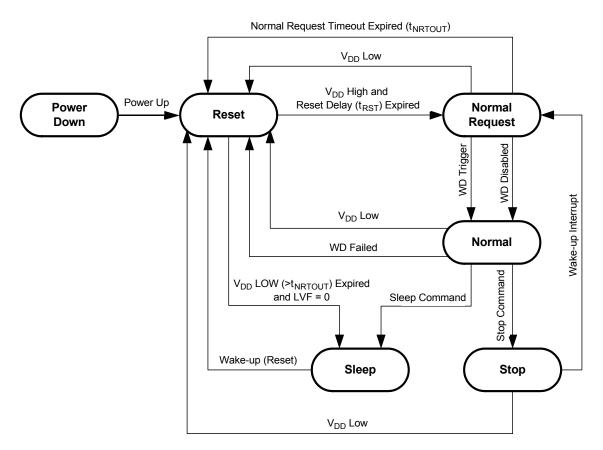
These are the pins of the single supply current sense operational amplifier.

- The E+ and E- input pins are the non-inverting and inverting inputs of the current sense operational amplifier, respectively.
- The OUT pin is the output pin of the current sense operational amplifier.
- The VCC pin is the +5.0 V single supply connection.

FUNCTIONAL DEVICE OPERATION

OPERATIONAL MODES

908E624 ANALOG DIE MODES OF OPERATION


The 908E624 offers three operating modes: Normal (Run), Stop, and Sleep. In Normal mode the device is active and is operating under normal application conditions. The Stop and Sleep modes are low-power modes with wake-up capabilities.

In Stop mode, the voltage regulator still supplies the MCU with V_{DD} (limited current capability), and in Sleep mode the voltage regulator is turned off (V_{DD} = 0 V).

Wake-up from Stop mode is initiated by a wake-up interrupt. Wake-up from Sleep mode is done by a reset and the voltage regulator is turned back on.

The selection of the different modes is controlled by the MODE1:2 bits in the SPI Control register.

<u>Figure 11</u> describes how transitions are done between the different operating modes and <u>Table 6</u>, page <u>20</u>, gives an overview of the operating mode.

Legend

WD: Watchdog

WD Disabled: Watchdog disabled (WDCONF pin connected to GND)

WD Trigger: Watchdog is triggered by SPI command

WD Failed: No watchdog trigger or trigger occurs in closed window

Stop Command: Stop command sent via SPI

Sleep Command: Sleep command sent via SPI

Wake-up: L1 or L2 state change or LIN bus wake-up or SS rising edge

Figure 11. Operating Modes and Transitions

Table 6. Operating Modes Overview

Device Mode	Voltage Regulator	Wake-up Capabilities	RST_A Output	Watchdog Function	HS1, HS2, and HS3	LIN Interface	Sense Amplifier
Reset	V _{DD} ON	N/A	LOW	Disabled	Disabled	Recessive only	Not active
Normal Request	V _{DD} ON	N/A	HIGH	150 ms time out if WD enabled	Enabled	Transmit and receive	Not active
Normal (Run)	V _{DD} ON	N/A	HIGH	Window WD if enabled	Enabled	Transmit and receive	Active
Stop	V _{DD} ON with limited current capability	LIN wake-up, L1, L2 state change, SS rising edge	HIGH	Disabled	Disabled	Recessive state with wake-up capability	Not active
Sleep	V _{DD} OFF	LIN wake-up L1, L2 state change	LOW	Disabled	Disabled	Recessive state with wake-up capability	Not active

INTERRUPTS

In Normal (Run) mode the 908E624 has four different interrupt sources. An interrupt pulse on the IRQ_A pin is generated to report a fault to the MCU. All interrupts are not maskable and cannot be disabled.

After an Interrupt the INTSRC bit in the SPI Status register is set, indicating the source of the event. This interrupt source information is only transferred once, and the INTSRC bit is cleared automatically.

Low-Voltage Interrupt

Low-voltage interrupt (LVI) is related to external supply voltage VSUP1. If this voltage falls below the LVI threshold, it will set the LVF bit in the SPI Status register and an interrupt will be initiated. The LVF bit remains set as long as the Low-voltage condition is present.

During Sleep and Stop mode the low-voltage interrupt circuitry is disabled.

High-voltage Interrupt

High-voltage interrupt (HVI) is related to external supply voltage VSUP1. If this voltage rises above the HVI threshold, it will set the HVF bit in the SPI Status register and an interrupt will be initiated. The HVF bit remains set as long as the high-voltage condition is present.

During Sleep and Stop mode the high-voltage interrupt circuitry is disabled.

Wake-up Interrupts

In Stop mode the $\overline{IRQ_A}$ pin reports wake-up events on the L1, L2, or the LIN bus to the MCU. All wake-up interrupts are not maskable and cannot be disabled.

After a wake-up interrupt, the INTSRC bit in the Serial Peripheral Interface (SPI) Status register is set, indicating the source of the event. This wake-up source information is only transferred once, and the INTSRC bit is cleared automatically.

Figure 12, page 21, describes the Stop/Wake-up procedure.

Voltage Regulator Temperature Prewarning (VDDT)

Voltage regulator temperature prewarning (VDDT) is generated if the voltage regulator temperature is above the T_{PRE} threshold. It will set the VDDT bit in the SPI Status register and an interrupt will be initiated. The VDDT bit remains set as long as the error condition is present.

During Sleep and Stop mode the voltage regulator temperature prewarning circuitry is disabled.

High Side Switch Thermal Shutdown (HSST)

The high side switch thermal shutdown HSST is generated if one of the high side switches HS1:HS3 is above the HSST threshold, it will shutdown all high side switches, set the HSST flag in the SPI Status register and an interrupt will be initiated. The HSST bit remains set as long as the error condition is present.

During Sleep and Stop mode the high side switch thermal shutdown circuitry is disabled.

The LIN pin offers high susceptibility immunity level from external disturbance, guaranteeing communication during external disturbance.

The LIN transmitter circuitry is enabled in Normal and Normal Request mode.

An over-current condition (e.g. LIN bus short to V_{BAT}) or a over-temperature in the output low side FET will shutdown

the transmitter and set the LINFAIL flag in the SPI Status Register.

For improved performance and safe behavior in case of LIN bus short to Ground or LIN bus leakage during low power mode the internal pull-up resistor on the LIN pin can be disconnected, with the LIN-PU bit in the SPI Control Register, and a small current source keeps the LIN bus at recessive level. In case of a LIN bus short to GND, this feature will reduce the current consumption in STOP and SLEEP modes.

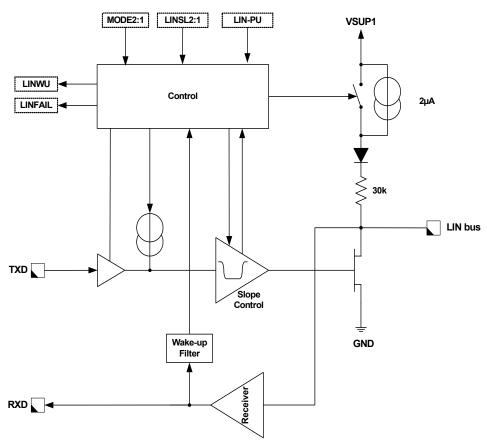


Figure 15. LIN Interface

TXD Pin

The TXD pin is the MCU interface to control the state of the LIN transmitter (see Figure 2, page 2). When TXD is LOW, the LIN pin is low (dominant state). When TXD is HIGH, the LIN output MOSFET is turned off (recessive state). The TXD pin has an internal pull-up current source in order to set the LIN bus to recessive state in the event, for instance, the microcontroller could not control it during system power-up or power-down.

RXD Pin

The RXD transceiver pin is the MCU interface, which reports the state of the LIN bus voltage. LIN HIGH (recessive state) is reported by a high level on RXD, LIN LOW (dominant state) by a low level on RXD.

STOP Mode and Wake-up Feature

During STOP mode operation the transmitter of the physical layer is disabled. In case the bit LIN-PU was set in the Stop mode sequence the internal pull-up resistor is disconnected from VSUP and a small current source keeps the LIN pin in recessive state. The receiver is still active and able to detect wake-up events on the LIN bus line.

A dominant level longer than t_{PROPWL} followed by an rising edge will generate a wake-up interrupt and set the LINWF flag in the SPI Status Register. Also see Figure 9, page 15.

SLEEP Mode and Wake-up Feature

During SLEEP mode operation the transmitter of the physical layer is disabled. In case the bit LIN-PU was set in the Sleep mode sequence the internal pull-up resistor is

LOGIC COMMANDS AND REGISTERS

908E624 SPI INTERFACE AND CONFIGURATION

The serial peripheral interface creates the communication link between the microcontroller and the analog die of the 908E624.

The interface consists of four pins (see Figure 17):

SS—Slave Select

- · MOSI-Master-Out Slave-In
- MISO—Master-In Slave-Out
- SPSCK—Serial Clock

A complete data transfer via the SPI consists of 1 byte. The master sends 8 bits of control information and the slave replies with 8 bits of status data.

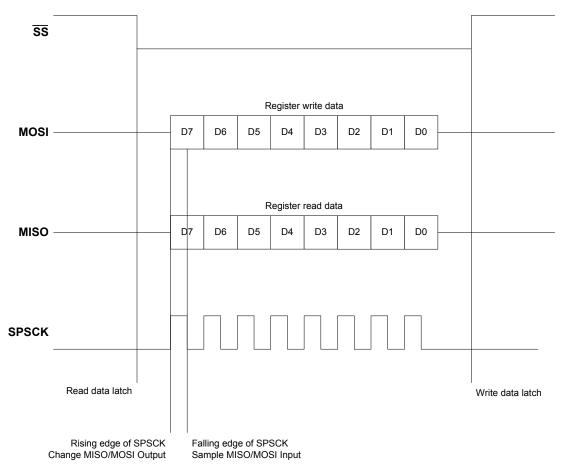


Figure 17. SPI Protocol

During the inactive phase of the $\overline{\rm SS}$ (HIGH), the new data transfer is prepared.

The falling edge of the \overline{SS} indicates the start of a new data transfer and puts the MISO in the low-impedance state and latches the analog status data (Register read data).

With the rising edge of the SPI clock, SPSCK the data is moved to MISO/MOSI pins. With the falling edge of the SPI clock SPSCK the data is sampled by the Receiver.

The data transfer is only valid if exactly 8 sample clock edges are present in the active (low) phase of \overline{SS} .

The rising edge of the slave select \overline{SS} indicates the end of the transfer and latches the write data (MOSI) into the register The \overline{SS} high forces MISO to the high-impedance state.

SPI REGISTER OVERVIEW

<u>Table 7</u> summarizes the SPI Register bit meaning, reset value, and bit reset condition.

Table 7. SPI Register Overview

Read/Write		Bit								
Information	D7	D6	D5	D4	D3	D2	D1	D0		
Write	LINSL2	LINSL1	LIN-PU	HS3ON	HS2ON	HS10N	MODE2	MODE1		
Read	INTSRC (30)	LINWU or LINFAIL	HVF	LVF or BATFAIL (31)	VDDT	HSST	L2	L1		
Write Reset Value	0	0	0	0	0	0	_	_		
Write Reset Condition	POR, RESET	POR, RESET	POR	POR, RESET	POR, RESET	POR, RESET	_	_		

Notes

- 30. D7 signals interrupts and wake-up interrupts, D6:D0 indicated the source.
- 31. The first SPI read after reset returns the BATFAIL flag state on bit D4.

SPI Control Register (Write)

<u>Table 8</u> shows the SPI Control register bits by name.

Table 8. Control Bits Function (Write Operation)

D7	D6	D5	D4	D3	D2	D1	D0
LINSL2	LINSL1	LIN-PU	HS3ON	HS2ON	HS10N	MODE2	MODE1

LINSL2:1—LIN Baud Rate and Low-power Mode Selection Bits

These bits select the LIN slew rate and requested low-power mode in accordance with <u>Table 9</u>. Reset clears the LINSL2:1 bits.

Table 9. LIN Baud Rate and Low-power Mode Selection Bits

LINSL2	LINSL1	Description
0	0	Baud Rate up to 20 kbps (normal)
0	1	Baud Rate up to 10 kbps (slow)
1	0	Fast Program Download Baud Rate up to 100 kbps
1	1	Low-power Mode (Sleep or Stop) Request

LIN-PU-LIN Pull-up Enable Bit

This bit controls the LIN pull-up resistor during Sleep and Stop modes.

- 1 = Pull-up disconnected in Sleep and Stop modes.
- 0 = Pull-up connected in Sleep and Stop modes.

If the Pull-up is disconnected, a small current source is used to pull the LIN pin in recessive state. In case of an erroneous short of the LIN bus to ground, this will significantly

reduce the power consumption, e.g. in combination with STOP/SLEEP mode.

HS3ON: HS1ON—High Side H3: HS1 Enable Bits

These bits enable the HSx. Reset clears the HSxON bit.

- 1 = HSx switched on (refer to Note below).
- 0 = HSx switched off.

Note If no PWM on HS1 and HS2 is required, the PWMIN pin must be connected to the VDD pin.

MODE2:1-Mode Section Bits

The MODE2:1 bits control the operating modes and the watchdog in accordance with <u>Table 10</u>.

Table 10. Mode Selection Bits

MODE2	MODE1	Description			
0	0	Sleep Mode ⁽³²⁾			
0	1	Stop Mode (32)			
1	0	Watchdog Clear (33)			
1	1	Run (Normal) Mode			

Notes

- To enter Sleep and Stop mode, a special sequence of SPI commands is implemented.
- 33. The device stays in Run (Normal) mode.

To safely enter Sleep or Stop mode and to ensure that these modes are not affected by noise issue during SPI transmission, the Sleep/Stop commands require two SPI transmissions.

Sleep Mode Sequence

The Sleep command, as shown in $\underline{\text{Table 11}}$, must be sent twice.

Table 11. Sleep Command Bits

LINSL2	LINSL1	LIN-PU	HS3ON	HS2ON	HS10N	MODE2	MODE1
1	1	0/1	0	0	0	0	0

Stop Mode Sequence

The Stop command, as shown in $\underline{\text{Table 12}}$, must be sent twice.

Table 12. Stop Command Bits

LINSL2	LINSL1	LIN-PU	HS3ON	HS2ON	HS10N	MODE2	MODE1
1	1	0/1	0	0	0	0	1

SPI Status Register (Read)

Table 13 shows the SPI Status register bits by name.

Table 13. Control Bits Function (Read Operation)

D7	D6	D5	D4	D3	D2	D1	D0
INTSRC	LINWU	HVF	LVF	VDDT	HSST	L2	L1
	or		or				
	LINFAIL		BATFAIL				

INTSCR—Register Content Flags or Interrupt Source

This bit indicates if the register contents reflect the flags or an interrupt/wake-up interrupt source.

- 1 = D6:D0 reflects the interrupt or wake-up source.
- 0 = No interrupt occurred. Other SPI bits report real time status.

LINWU/LINFAIL—LIN Status Flag Bit

This bit indicates a LIN wake-up condition.

- 1 = LIN bus wake-up occurred or LIN over-current/over-temperature occurred.
- 0 = No LIN bus wake-up occurred.

In case of a LIN over-current/over-temperature condition the LIN transmitter is disabled. To reenable the LIN transmitter, the error condition must be GONE and the LINWU/LINFAIL flag must be cleared.

The flag is cleared by reading the flag when it is set (SPI command).

HVF —High-voltage Flag Bit

This flag is set on an over-voltage (VSUP1) condition.

- 1 = High-voltage condition has occurred.
- 0 = no High-voltage condition.

LVF/BATFAIL—Low-voltage Flag Bit

This flag is set on an under-voltage (VSUP1) condition.

- 1 = Low-voltage condition has occurred.
- 0 = No low-voltage condition.

VDDT—Voltage Regulator Status Flag Bit

This flag is set as prewarning in case of an overtemperature condition on the voltage regulator.

- 1 = Voltage regulator over-temperature condition, prewarning.
- 0 = No over-temperature detected.

HSST—High Side Status Flag Bit

This flag is set on over-temperature conditions on one of the high side outputs.

- 1 = HSx off due to over-temperature.
- 0 = No over-temperature.

In case one of the high sides has an over-temperature condition all high side switches are disabled.

To reenable the high side switches, the flags have to be cleared, by reading the flag when it is set and by writing a one to high side HSxON bit (two SPI commands are necessary).

L2:L1—Wake-up Inputs L1, L2 Status Flag Bit

These flags reflect the status of the L2 and L1 input pins and indicate the wake-up source.

- 1 = L2:L1 input high or wake-up by L2:L1 (first register read after wake-up indicated with INTSRC = 1).
- 0 = L2:L1 input low.

EMC/EMI RECOMMENDATIONS

This paragraph gives some device specific recommendations to improve EMC/EMI performance. Further generic design recommendations can be found on the Freescale website: www.freescale.com.

VSUP Pins (VSUP1 and VSUP2)

Its recommended to place a high quality ceramic decoupling capacitor close to the VSUP pins to improve EMC/EMI behavior.

LIN Pin

For DPI (Direct Power Injection) and ESD (Electro Static Discharge) it is recommended to place a high quality ceramic decoupling capacitor near the LIN pin. An additional varistor will further increase the immunity against ESD. A ferrite in the LIN line will suppress some of the noise induced.

Voltage Regulator Output Pins (VDD and AGND)

Use a high quality ceramic decoupling capacitor to stabilize the regulated voltage.

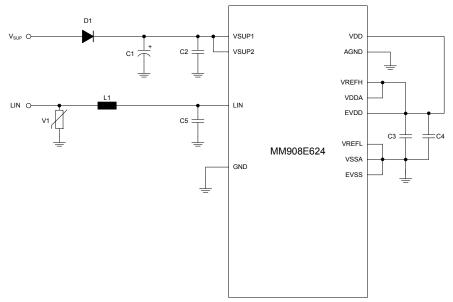
MCU Digital Supply Pins (EVDD and EVSS)

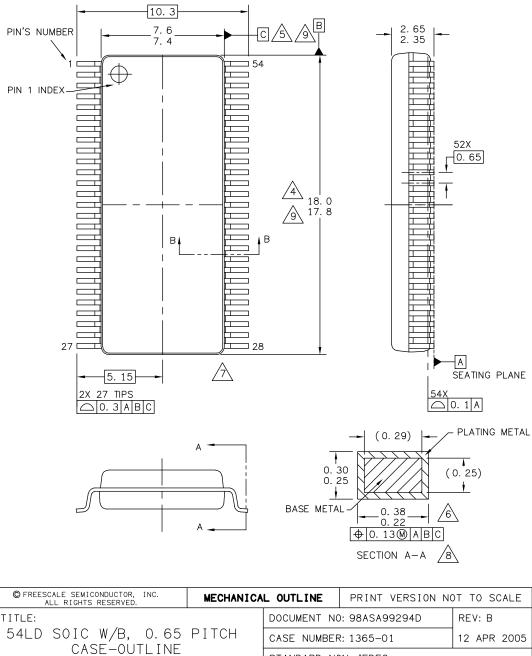
Fast signal transitions on MCU pins place high, short duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU. It is recommended that a high quality ceramic decoupling capacitor be placed between these pins.

MCU Analog Supply Pins (VREFH, VDDA, VREFL, and VSSA)

To avoid noise on the analog supply pins it is important to take special care on the layout. The MCU digital and analog supplies should be tied to the same potential via separate traces and connected to the voltage regulator output.

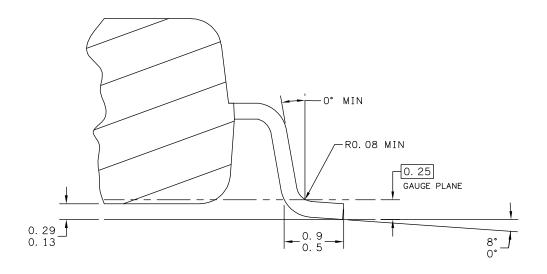
<u>Figure 20</u> and <u>Figure 21</u> show the recommendations on schematics and layout level and <u>Table 15</u> indicates recommended external components and layout considerations.




Figure 20. EMC/EMI Recommendations

PACKAGING

PACKAGING DIMENSIONS


Important For the most current revision of the package, visit www.freescale.com and do a keyword search on the 98ASA99294D drawing number below. Dimensions shown are provided for reference ONLY.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:	PITCH	DOCUMENT NO: 98ASA99294D		REV: B
54LD SOIC W/B, 0.65		CASE NUMBER	2: 1365–01	12 APR 2005
CASE-OUTLINE		STANDARD: NO	N-JEDEC	

EW SUFFIX (Pb-FREE) 54-Pin SOIC WIDE BODY 98ASA99294D ISSUE B

SECTION B-B

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:	PITCH	DOCUMENT NO: 98ASA99294D		REV: B
54LD SOIC W/B, 0.65		CASE NUMBER: 1365-01		12 APR 2005
CASE-OUTLINE		STANDARD: NO	N-JEDEC	

EW SUFFIX (Pb-FREE) 54-Pin SOIC WIDE BODY 98ASA99294D ISSUE B

ADDITIONAL DOCUMENTATION

THERMAL ADDENDUM (REV 3.0)

INTRODUCTION

This thermal addendum is provided as a supplement to the MM908E624 technical datasheet. The addendum provides thermal performance information that may be critical in the design and development of system applications. All electrical, application, and packaging information is provided in the datasheet.

Packaging and Thermal Considerations

The MM908E624 is a dual die package. There are two heat sources in the package independently heating with P_1 and P_2 . This results in two junction temperatures, T_{J1} and T_{J2} , and a thermal resistance matrix with $R_{\theta JAmn}$.

For m, n = 1, $R_{\theta JA11}$ is the thermal resistance from Junction 1 to the reference temperature while only heat source 1 is heating with P_1 .

For m = 1, n = 2, $R_{\theta JA12}$ is the thermal resistance from Junction 1 to the reference temperature while heat source 2 is heating with P_2 . This applies to $R_{\theta J21}$ and $R_{\theta J22}$, respectively.

The stated values are solely for a thermal performance comparison of one

package to another in a standardized environment. This methodology is not meant to and will not predict the performance of a package in an application-specific environment. Stated values were obtained by measurement and simulation according to the standards listed below

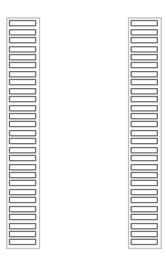
Standards

Table 16. Thermal Performance Comparison

Thermal	1 = Power Chip, 2 = Logic Chip [°C/W]					
Resistance	m = 1, n = 1	m = 1, n = 2 m = 2, n = 1	m = 2, n = 2			
R _{θJAmn} (1)(2)	40	31	36			
R ₀ JBmn (2)(3)	25	16	21			
R ₀ JAmn (1)(4)	57	47	52			
R ₀ JCmn (5)	21	12	16			

Notes:

- Per JEDEC JESD51-2 at natural convection, still air condition.
- 2s2p thermal test board per JEDEC JESD51-7and JESD51-5.
- 3. Per JEDEC JESD51-8, with the board temperature on the center trace near the power outputs.
- Single layer thermal test board per JEDEC JESD51-3 and JESD51-5.
- Thermal resistance between the die junction and the exposed pad, "infinite" heat sink attached to exposed pad.


908E624

54-Pin SOICW

EW (Pb-FREE) SUFFIX 98ASA99294D 54-Pin SOICW

Note For package dimensions, refer to 98ASA99294D.

54 Terminal SOIC 0.65 mm Pitch 17.9 mm x 7.5 mm Body

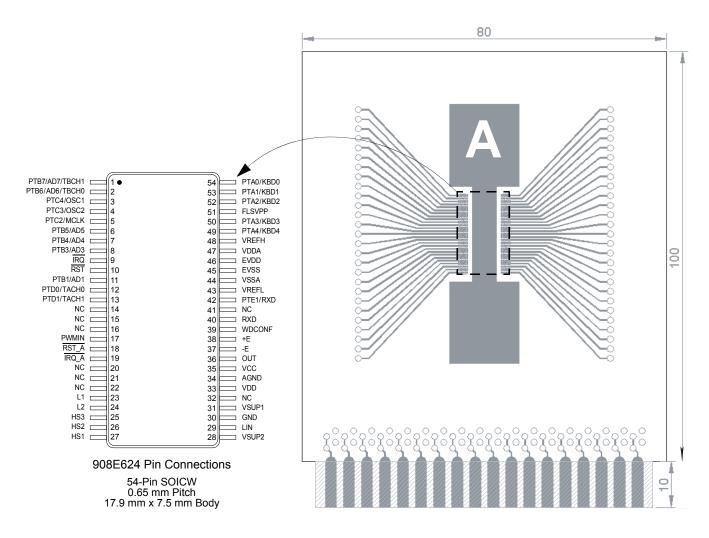


Figure 22. Surface Mount for SOIC Wide Body Non-exposed Pad

Device on Thermal Test Board

Material: Single layer printed circuit board

FR4, 1.6 mm thickness

Cu traces, 0.07 mm thickness

Outline: 80 mm x 100 mm board area,

including edge connector for thermal

testing

Area A: Cu heat-spreading areas on board

surface

Ambient Conditions: Natural convection, still air

Table 17. Thermal Resistance Performance

Pin	Area A	1 = Power	Chip (°C/W)	
Resistance	(mm²)	m = 1, n = 1	m = 1, n = 2 m = 2, n = 1	m = 2, n = 2
$R_{\theta JAmn}$	0	58	48	53
	300	56	46	51
	600	54	45	50

 $R_{\theta JA\textit{mn}}$ is the thermal resistance between die junction and ambient air.

This device is a dual die package. Index m indicates the die that is heated. Index n refers to the number of the die where the junction temperature is sensed.

REVISION HISTORY

REVISION	DATE	DESCRIPTION OF CHANGES
7.0	5/2006	Implemented Revision History page
		Added Pb-Free package option (Suffix EW) and higher Soldering temperature
		 Added "Y" temperature (T_J-40°C to 125°C) code option (MM908E624AYEW) and updated condition statement for Static and Dynamic Electrical Characteristics
		 Corrected <u>Figure 11</u>, <u>Operating Modes and Transitions</u> ("STOP command" for transition from Normal to Stop state)
		Updated <u>Figure 21, PCB Layout Recommendations</u> , comment NC Pin used for signal routing
		Updated Table 15, Component Value Recommendation
		Corrected Figure 23, Device on Thermal Test Board
		Removed reference to Note 11, Voltage Regulator - Dropout Voltage
		Added comment "LIN in recessive state" to Supply Current Range in Stop Mode and Sleep Mode
		Updated format to match current data sheet standard.
		Added Figure 10, Power On Reset and Normal Request Timeout Timing
		Added LIN P/L details
		 Made clarifications on Max Ratings Table for T_A and T_J Thermal Ratings and the accompanying Note
8.0	3/2007	Removed "Advance Information" watermark from first page.
9.0	9/2010	Changed Peak Package Reflow Temperature During Reflow ⁽³⁾⁽⁵⁾ description.
		Added note ⁽⁵⁾
10.0	8/2011	Deleted MM908E624ACDWB/R2
		 Added MM908E624ACPEW/R2 and MM908E624AYPEW/R2
		Update Freescale form and style.
		Updated package drawing
11.0	4/2012	Removed part number MM908E624ACEW/ R2 and MM908E624AYEW/ R2.
		Update Freescale form and style.