E·XFL

Details

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	4
Program Memory Size	384B (256 x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	SOT-23-6
Supplier Device Package	SOT-23-6
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10f220t-i-ot

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

4.5 **OPTION Register**

The OPTION register is a 8-bit wide, write-only register, which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

The OPTION register is not memory mapped and is therefore only addressable by executing the <code>OPTION</code> instruction, the contents of the W register will be transferred to the OPTION register. A Reset sets the OPTION
<7:0> bits.

Note:	If TRIS bit is set to '0', the wake-up on
	change and pull-up functions are disabled
	for that pin (i.e., note that TRIS overrides
	Option control of GPPU and GPWU).

Note:	If the T0CS bit is set to '1', it will override
	the TRIS function on the T0CKI pin.

REGISTER 4-2: OPTION REGISTER

W-1	W-1	W-1	W-1	W-1	W-1	W-1	W-1
GPWU	GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0
bit 7				• •			bit 0
Legend:							
R = Readable		W = Writable bit		U = Unimpler			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	GPWII: Enab	le Wake-un Or	Pin Change	bit (GP0, GP1,	GP3)		
on 7	1 = Disabled 0 = Enabled						
bit 6	GPPU: Enabl	e Weak Pull-up	os bit (GP0, G	GP1, GP3)			
	1 = Disabled 0 = Enabled						
bit 5	TOCS: Timer(Clock Source	Select bit				
	 1 = Transition on T0CKI pin (overrides TRIS on the T0CKI pin) 0 = Transition on internal instruction cycle clock, Fosc/4 						
bit 4	T0SE: Timer0) Source Edge	Select bit				
	 1 = Increment on high-to-low transition on the T0CKI pin 0 = Increment on low-to-high transition on the T0CKI pin 						
bit 3	PSA: Prescal	er Assignment	bit				
	 1 = Prescaler assigned to the WDT 0 = Prescaler assigned to Timer0 						
bit 2-0	PS<2:0>: Pre	escaler Rate Se	elect bits				
	Bit	Value Timer0	Rate WDT F	Rate			
	0 0 1 1	000 1:2 001 1:4 010 1:8 011 1:1 .000 1:3 .01 1:6	1 : 2 1 : 4 6 1 : 8 2 1 : 16 4 1 : 32	2			
		.10 1:1 .11 1:2					

4.9 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

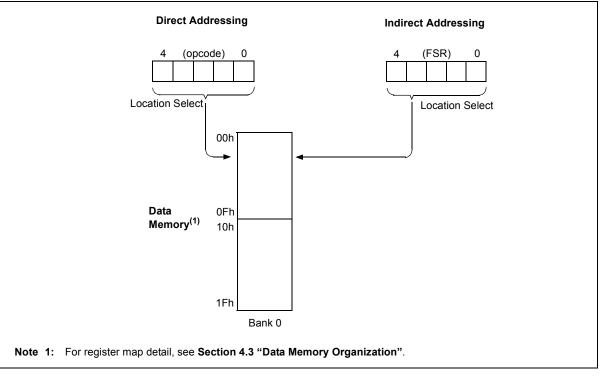
4.9.1 INDIRECT ADDRESSING

- · Register file 09 contains the value 10h
- · Register file 0A contains the value 0Ah
- · Load the value 09 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 0A)
- A read of the INDR register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected).

A simple program to clear RAM locations 10h-1Fh using Indirect addressing is shown in Example 4-1.

FIGURE 4-6: DIRECT/INDIRECT ADDRESSING

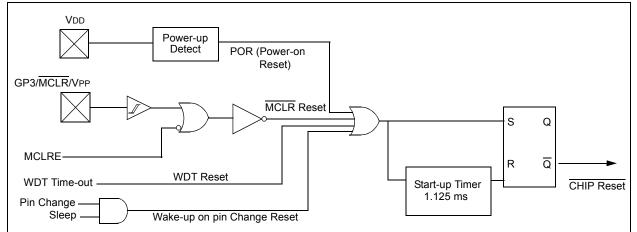


			DILLOUINO			
NEXT	MOVLW MOVWF CLRF INCF	0x10 FSR INDF FSR,F	;initialize pointer ;to RAM ;clear INDF ;register ;inc pointer			
	BTFSC GOTO	FSR , 4 NEXT	;all done? ;NO, clear next			
CONT	CONTINUE					
	:		;YES, continue			
	:					

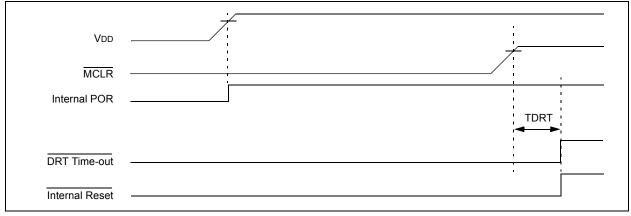
The FSR is a 5-bit wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

Note: Do not use banking. FSR <7:5> are unimplemented and read as '1's.



R-X	R-X	R-X	R-X	R-X	R-X	R-X	R-X
ADRES7	ADRES6	ADRES5	ADRES4	ADRES3	ADRES2	ADRES1	ADRES0
bit 7	•	•				•	bit 0
Legend:							
R = Readable bit W = Writable bit U			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		


REGISTER 7-2: ADRES: ANALOG CONVERSION RESULT REGISTER

bit 7-0 ADRES<7:0>

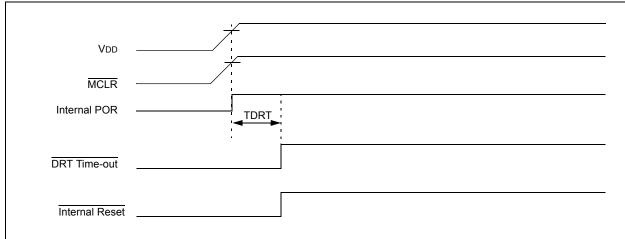

FIGURE 8-2: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

FIGURE 8-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR PULLED LOW)

8.5 Device Reset Timer (DRT)

On the PIC10F220/222 devices, the DRT runs any time the device is powered up.

The DRT operates on an internal oscillator. The processor is kept in Reset as long as the DRT is active. The DRT delay allows VDD to rise above VDD min. and for the oscillator to stabilize.

The on-chip DRT keeps the devices in a Reset condition for approximately 1.125 ms after MCLR has reached a logic high (VIH MCLR) level. Programming GP3/MCLR/VPP as MCLR and using an external RC network connected to the MCLR input is not required in most cases. This allows savings in cost-sensitive and/ or space restricted applications, as well as allowing the use of the GP3/MCLR/VPP pin as a general purpose input.

The Device Reset Time delays will vary from chip-tochip due to VDD, temperature and process variation. See AC parameters for details.

Reset sources are POR, MCLR, WDT time-out and wake-up on pin change. See Section 8.9.2 "Wake-up from Sleep", Notes 1, 2 and 3.

TABLE 8-3:DRT (DEVICE RESET TIMER
PERIOD)

POR Reset	Subsequent Resets
1.125 ms (typical)	10 μs (typical)

8.6 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the internal 4/8 MHz oscillator. This means that the WDT will run even if the main processor clock has been stopped, for example, by execution of a SLEEP instruction. During normal operation or Sleep, a WDT Reset or wake-up Reset, generates a device Reset.

The $\overline{\text{TO}}$ bit (STATUS<4>) will be cleared upon a Watchdog Timer Reset.

The WDT can be permanently disabled by programming the configuration WDTE as a '0' (see **Section 8.1 "Configuration Bits"**). Refer to the PIC10F220/222 Programming Specification to determine how to access the Configuration Word.

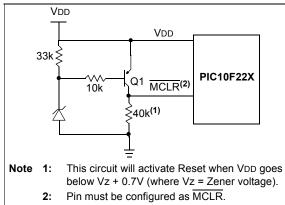
8.6.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, a time-out period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see DC specs).

Under worst-case conditions (VDD = Min., Temperature = Max., max. WDT prescaler), it may take several seconds before a WDT time-out occurs.

8.6.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the postscaler, if assigned to the WDT, and prevents it from timing out and generating a device Reset.


The SLEEP instruction resets the WDT and the postscaler, if assigned to the WDT. This gives the maximum Sleep time before a WDT wake-up Reset.

8.8 Reset on Brown-out

A Brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a Brown-out.

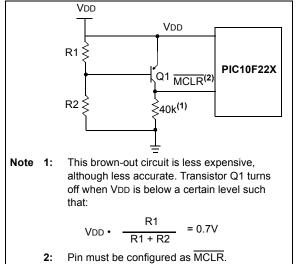

To reset PIC10F220/222 devices when a Brown-out occurs, external Brown-out protection circuits may be built, as shown in Figure 8-7 and Figure 8-8.

FIGURE 8-7: BROWN-OUT PROTECTION CIRCUIT 1

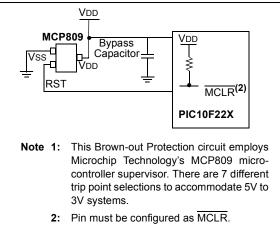
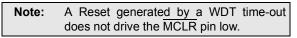


FIGURE 8-8:

BROWN-OUT PROTECTION CIRCUIT 2

FIGURE 8-9: BROWN-OUT PROTECTION CIRCUIT 3


8.9 Power-down Mode (Sleep)

A device may be powered down (Sleep) and later powered up (wake-up from Sleep).

8.9.1 SLEEP

The Power-Down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the TO bit (STATUS<4>) is set, the PD bit (STATUS<3>) is cleared and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, driving low or high-impedance).

For lowest current consumption while powered down, the T0CKI input should be at VDD or VSs and the GP3/ MCLR/VPP pin must be at a logic high level if MCLR is enabled.

TABLE 9-2: IN	ISTRUCTION SET	SUMMARY
---------------	----------------	---------

Mnemonic,		Description	Cycles	12-1	Bit Opcode		Status	
Oper		Description	Cycles	MSb	MSb L		Affected	Notes
ADDWF	f, d	Add W and f	1	0001	11df	ffff	C,DC,Z	1,2,4
ANDWF	f, d	AND W with f	1	0001	01df	ffff	Z	2,4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	-	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2,4
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	0010	11df	ffff	None	2,4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2,4
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	0011	11df	ffff	None	2,4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2,4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2,4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1,4
NOP	_	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2,4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2,4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C,DC,Z	1,2,4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2,4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2,4
		BIT-ORIENTED FILE REGISTE		ATIONS	;			
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2,4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2,4
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	0110	bbbf	ffff	None	
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	0111	bbbf	ffff	None	
		LITERAL AND CONTROL	OPERATIO	ONS				
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT	k	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR Literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	1100	kkkk	kkkk	None	
OPTION	-	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None	
SLEEP	-	Go into standby mode	1	0000	0000	0011	TO, PD	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR Literal to W	1	1111	kkkk	kkkk	Z	
Note 1:	The 9th I	bit of the program counter will be forced to a '0	' by any ii	nstructio	on that v	vrites to	the PC exc	cept for

GOTO. See Section 4.7 "Program Counter".

2: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 6 causes the contents of the W register to be written to the tri-state latches of PORTB. A '1' forces the pin to a high-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	$(f) - 1 \rightarrow (dest)$
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

Decrement f, Skip if 0

[label] DECFSZ f,d

(f) $-1 \rightarrow d$; skip if result = 0

The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register

If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed

instead making it a two-cycle

 $\begin{array}{l} 0 \leq f \leq 31 \\ d \, \in \, [0,1] \end{array}$

None

'f'.

instruction.

DECFSZ

Operands:

Operation:

Description:

Status Affected:

Syntax:

Syntax:	[<i>label</i>] INCF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result
	is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', then the next

Increment f

INCF

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 511$
Operation:	k → PC<8:0>; STATUS<6:5> → PC<10:9>
Status Affected:	None
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a two- cycle instruction.

IORLW	Inclusive OR literal with W	
Syntax:	[<i>label</i>] IORLW k	
Operands:	$0 \leq k \leq 255$	
Operation:	(W) .OR. (k) \rightarrow (W)	
Status Affected:	Z	
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.	

cycle instruction.

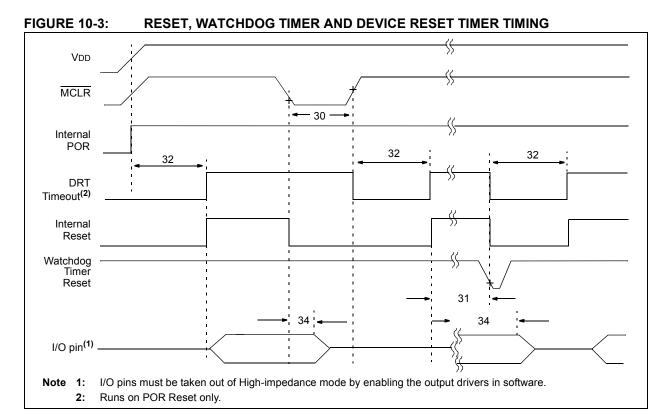
RETLW	Return with Literal in W	SLEEP	Enter SLEEP Mode
Syntax:	[<i>label</i>] RETLW k	Syntax:	[label] SLEEP
Operands:	$0 \leq k \leq 255$	Operands:	None
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:	00h \rightarrow WDT; 0 \rightarrow WDT prescaler;
Status Affected:	None		$1 \rightarrow \overline{\underline{TO}};$
Description:	The W register is loaded with the eight-bit literal 'k'. The program	Status Affected:	$0 \rightarrow PD$ TO, PD, RBWUF
counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	the stack (the return address). This	Description:	Time-out Status bit (\overline{TO}) is set. The Power-down Status bit (\overline{PD}) is cleared.
			RBWUF is unaffected.
			The WDT and its prescaler are cleared.
			The processor is put into Sleep mode with the oscillator stopped.

RLF	Rotate Left f t	hrough Carry
Syntax:	[label]	RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$	
Operation:	See description	n below
Status Affected:	С	
Description:	rotated one bit the Carry Flag. result is placed	f register 'f' are to the left through . If 'd' is '0', the l in the W register. If sult is stored back in register 'f'

SUBWF	Subtract W from f			
Syntax:	[<i>label</i>] SUBWF f,d			
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$			
Operation:	$(f) - (W) \rightarrow (dest)$			
Status Affected:	C, DC, Z			
Description:	Subtract (2's complement method) the W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

details.

See section on Sleep for more


RRF	Rotate Right f through Carry	
Syntax:	[<i>label</i>] RRF f,d	
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$	
Operation:	See description below	
Status Affected:	С	
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	

SWAPF	Swap Nibbles in f			
Syntax:	[<i>label</i>] SWAPF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$			
Operation:	$(f<3:0>) \rightarrow (dest<7:4>);$ $(f<7:4>) \rightarrow (dest<3:0>)$			
Status Affected:	None			
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W register. If 'd' is '1', the result is placed in register 'f'.			

TRIS	Load TRIS Register
Syntax:	[<i>label</i>] TRIS f
Operands:	f = 6
Operation:	(W) \rightarrow TRIS register f
Status Affected:	None
Description:	TRIS register 'f' (f = 6 or 7) is loaded with the contents of the W register
XORLW	Exclusive OR literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.
XORWF	Exclusive OR W with f
Syntax:	[<i>label</i>] XORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (dest)

Status Affected: Z

Description: Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

RESET, WATCHDOG TIMER AND DEVICE RESET TIMER - PIC10F220/222 TABLE 10-3:

АС СНА	ARACTE	RISTICS	Operati Operati	ng Temp ng Volta	perature ge VDD i	≥ 40°C- ≥ 40°C- range is	s (unless otherwise specified) $TA \le +85^{\circ}C$ (industrial) $TA \le +125^{\circ}C$ (extended) described in Section 10.1 "DC 2 (Industrial)"
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
30	Тмс _L	MCLR Pulse Width (low)	2* 5*	_		μS μS	VDD = 5V, -40°C to +85°C VDD = 5.0V
31	Twdt	Watchdog Timer Time-out Period (no prescaler)	10 10	18 18	29 31	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)
32	Tdrt*	Device Reset Timer Period (standard)	0.600 0.600	1.125 1.125	1.85 1.95	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)
34	Tioz	I/O High-impedance from MCLR low	—	_	2*	μS	

These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 10-5: A/D CONVERTER CHARACTERISTICS

	-	rating Conditions (unless operature $-40^{\circ}C \le TA \le +12$		se stated)			
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
A01	Nr	Resolution		—	8 bits	bit	
A03	EIL	Integral Error	_	—	±1.5	LSb	
A04	Edl	Differential Error	_	—	-1 < EDL ≤ + 1.5	LSb	
A05	EFS	Full-scale Range	2.0*	—	5.5*	V	
A06	EOFF	Offset Error	_	—	±1.5	LSb	
A07	Egn	Gain Error	_	—	±1.5	LSb	
A10	—	Monotonicity	_	guaranteed ⁽¹⁾	—	_	$Vss \leq Vain \leq Vdd$
A25	VAIN	Analog Input Voltage	Vss	—	Vdd	V	
A30	Zain	Recommended Impedence of Analog Voltage Source	—	_	10	kΩ	
A31*	ΔIAD	A/D Conversion Current ⁽²⁾	_	120	150	μA	2.0V
			_	200	250	μΑ	5.0V

* These parameters are characterized but not tested.

† Data in the "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only are not tested.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: This is the additional current consumed by the A/D module when it is enabled; this current adds to base IDD.

TABLE 10-6: A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated) $-40^\circ C \le TA \le +125^\circ C$ Operating temperature Param Sym Characteristic Min Typ† Max Units Conditions No. Set GO/DONE bit to new data in A/D AD131 Conversion Time TCNV 13 TCY (not including Result register Acquisition Time) Acquisition Time⁽¹⁾ AD132* TACQ 3.5 μS VDD = 5Vμs 5 VDD = 2.5V

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The **Section 7.9 "A/D Acquisition Requirements"** for information on how to compute minimum acquisition times based on operating conditions.

12.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

12.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

12.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

12.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

12.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

12.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

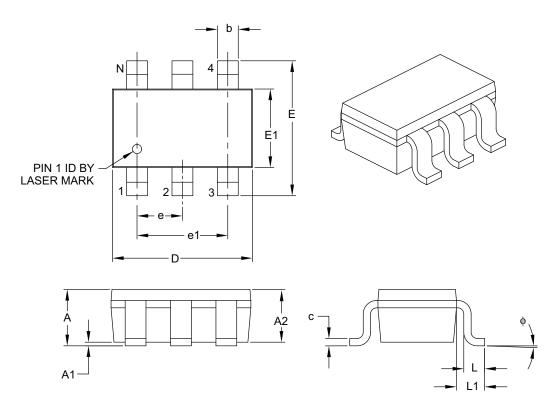
The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

12.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

12.9 PICkit 3 In-Circuit Debugger/ Programmer


The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

12.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

6-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensio	on Limits	MIN	NOM	MAX	
Number of Pins	Ν		6		
Pitch	е		0.95 BSC		
Outside Lead Pitch	e1		1.90 BSC		
Overall Height	Α	0.90	-	1.45	
Molded Package Thickness	A2	0.89	-	1.30	
Standoff	A1	0.00	-	0.15	
Overall Width	Е	2.20	-	3.20	
Molded Package Width	E1	1.30	-	1.80	
Overall Length	D	2.70	-	3.10	
Foot Length	L	0.10	-	0.60	
Footprint	L1	0.35	-	0.80	
Foot Angle	φ	0°	-	30°	
Lead Thickness	С	0.08	-	0.26	
Lead Width	b	0.20	-	0.51	

Notes:

- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-028B

8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	8			
Pitch	e		0.50 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Length	D	2.00 BSC			
Overall Width	E		3.00 BSC		
Exposed Pad Length	D2	1.30	-	1.55	
Exposed Pad Width	E2	1.50	-	1.75	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-123C

INDEX

	۰.
,	۰.

A/D	
Specifications	60
ADC	
Internal Sampling Switch (Rss) IMPEDANCE	32
Source Impedance	32
ALU	9
Assembler	
MPASM Assembler	62

В

Block Diagram	
•	~~~
On-Chip Reset Circuit	
Timer0	
TMR0/WDT Prescaler	
Watchdog Timer	
Block Diagrams	
Analog Input Model	
Brown-Out Protection Circuit	40

С

C Compilers	
MPLAB C18	
MPLAB C30	
Carry	9
Clocking Scheme	
Code Protection	
Configuration Bits	
Customer Change Notification Service	
Customer Notification Service	75
Customer Support	75

D

DC and AC Characteristics	65
Development Support	61
Digit Carry	9

Е

F

Family of Devices	
PIC10F22X	
FSR	

G

GPIO	21
I	
I/O Interfacing	21
I/O Ports	21
I/O Programming Considerations	23
ID Locations	. 33, 41
INDF	20
Indirect Data Addressing	20
Instruction Cycle	11
Instruction Flow/Pipelining	
Instruction Set Summary	44
Internal Sampling Switch (RSS) IMPEDANCE	32
Internet Address	75
L	

Loading of PC 19

Μ

Memory Organization 13 Data Memory 14 Program Memory (PIC10F220) 13 Program Memory (PIC10F222) 13 Microchip Internet Web Site 75 MPLAB ASM30 Assembler, Linker, Librarian 62 MPLAB ICD 2 In-Circuit Debugger 63 MPLAB ICE 2000 High-Performance Universal 1 In-Circuit Emulator 63 MPLAB Integrated Development Environment Software 61 MPLAB REAL ICE In-Circuit Emulator System 63 MPLINK Object Linker/MPLIB Object Librarian 62	
0	
OPTION Register	
P	
PIC10F220/222 Device Varieties	
Power-on Reset (POR)	
TO	
Power-down Mode	
Prescaler	
Q	
Q cycles 11	
R	
Reader Response 76 Read-Modify-Write 23 Register File Map PIC10F220 PIC040F2020 14	
PIC10F22214 Registers	
Special Function	
Reset 33 Reset on Brown-Out 40	
S	
Sleep	
Software Simulator (MPLAB SIM)	
Special Features of the CPU 33	
Special Function Registers	
Stack	

Т

Timer0	
Timer0	25
Timer0 (TMR0) Module	25
TMR0 with External Clock	26
Timing Parameter Symbology and Load Conditions	57
TRIS Registers	21

W

Wake-up from Sleep	41
Watchdog Timer (WDT)	33, 38
Period	
Programming Considerations	
WWW Address	75
WWW, On-Line Support	3
Z	
Zero bit	9

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support