E·XFL

NXP USA Inc. - MM908E624AYEW Datasheet

Welcome to E-XFL.COM

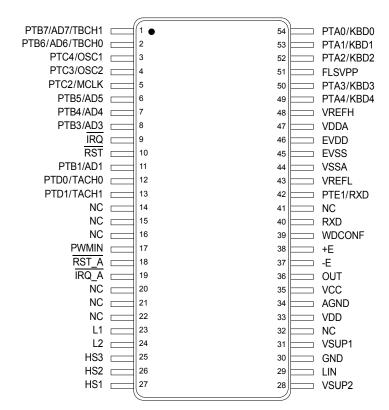
Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are angineered to


Details

Details	
Product Status	Obsolete
Applications	Automotive Mirror Control
Core Processor	HC08
Program Memory Type	FLASH (16kB)
Controller Series	908E
RAM Size	512 x 8
Interface	SCI, SPI
Number of I/O	16
Voltage - Supply	5.5V ~ 18V
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	54-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	54-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mm908e624ayew

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN CONNECTIONS

Figure 3. Pin Connections

Table 1. Pin Definitions

A functional description of each pin can be found in the Functional Pin Description section beginning on page 16.

Die	Pin	Pin Name	Formal Name	Definition		
MCU	1 2 6 7 8 11	PTB7/AD7/TBCH1 PTB6/AD6/TBCH0 PTB5/AD5 PTB4/AD4 PTB3/AD3 PTB1/AD1	Port B I/Os	These pins are special function, bidirectional I/O port pins, that are shared with other functional modules in the MCU.		
MCU	3 4 5	PTC4/OSC1 PTC3/OSC2 PTC2/MCLK	3/OSC2 shared with other functional modules in the MCU.			
MCU	9	IRQ	External Interrupt Input	This pin is an asynchronous external interrupt input pin.		
MCU	10	RST	External Reset	This pin is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted.		
MCU	12 13	PTD0/TACH0 PTD1/TACH1	Port D I/Os	These pins are special function, bidirectional I/O port pins, that are shared with other functional modules in the MCU.		
_	14, 15, 16, 20, 21, 22, 32, 41	NC	No Connect	Not connected.		
MCU	42	PTE1/RXD	Port E I/O	This pin is a special function, bidirectional I/O port pin, that can is shared with other functional modules in the MCU.		

Table 1. Pin Definitions (continued)

A functional description of each pin can be found in the Functional Pin Description section beginning on page <u>16</u>.

Die	Pin	Pin Name	Formal Name	Definition
MCU	43 48	VREFL VREFH	ADC References	These pins are the reference voltage pins for the analog-to-digital converter (ADC).
MCU	44 47	VSSA VDDA	ADC Supply Pins	These pins are the power supply pins for the analog-to-digital converter.
MCU	45 46	EVSS EVDD	MCU Power Supply Pins	These pins are the ground and power supply pins, respectively. The MCU operates from a single power supply.
MCU	49 50 52 53 54	PTA4/KBD4 PTA3/KBD3 PTA2/KBD2 PTA1/KBD1 PTA0/KBD0	Port A I/Os	These pins are special function, bidirectional I/O port pins that are shared with other functional modules in the MCU.
MCU	51	FLSVPP	Test Pin	For test purposes only. Do not connect in the application.
Analog	17	PWMIN	Direct High Side Control Input	This pin allows the enabling and PWM control of the high side HS1 and HS2 pins.
Analog	18	RST_A	Internal Reset Output	This pin is the reset output pin of the analog die.
Analog	19	IRQ_A	Internal Interrupt Output	This pin is the interrupt output pin of the analog die indicating errors or wake-up events.
Analog	23 24	L1 L2	Wake-Up Inputs	These pins are the wake-up inputs of the analog chip.
Analog	25 26 27	HS3 HS2 HS1	High Side Output	These output pins are low R _{DS(ON)} high side switches.
Analog	31 28	VSUP1 VSUP2	Power Supply Pins	These pins are device power supply pins.
Analog	29	LIN	LIN Bus	This pin represents the single-wire bus transmitter and receiver.
Analog	30 34	GND AGND	Power Ground Pins	These pins are device power ground connections.
Analog	33	VDD	Voltage Regulator Output	The +5.0 V voltage regulator output pin is intended to supply the embedded microcontroller.
Analog	35	VCC	Amplifier Power Supply	This pin is the single +5.0 V power supply for the current sense operational amplifier.
Analog	36	OUT	Amplifier Output	This pin is the output of the current sense operational amplifier.
Analog	37 38	-E +E	Amplifier Inputs	These pins are the current sense operational amplifier inverted and non-inverted inputs.
Analog	39	WDCONF	Window Watchdog Configuration Pin	This input pin is for configuration of the watchdog period and allows the disabling of the watchdog.
Analog	40	RXD	LIN Transceiver Output	This pin is the output of LIN transceiver.

ELECTRICAL CHARACTERISTICS

MAXIMUM RATINGS

Table 2. Maximum Ratings

All voltages are with respect to ground unless otherwise noted. Exceeding limits on any pin may cause permanent damage to the device.

Rating	Symbol	Value	Unit
ELECTRICAL RATINGS	·		•
Supply Voltage			V
Analog Chip Supply Voltage under Normal Operation (Steady-state)	V _{SUP(SS)}	-0.3 to 27	
Analog Chip Supply Voltage under Transient Conditions	V _{SUP(PK)}	-0.3 to 40	
MCU Chip Supply Voltage	V _{DD}	-0.3 to 5.5	
Input Pin Voltage			V
Analog Chip	V _{IN(ANALOG)}	-0.3 to V _{DD} +0.3	
Microcontroller Chip	V _{IN(MCU)}	$V_{SS}\mbox{-}0.3$ to $V_{DD}\mbox{+}0.3$	
Maximum Microcontroller Current per Pin			mA
All Pins except VDD, VSS, PTA0:PTA6, PTC0:PTC1	I _{PIN(1)}	±15	
PTA0:PTA6, PTC0:PTC1 Pins	I _{PIN(2)}	±25	
Maximum Microcontroller VSS Output Current	I _{MVSS}	100	mA
Maximum Microcontroller VDD Input Current	I _{MVDD}	100	mA
Current Sense Operational Amplifier			
Maximum Input Voltage, +E, -E Pins	V _{+E-E}	-0.3 to 7.0	V
Maximum Input Current, +E, -E Pins	I _{+E-E}	±20	mA
Maximum Output Voltage, OUT Pin	V _{OUT}	-0.3 to V _{CC} +0.3	V
Maximum Output Current, OUT Pin	I _{OUT}	±20	mA
LIN Supply Voltage			V
Normal Operation (Steady-state)	V _{BUS(SS)}	-18 to 40	
Transient Input Voltage (per ISO7637 Specification) and with External Components (Figure 4, page <u>13</u>)	V _{BUS} (PK)	-150 to 100	
L1 and L2 Pin Voltage			V
Normal Operation with a 33 k Ω resistor (Steady-state)	V _{WAKE(SS)}	-18 to 40	
Transient Input Voltage (per ISO7637 Specification) and with External Components (Figure 4, page <u>13</u>)	VWAKE(PK)	-100 to 100	
ESD Voltage			V
Human Body Model ⁽¹⁾	V _{ESD1}	±2000	
Machine Model ⁽¹⁾	V _{ESD2}	±100	
Charge Device Model ⁽¹⁾	V _{ESD3}	±500	

Notes

1. ESD1 testing is performed in accordance with the Human Body Model (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω), the Machine Model (C_{ZAP} = 200 pF, R_{ZAP} = 0 Ω), and the Charge Device Model, Robotic (C_{ZAP} = 4.0 pF).

Table 2. Maximum Ratings (continued)

All voltages are with respect to ground unless otherwise noted. Exceeding limits on any pin may cause permanent damage to the device.

Rating	Symbol	Value	Unit
THERMAL RATINGS			
Package Operating Ambient Temperature ⁽⁴⁾ MM908E624ACPEW MM908E624AYPEW	T _A	-40 to 85 -40 to 125	°C
Operating Junction Temperature ⁽²⁾⁽⁴⁾ MM908E624ACPEW MM908E624AYPEW	TJ	-40 to 125 -40 to 125	°C
Storage Temperature	T _{STG}	-40 to 150	°C
Peak Package Reflow Temperature During Reflow ⁽³⁾⁽⁵⁾	T _{PPRT}	Note 5	°C

Notes

2. The temperature of analog and MCU die is strongly linked via the package, but can differ in dynamic load conditions, usually because of higher power dissipation of the analog die. The analog die junction temperature must not exceed 150°C under these conditions.

3. Pin soldering temperature is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.

4. Independent of T_{A_i} device parametrics are only guaranteed for -40 < T_J < 125 °C. Please see note 2. T_J is a factor of power dissipation, package thermal resistance, and available heat sinking.

 Freescale's Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts. (i.e. MC33xxxD enter 33xxx), and review parametrics.

STATIC ELECTRICAL CHARACTERISTICS

Table 3. Static Electrical Characteristics

All characteristics are for the analog chip only. Refer to the 68HC908EY16 data sheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40 °C \leq T_J \leq 125 °C, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25°C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Мах	Unit
SUPPLY VOLTAGE RANGE					
Nominal Operating Voltage	V _{SUP}	5.5	_	18	V
Functional Operating Voltage ⁽⁶⁾	V _{SUPOP}	—	—	27	V

SUPPLY CURRENT RANGE

Normal Mode ⁽⁷⁾					
V _{SUP} = 13.5 V, Analog Chip in Normal Mode, MCU Operating Using					
Internal Oscillator at 32 MHz (8.0 MHz Bus Frequency), SPI, ESCI, ADC Enabled Stop Mode ^{(7), (8)}	I _{RUN}	—	20	—	mA
V_{SUP} = 13.5 V, LIN in recessive state Sleep Mode ^{(7), (8)}	ISTOP	—	60	75	μA
V _{SUP} = 13.5 V, LIN in recessive state	I _{SLEEP}	_	35	45	μA

DIGITAL INTERFACE RATINGS (ANALOG DIE)

Output Pin RST_A					
Low-state Output Voltage (I _{OUT} = -1.5 mA)	V _{OL}	—	_	0.4	V
High-state Output Current (V _{OUT} > 3.5 V)	I _{OH}	—	250	—	μA
Pull-down Current Limitation	I _{OL_MAX}	-1.5	—	-8.0	mA
Output Pin IRQ_A					V
Low-state Output Voltage (I _{OUT} = -1.5 mA)	V _{OL}	—	—	0.4	
High-state Output Voltage (I _{OUT} = 250 μ A)	V _{OH}	3.85	—	—	
Output Pin RXD					
Low-state Output Voltage (I _{OUT} = -1.5 mA)	V _{OL}	—	—	0.4	V
High-state Output Voltage (I_{OUT} = 250 μ A)	V _{OH}	3.85	—	—	V
Capacitance ⁽⁹⁾	C _{IN}	—	4.0	—	pF
Input Pin PWMIN					
Input Logic Low Voltage	VIL	—	—	1.5	V
Input Logic High Voltage	V _{IH}	3.5	_	—	V
Input Current	I _{IN}	-10	—	10	μA
Capacitance ⁽⁹⁾	C _{IN}	—	4.0	—	pF
Pin TXD, SS-Pull-up Current	I _{PU}	_	40	_	μA

Notes

6. Device is fully functional. All functions are operating. Over-temperature may occur.

7. Total current (I_{VSUP1} + I_{VSUP2}) measured at GND pin.

- 8. Stop and Sleep mode current will increase if V_{SUP} exceeds 15 V.
- 9. This parameter is guaranteed by process monitoring but is not production tested.

DYNAMIC ELECTRICAL CHARACTERISTICS

Table 4. Dynamic Electrical Characteristics

All characteristics are for the analog chip only. Please refer to the 68HC908EY16 data sheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40 °C \leq T_J \leq 125 °C, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
LIN PHYSICAL LAYER					
Driver Characteristics for Normal Slew Rate ^{(19), (20)}					
Dominant Propagation Delay TXD to LIN	t _{DOM-MIN}	—	—	50	μs
Dominant Propagation Delay TXD to LIN	t _{DOM-MAX}	—	_	50	μs
Recessive Propagation Delay TXD to LIN	t _{REC-MIN}	_	_	50	μS
Recessive Propagation Delay TXD to LIN	t _{REC-MAX}	_	_	50	μS
Propagation Delay Symmetry: t _{DOM-MIN} - t _{REC-MAX}	DT1	-10.44	—	—	μs
Propagation Delay Symmetry: t _{DOM-MAX} - t _{REC-MIN}	DT2	_	_	11	μS
Driver Characteristics for Slow Slew Rate ^{(19), (21)}	1	•	•		
Dominant Propagation Delay TXD to LIN	t _{DOM-MIN}	—	—	100	μs
Dominant Propagation Delay TXD to LIN	t _{DOM-MAX}	_	_	100	μS
Recessive Propagation Delay TXD to LIN	t _{REC-MIN}	_	_	100	μS
Recessive Propagation Delay TXD to LIN	t _{REC-MAX}	—	—	100	μS
Propagation Delay Symmetry: t _{DOM-MIN} - t _{REC-MAX}	DT1S	-22	—	_	μS
Propagation Delay Symmetry: t _{DOM-MAX} - t _{REC-MIN}	DT2S	—	—	23	μS
Driver Characteristics for Fast Slew Rate	·				
LIN High Slew Rate (Programming Mode)	SR _{FAST}	—	15	_	V/µs
Receiver Characteristics and Wake-Up Timings					•
Receiver Dominant Propagation Delay ⁽²²⁾	t _{RL}	_	3.5	6.0	μS
Receiver Recessive Propagation Delay ⁽²²⁾	t _{RH}	—	3.5	6.0	μs
Receiver Propagation Delay Symmetry	t _{R-SYM}	-2.0	—	2.0	μs
Bus Wake-up Deglitcher	t _{PROP} WL	35	—	150	μs
Bus Wake-up Event Reported (23)	t _{WAKE}	—	20	_	μs

Notes

V_{SUP} from 7.0 V to 18 V, bus load R0 and C0 1.0 nF/1.0 kΩ, 6.8 nF/660 Ω, 10 nF/500 Ω. Measurement thresholds: 50% of TXD signal to LIN signal threshold defined at each parameter.

20. See Figure 6, page 14.

21. See <u>Figure 7</u>, page <u>14</u>.

22. Measured between LIN signal threshold V_{IL} or V_{IH} and 50% of RXD signal.

23. t_{WAKE} is typically 2 internal clock cycles after LIN rising edge detected. See <u>Figure 8</u> and <u>Figure 9</u>, page <u>15</u>. In Sleep mode the V_{DD} rise time is strongly dependent upon the decoupling capacitor at VDD pin.

Table 4. Dynamic Electrical Characteristics (continued)

All characteristics are for the analog chip only. Please refer to the 68HC908EY16 data sheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40 °C \leq T_J \leq 125 °C, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Мах	Unit
IN PHYSICAL LAYER (CONTINUED)					
Output Current Shutdown Delay	t _{OV-DELAY}	_	10	_	μS
SPI INTERFACE TIMING					
SPI Operating Recommended Frequency	f _{SPIOP}	0.25	_	4.0	MHz
1 AND L2 INPUTS				I	
Wake-up Filter Time ⁽²⁴⁾	t _{WUF}	8.0	20	38	μS
VINDOW WATCHDOG CONFIGURATION PIN (WDCONF)				I	
Watchdog Period	t _{PWD}				ms
External Resistor R_{EXT} = 10 k Ω (1%)		_	10.558	—	
External Resistor R _{EXT} = 100 kΩ (1%)		_	99.748	_	
Without External Resistor R _{EXT} (WDCONF Pin Open)		97	150	205	
STATE MACHINE TIMING			1	I	
Reset Low Level Duration after V_{DD} High ⁽²⁸⁾	t _{RST}	0.65	1.0	1.35	ms
Interrupt Low Level Duration	t _{INT}	7.0	10	13	μs
Normal Request Mode Timeout ⁽²⁸⁾	t _{NRTOUT}	97	150	205	ms
Delay Between SPI Command and HS1/HS2/HS3 Turn On ^{(25), (26)}	t _{S-HSON}	_	3.0	10	μS
Delay Between SPI Command and HS1/HS2/HS3 Turn Off ^{(25), (26)}	t _{S-HSOFF}		3.0	10	μS
Delay Between Normal Request and Normal Mode After W/D Trigger Command ⁽²⁷⁾	t _{S-NR2N}	6.0	35	70	μS
Delay Between SS Wake-Up (SS LOW to HIGH) and Normal Request Mode	t _{W-SS}				μS
(VDD On and Reset High)		15	40	80	
Delay Between SS Wake-Up (SS LOW to HIGH) and First Accepted SPI	t _{W-SPI}				μS
Command		90	_	N/A	
Delay Between Interrupt Pulse and First SPI Command Accepted	t _{S-1STSPI}	30	—	N/A	μS
Minimum Time Between Two Rising Edges on SS	t _{2SS}	15	_	_	μs

Notes

24. This parameter is guaranteed by process monitoring but is not production tested.

25. Delay between turn-on or turn-off command and high side on or high side off, excluding rise or fall time due to external load.

26. Delay between the end of the SPI command (rising edge of the SS) and start of device activation/deactivation.

27. This parameter is guaranteed by process monitoring but it is not production tested.

28. Also see Figure 10 on page 15

FUNCTIONAL DESCRIPTION

INTRODUCTION

the MCU chip.

ground.

The 908E624 was designed and developed as a highly integrated and cost-effective solution for automotive and industrial applications. For automotive body electronics, the 908E624 is well suited to perform relay control in applications like window lift, sunroof, etc., via a three-wire LIN bus.

The device combines an HC908EY16 MCU core with flash memory together with a SmartMOS IC chip. The SmartMOS IC chip combines power and control in one chip. Power switches are provided on the SmartMOS IC configured as

FUNCTIONAL PIN DESCRIPTION

See Figure 1, 908E624 Simplified Application Diagram, page 1, for a graphic representation of the various pins referred to in the following paragraphs. Also, see the pin diagram on page 3 for a depiction of the pin locations on the package.

PORT A I/O PINS (PTA0:4)

These pins are special function, bidirectional I/O port pins that are shared with other functional modules in the MCU. PTA0: PTA4 are shared with the keyboard interrupt pins KBD0:KBD4.

The PTA5/SPSCK pin is not accessible in this device and is internally connected to the SPI clock pin of the analog die. The PTA6/SS pin is likewise not accessible.

For details, refer to the 68HC908EY16 data sheet.

PORT B I/O PINS (PTB1:7)

These pins are special function, bidirectional I/O port pins that are shared with other functional modules in the MCU. All pins are shared with the ADC module. The PTB6: PTB7 pins are also shared with the Timer B module.

The PTB0/AD0 and PTB2/AD2 pins are not accessible in this device.

For details, refer to the 68HC908EY16 data sheet.

PORT C I/O PINS (PTC2:4)

These pins are special function, bidirectional I/O port pins that are shared with other functional modules in the MCU. For example, PTC2: PTC4 are shared with the ICG module.

PTC0/MISO and PTC1/MOSI are not accessible in this device and are internally connected to the MISO and MOSI SPI pins of the analog die.

For details, refer to the 68HC908EY16 data sheet.

PORT D I/O PINS (PTD:0:1)

PTD1/TACH1 and PTD0/TACH0/BEMF are special function, bidirectional I/O port pins that can also be programmed to be timer pins.

For details, refer to the 68HC908EY16 data sheet.

high side outputs. Other ports are also provided, which

include a current sense operational amplifier port and two

wake-up pins. An internal voltage regulator provides power to

Also included in this device is a LIN physical layer, which

communicates using a single wire. This enables this device

to be compatible with three-wire bus systems, where one wire

is used for communication, one for battery, and one for

PORT E I/O PIN (PTE1)

PTE1/RXD and PTE0/TXD are special function, bidirectional I/O port pins that can also be programmed to be enhanced serial communication.

PTE0/TXD is internally connected to the TXD pin of the analog die. The connection for the receiver must be done externally.

For details, refer to the 68HC908EY16 data sheet.

EXTERNAL INTERRUPT PIN (IRQ)

The IRQ pin is an asynchronous external interrupt pin. This pin contains an internal pull-up resistor that is always activated, even when the IRQ pin is pulled LOW.

For details, refer to the 68HC908EY16 data sheet.

EXTERNAL RESET PIN (RST)

A logic [0] on the RST pin forces the MCU to a known startup state. It is driven LOW when any internal reset source is asserted.

This pin contains an internal pull-up resistor that is always activated, even when the reset pin is pulled LOW.

Important To ensure proper operation, do not add any external pull-up resistor.

For details, refer to the 68HC908EY16 data sheet.

MCU POWER SUPPLY PINS (EVDD AND EVSS)

EVDD and EVSS are the power supply and ground pins, respectively. The MCU operates from a single power supply.

Fast signal transitions on MCU pins place high, short duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU.

For details, refer to the 68HC908EY16 data sheet.

908E624

Note If the operational amplifier is not used, it is possible to connect all pins (E+, E-, OUT and VCC) to GND. In this case, all of the four pins must be grounded.

+5.0 V VOLTAGE REGULATOR OUTPUT PIN (VDD)

The VDD pin is needed to place an external capacitor to stabilize the regulated output voltage. The VDD pin is intended to supply the embedded microcontroller. The pin is protected against shorts to GND with an integrated current limit (temperature shutdown could occur).

Important The VDD, EVDD, VDDA, and VREFH pins must be connected together.

VOLTAGE REGULATOR AND CURRENT SENSE AMPLIFIER GROUND PIN (AGND)

The AGND pin is the ground pin of the voltage regulator and the current sense operational amplifier.

Important GND, AGND, VSS, EVSS, VSSA, and VREFL pins must be connected together.

NO CONNECT PINS (NC)

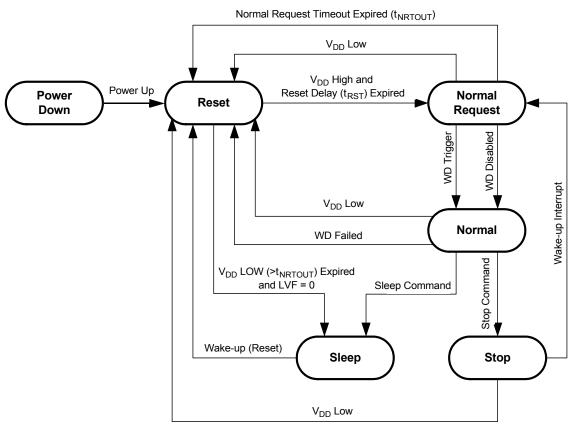
The NC pins are not connected internally.

Note Each of the NC pins can be left open or connected to ground (recommended).

FUNCTIONAL DEVICE OPERATION

OPERATIONAL MODES

908E624 ANALOG DIE MODES OF OPERATION


The 908E624 offers three operating modes: Normal (Run), Stop, and Sleep. In Normal mode the device is active and is operating under normal application conditions. The Stop and Sleep modes are low-power modes with wake-up capabilities.

In Stop mode, the voltage regulator still supplies the MCU with V_{DD} (limited current capability), and in Sleep mode the voltage regulator is turned off ($V_{DD} = 0$ V).

Wake-up from Stop mode is initiated by a wake-up interrupt. Wake-up from Sleep mode is done by a reset and the voltage regulator is turned back on.

The selection of the different modes is controlled by the MODE1:2 bits in the SPI Control register.

Figure 11 describes how transitions are done between the different operating modes and <u>Table 6</u>, page <u>20</u>, gives an overview of the operating mode.

Legend

WD: Watchdog

WD Disabled: Watchdog disabled (WDCONF pin connected to GND) WD Trigger: Watchdog is triggered by SPI command WD Failed: No watchdog trigger or trigger occurs in closed window Stop Command: Stop command sent via SPI Sleep Command: Sleep command sent via SPI

Wake-up: L1 or L2 state change or LIN bus wake-up or SS rising edge

Figure 11. Operating Modes and Transitions

Table 6. Operating Modes Overview

Device Mode	Voltage Regulator	Wake-up Capabilities	RST_A Output	Watchdog Function	HS1, HS2, and HS3	LIN Interface	Sense Amplifier
Reset	V _{DD} ON	N/A	LOW	Disabled	Disabled	Recessive only	Not active
Normal Request	V _{DD} ON	N/A	HIGH	150 ms time out if WD enabled	f Enabled Transmit and receive		Not active
Normal (Run)	V _{DD} ON	N/A	HIGH	Window WD if enabled	Enabled	Transmit and receive	Active
Stop	V _{DD} ON with limited current capability	LIN wake-up, L1, L2 state change, SS rising edge	HIGH	Disabled	Disabled	Recessive state with wake-up capability	Not active
Sleep	V _{DD} OFF	LIN wake-up L1, L2 state change	LOW	Disabled	Disabled	Recessive state with wake-up capability	Not active

INTERRUPTS

In Normal (Run) mode the 908E624 has four different interrupt sources. An interrupt pulse on the $\overline{IRQ}A$ pin is generated to report a fault to the MCU. All interrupts are not maskable and cannot be disabled.

After an Interrupt the INTSRC bit in the SPI Status register is set, indicating the source of the event. This interrupt source information is only transferred once, and the INTSRC bit is cleared automatically.

Low-Voltage Interrupt

Low-voltage interrupt (LVI) is related to external supply voltage VSUP1. If this voltage falls below the LVI threshold, it will set the LVF bit in the SPI Status register and an interrupt will be initiated. The LVF bit remains set as long as the Lowvoltage condition is present.

During Sleep and Stop mode the low-voltage interrupt circuitry is disabled.

High-voltage Interrupt

High-voltage interrupt (HVI) is related to external supply voltage VSUP1. If this voltage rises above the HVI threshold, it will set the HVF bit in the SPI Status register and an interrupt will be initiated. The HVF bit remains set as long as the high-voltage condition is present.

During Sleep and Stop mode the high-voltage interrupt circuitry is disabled.

Wake-up Interrupts

In Stop mode the IRQ_A pin reports wake-up events on the L1, L2, or the LIN bus to the MCU. All wake-up interrupts are not maskable and cannot be disabled.

After a wake-up interrupt, the INTSRC bit in the Serial Peripheral Interface (SPI) Status register is set, indicating the source of the event. This wake-up source information is only transferred once, and the INTSRC bit is cleared automatically.

Figure 12, page 21, describes the Stop/Wake-up procedure.

Voltage Regulator Temperature Prewarning (VDDT)

Voltage regulator temperature prewarning (VDDT) is generated if the voltage regulator temperature is above the T_{PRE} threshold. It will set the VDDT bit in the SPI Status register and an interrupt will be initiated. The VDDT bit remains set as long as the error condition is present.

During Sleep and Stop mode the voltage regulator temperature prewarning circuitry is disabled.

High Side Switch Thermal Shutdown (HSST)

The high side switch thermal shutdown HSST is generated if one of the high side switches HS1:HS3 is above the HSST threshold, it will shutdown all high side switches, set the HSST flag in the SPI Status register and an interrupt will be initiated. The HSST bit remains set as long as the error condition is present.

During Sleep and Stop mode the high side switch thermal shutdown circuitry is disabled.

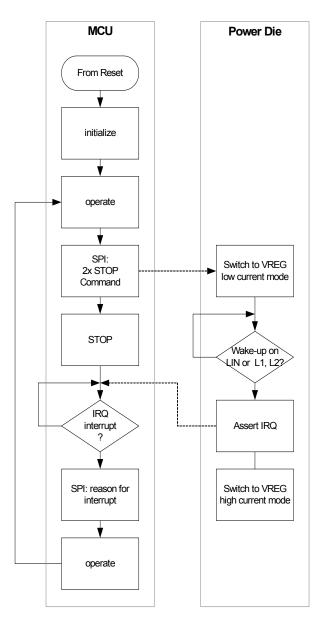


Figure 12. Stop Mode/Wake-up Procedure

ANALOG DIE INPUTS/OUTPUTS

High Side Output Pins HS1 and HS2

These are two high side switches used to drive loads such as relays or lamps. They are protected with over-temperature and current limit (over-current) and include an active internal clamp circuitry for inductive load drive. Control is done using the SPI Control register. PWM capability is offered through the PWMIN input pin.

The high side switch is turned on if both the HSxON bit in the SPI Control register is set and the PWMIN input is HIGH (refer to Figure 13, page 22). In order to have HS1 on, the PWMIN must be HIGH and bit HS1ON must be set. The same applies to the HS2 output.

If no PWM control is required, PWMIN must be connected to the VDD pin.

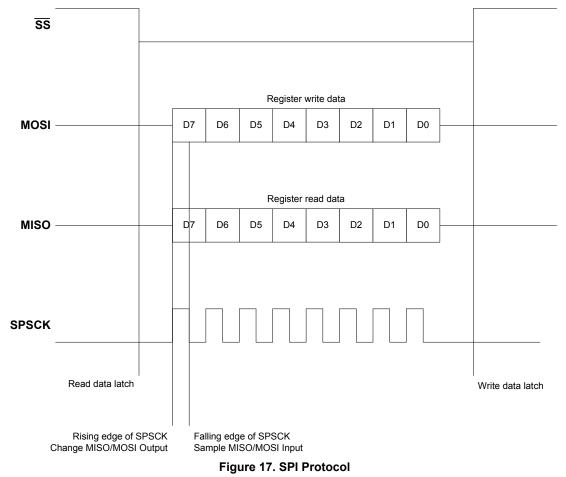
Current Limit (Over-current) Protection

These high side switches feature current limit to protect them against over-current and short circuit conditions.

Over-temperature Protection

If an over-temperature condition occurs on any of the three high side switches, all high side switches (HS1, HS2, and HS3) are turned off and latched off. The failure is reported by the HSST bit in the SPI Control register.

LOGIC COMMANDS AND REGISTERS


908E624 SPI INTERFACE AND CONFIGURATION

The serial peripheral interface creates the communication link between the microcontroller and the analog die of the 908E624.

- The interface consists of four pins (see Figure 17):
- SS—Slave Select

- · MOSI-Master-Out Slave-In
- MISO—Master-In Slave-Out
- SPSCK—Serial Clock

A complete data transfer via the SPI consists of 1 byte. The master sends 8 bits of control information and the slave replies with 8 bits of status data.

During the inactive phase of the \overline{SS} (HIGH), the new data transfer is prepared.

The falling edge of the \overline{SS} indicates the start of a new data transfer and puts the MISO in the low-impedance state and latches the analog status data (Register read data).

With the rising edge of the SPI clock, SPSCK the data is moved to MISO/MOSI pins. With the falling edge of the SPI clock SPSCK the data is sampled by the Receiver.

The data transfer is only valid if exactly 8 sample clock edges are present in the active (low) phase of \overline{SS} .

The rising edge of the slave select \overline{SS} indicates the end of the transfer and latches the write data (MOSI) into the register The \overline{SS} high forces MISO to the high-impedance state.

SPI REGISTER OVERVIEW

<u>Table 7</u> summarizes the SPI Register bit meaning, reset value, and bit reset condition.

Stop Mode Sequence

The Stop command, as shown in <u>Table 12</u>, must be sent twice.

Table 12. Stop Command Bits

	LINSL2	LINSL1	LIN-PU	HS3ON	HS2ON	HS10N	MODE2	MODE1
	1	1	0/1	0	0	0	0	1

SPI Status Register (Read)

Table 13 shows the SPI Status register bits by name.

Table 13. Control Bits Function (Read Operation)

D7	D6	D5	D4	D3	D2	D1	D0
INTSRC	LINWU	HVF	LVF	VDDT	HSST	L2	L1
	or LINFAIL		or BATFAIL				

INTSCR—Register Content Flags or Interrupt Source

This bit indicates if the register contents reflect the flags or an interrupt/wake-up interrupt source.

- 1 = D6:D0 reflects the interrupt or wake-up source.
- 0 = No interrupt occurred. Other SPI bits report real time status.

LINWU/LINFAIL—LIN Status Flag Bit

This bit indicates a LIN wake-up condition.

- 1 = LIN bus wake-up occurred or LIN over-current/overtemperature occurred.
- 0 = No LIN bus wake-up occurred.

In case of a LIN over-current/over-temperature condition the LIN transmitter is disabled. To reenable the LIN transmitter, the error condition must be GONE and the LINWU/LINFAIL flag must be cleared.

The flag is cleared by reading the flag when it is set (SPI command).

HVF — High-voltage Flag Bit

This flag is set on an over-voltage (VSUP1) condition.

- 1 = High-voltage condition has occurred.
- 0 = no High-voltage condition.

LVF/BATFAIL—Low-voltage Flag Bit

This flag is set on an under-voltage (VSUP1) condition.

- 1 = Low-voltage condition has occurred.
- 0 = No low-voltage condition.

VDDT—Voltage Regulator Status Flag Bit

This flag is set as prewarning in case of an overtemperature condition on the voltage regulator.

- 1 = Voltage regulator over-temperature condition, prewarning.
- 0 = No over-temperature detected.

HSST—High Side Status Flag Bit

This flag is set on over-temperature conditions on one of the high side outputs.

- 1 = HSx off due to over-temperature.
- 0 = No over-temperature.

In case one of the high sides has an over-temperature condition all high side switches are disabled.

To reenable the high side switches, the flags have to be cleared, by reading the flag when it is set and by writing a one to high side HSxON bit (two SPI commands are necessary).

L2:L1—Wake-up Inputs L1, L2 Status Flag Bit

These flags reflect the status of the L2 and L1 input pins and indicate the wake-up source.

- 1 = L2:L1 input high or wake-up by L2:L1 (first register read after wake-up indicated with INTSRC = 1).
- 0 = L2:L1 input low.

EMC/EMI RECOMMENDATIONS

This paragraph gives some device specific recommendations to improve EMC/EMI performance. Further generic design recommendations can be found on the Freescale website: www.freescale.com.

VSUP Pins (VSUP1 and VSUP2)

Its recommended to place a high quality ceramic decoupling capacitor close to the VSUP pins to improve EMC/EMI behavior.

LIN Pin

For DPI (Direct Power Injection) and ESD (Electro Static Discharge) it is recommended to place a high quality ceramic decoupling capacitor near the LIN pin. An additional varistor will further increase the immunity against ESD. A ferrite in the LIN line will suppress some of the noise induced.

Voltage Regulator Output Pins (VDD and AGND)

Use a high quality ceramic decoupling capacitor to stabilize the regulated voltage.

MCU Digital Supply Pins (EVDD and EVSS)

Fast signal transitions on MCU pins place high, short duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU. It is recommended that a high quality ceramic decoupling capacitor be placed between these pins.

MCU Analog Supply Pins (VREFH, VDDA, VREFL, and VSSA)

To avoid noise on the analog supply pins it is important to take special care on the layout. The MCU digital and analog supplies should be tied to the same potential via separate traces and connected to the voltage regulator output.

<u>Figure 20</u> and <u>Figure 21</u> show the recommendations on schematics and layout level and <u>Table 15</u> indicates recommended external components and layout considerations.

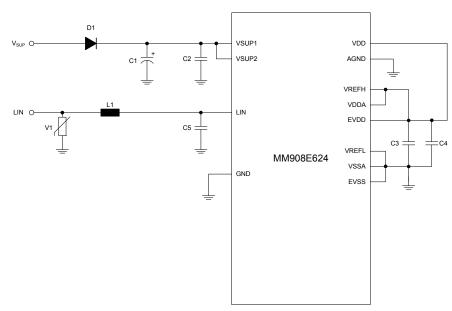


Figure 20. EMC/EMI Recommendations

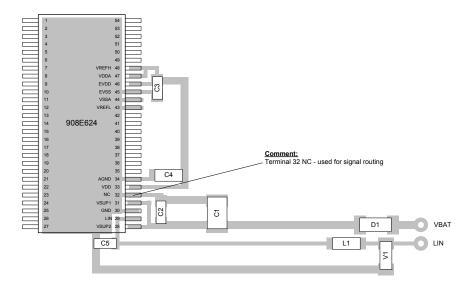


Figure 21. PCB Layout Recommendations

T	Component Value Recommendation
12010 15	Component Value Recommendation

Component	Recommended Value ⁽³⁹⁾	Comments / Signal routing		
D1		Reverse battery protection		
C1	Bulk Capacitor			
C2	100 nF, SMD Ceramic	Close (<5.0 mm) to VSUP1, VSUP2 pins with good ground return		
C3	100 nF, SMD Ceramic	Close (<3.0 mm) to digital supply pins (EVDD, EVSS) with good ground return.		
		The positive analog (VREFH, VDDA) and the digital (EVDD) supply should be connected right at the C3.		
C4	4.7 $\mu\text{F},\text{SMD}$ Ceramic or Low ESR	Bulk Capacitor		
C5	180 pF, SMD Ceramic	Close (<5.0 mm) to LIN pin.		
		Total Capacitance per LIN node has to be below 220 pF.		
		$(C_{TOTAL} = C_{LIN-PIN} + C5 + C_{VARISTOR} \sim 10 \text{ pF} + 180 \text{ pF} + 15 \text{ pF})$		
V1 ⁽⁴⁰⁾	Varistor Type TDK AVR-M1608C270MBAAB	Optional (close to LIN connector)		
L1 ⁽⁴⁰⁾	SMD Ferrite Bead Type TDK MMZ2012Y202B	Optional, (close to LIN connector)		

Notes

39. Freescale does not assume liability, endorse, or want components from external manufactures that are referenced in circuit drawings or tables. While Freescale offers component recommendations in this configuration, it is the customer's responsibility to validate their application.

40. Components are recommended to improve EMC and ESD performance.

ADDITIONAL DOCUMENTATION

THERMAL ADDENDUM (REV 3.0)

INTRODUCTION

This thermal addendum is provided as a supplement to the MM908E624 technical datasheet. The addendum provides thermal performance information that may be critical in the design and development of system applications. All electrical, application, and packaging information is provided in the datasheet.

Packaging and Thermal Considerations

The MM908E624 is a dual die package. There are two heat sources in the package independently heating with P₁ and P₂. This results in two junction temperatures, T_{J1} and T_{J2}, and a thermal resistance matrix with R_{θ JAmn}.

For m, n = 1, $R_{\theta JA11}$ is the thermal resistance from Junction 1 to the reference temperature while only heat source 1 is heating with P_1 .

For m = 1, n = 2, $R_{\theta JA12}$ is the thermal resistance from Junction 1 to the reference temperature while heat source 2 is heating with P_2 . This applies to $R_{\theta J21}$ and $R_{\theta J22}$, respectively.

$$\begin{cases} T_{J1} \\ T_{J2} \end{cases} = \begin{bmatrix} R_{\theta JA11} & R_{\theta JA12} \\ R_{\theta JA21} & R_{\theta JA22} \end{bmatrix} \cdot \begin{cases} P_1 \\ P_2 \end{cases}$$

The stated values are solely for a thermal performance comparison of one

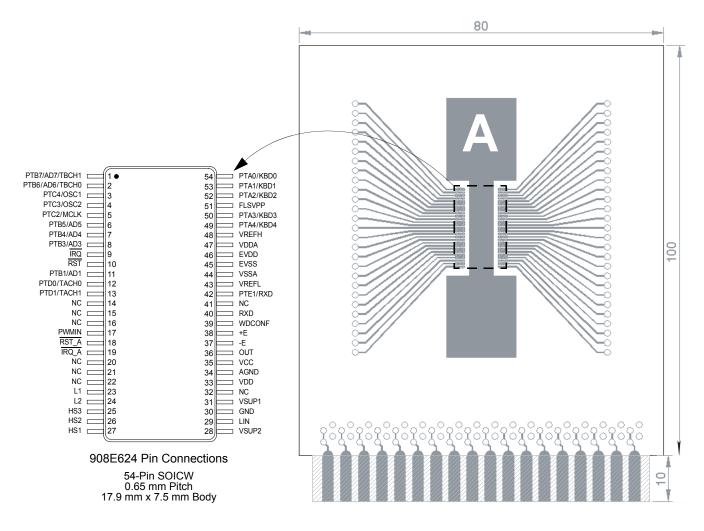
package to another in a standardized environment. This methodology is not meant to and will not predict the performance of a package in an application-specific environment. Stated values were obtained by measurement and simulation according to the standards listed below

Standards

Thermal	1 = Power Chip, 2 = Logic Chip [°C/W]				
Resistance	m = 1, n = 1	m = 1, n = 2 m = 2, n = 1	m = 2, n = 2		
$R_{\theta JAmn}^{(1)(2)}$	40	31	36		
$R_{\theta JBmn}^{(2)(3)}$	25	16	21		
R _{0JAmn} ⁽¹⁾⁽⁴⁾	57	47	52		
R _{0JCmn} ⁽⁵⁾	21	12	16		

 Table 16. Thermal Performance Comparison

Notes:


- 1. Per JEDEC JESD51-2 at natural convection, still air condition.
- 2. 2s2p thermal test board per JEDEC JESD51-7and JESD51-5.
- 3. Per JEDEC JESD51-8, with the board temperature on the center trace near the power outputs.
- 4. Single layer thermal test board per JEDEC JESD51-3 and JESD51-5.
- 5. Thermal resistance between the die junction and the exposed pad, "infinite" heat sink attached to exposed pad.

54 Terminal SOIC 0.65 mm Pitch 17.9 mm x 7.5 mm Body

Figure 22. Surface Mount for SOIC Wide Body Non-exposed Pad

Device on Thermal Test Board

Material:Single layer printed circuit board
FR4, 1.6 mm thickness
Cu traces, 0.07 mm thicknessOutline:80 mm x 100 mm board area,
including edge connector for thermal
testingArea A:Cu heat-spreading areas on board
surfaceAmbient Conditions:Natural convection, still air

Table 17. Thermal Resistance Performance

Pin	Area A (mm ²)	1 = Power Chip, 2 = Logic Chip (°C/W)			
Resistance		m = 1, n = 1	<i>m</i> = 1, n = 2 <i>m</i> = 2, n = 1	m = 2, n = 2	
R _{θJAmn}	0	58	48	53	
	300	56	46	51	
	600	54	45	50	

 $R_{\theta JA\textit{mn}}$ is the thermal resistance between die junction and ambient air.

This device is a dual die package. Index m indicates the die that is heated. Index n refers to the number of the die where the junction temperature is sensed.

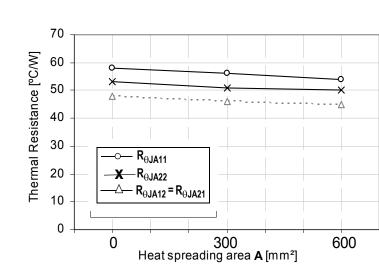


Figure 23. Device on Thermal Test Board

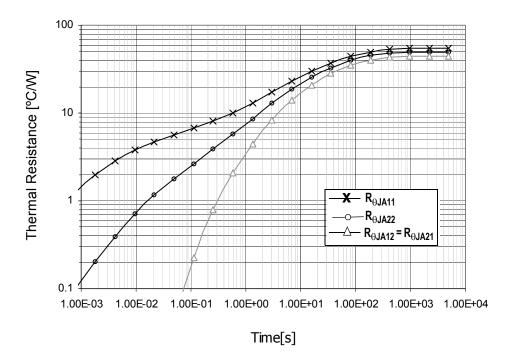


Figure 24. Transient Thermal Resistance $R_{\theta JA}$ (1.0 W Step Response) Device on Thermal Test Board Area A = 600 (mm²)

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware, Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorlQ, Qorivva, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, Processor expert, QorlQ Qonverge, QUICC Engine, Ready Play, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

Document Number: MM908E624 Rev. 11.0 4/2012