

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	4
Program Memory Size	768B (512 x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	23 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10f222-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6-Pin, 8-Bit Flash Microcontrollers

Device Included In This Data Sheet:

- PIC10F220
- PIC10F222

High-Performance RISC CPU:

- Only 33 Single-Word Instructions to Learn
- All Single-Cycle Instructions Except for Program Branches which are Two-Cycle
- 12-bit Wide Instructions
- 2-Level Deep Hardware Stack
- Direct, Indirect and Relative Addressing modes for Data and Instructions
- · 8-bit Wide Data Path
- 8 Special Function Hardware Registers
- · Operating Speed:
 - 500 ns instruction cycle with 8 MHz internal clock
 - 1 μs instruction cycle with 4 MHz internal clock

Special Microcontroller Features:

- 4 or 8 MHz Precision Internal Oscillator:
- Factory calibrated to ±1%
- In-Circuit Serial Programming[™] (ICSP[™])
- · In-Circuit Debugging (ICD) Support
- Power-On Reset (POR)
- Short Device Reset Timer, DRT (1.125 ms typical)
- Watchdog Timer (WDT) with Dedicated On-Chip RC Oscillator for Reliable Operation
- Programmable Code Protection
- Multiplexed MCLR Input Pin
- Internal Weak Pull-Ups on I/O Pins
- · Power-Saving Sleep mode
- Wake-up from Sleep on Pin Change

Low-Power Features/CMOS Technology:

- Operating Current:
- < 175 μA @ 2V, 4 MHz
- Standby Current:
 - 100 nA @ 2V, typical
- Low-Power, High-Speed Flash Technology:
 - 100,000 Flash endurance
 - > 40-year retention
- · Fully Static Design
- Wide Operating Voltage Range: 2.0V to 5.5V
- Wide Temperature Range:
 - Industrial: -40°C to +85°C
 - Extended: -40°C to +125°C

Peripheral Features:

- 4 I/O Pins:
 - 3 I/O pins with individual direction control
 - 1 input only pin
 - High current sink/source for direct LED drive
 - Wake-on-change
 - Weak pull-ups
- 8-bit Real-Time Clock/Counter (TMR0) with 8-bit Programmable Prescaler
- Analog-to-Digital (A/D) Converter:
 - 8-bit resolution
 - 2 external input channels
 - 1 internal input channel dedicated

Device	Program Memory	Data Memory	I/O	Timers	8-Bit A/D (ch)	
Device	Flash (words)	SRAM (bytes)	1/0	8-bit	o-Bit A/D (Cit)	
PIC10F220	256	16	4	1	2	
PIC10F222	512	23	4	1	2	

NOTES:

2.0 DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC10F220/222 Product Identification System at the back of this data sheet to specify the correct part number.

2.1 Quick Turn Programming (QTP) Devices

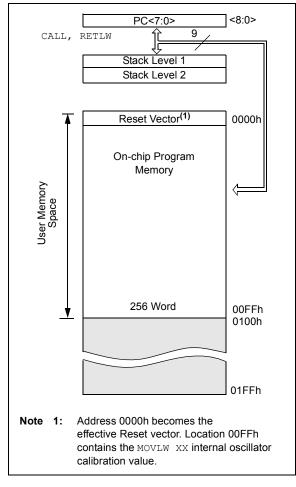
Microchip offers a QTP programming service for factory production orders. This service is made available for users who choose not to program medium-to-high quantity units and whose code patterns have stabilized. The devices are identical to the Flash devices but with all Flash locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.2 Serialized Quick Turn ProgrammingSM (SQTPSM) Devices

Microchip offers a unique programming service, where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number.

4.0 MEMORY ORGANIZATION

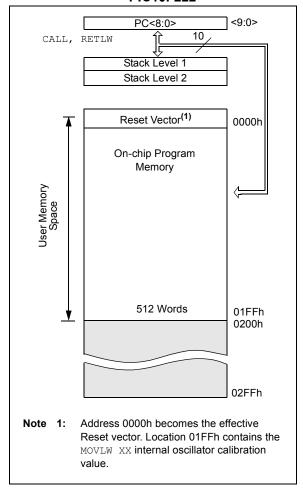

The PIC10F220/222 memories are organized into program memory and data memory. Data memory banks are accessed using the File Select Register (FSR).

4.1 Program Memory Organization for the PIC10F220

The PIC10F220 devices have a 9-bit Program Counter (PC) capable of addressing a 512 x 12 program memory space.

Only the first 256 x 12 (0000h-00FFh) for the PIC10F220 are physically implemented (see Figure 4-1). Accessing a location above these boundaries will cause a wrap-around within the first 256 x 12 space (PIC10F220). The effective Reset vector is at 0000h, (see Figure 4-1). Location 00FFh (PIC10F220) contains the internal clock oscillator calibration value. This value should never be overwritten.

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC10F220


4.2 Program Memory Organization for the PIC10F222

The PIC10F222 devices have a 10-bit Program Counter (PC) capable of addressing a 1024 x 12 program memory space.

Only the first 512 x 12 (0000h-01FFh) for the Mem-High are physically implemented (see Figure 4-2). Accessing a location above these boundaries will cause a wrap-around within the first 512 x 12 space (PIC10F222). The effective Reset vector is at 0000h, (see Figure 4-2). Location 01FFh (PIC10F222) contains the internal clock oscillator calibration value. This value should never be overwritten.

FIGURE 4-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC10F222

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset ⁽²⁾	Page #
00h	INDF	Uses con	XXXX XXXX	20							
01h	TMR0	8-Bit Rea	I-Time Clo	ck/Count	er					XXXX XXXX	25
02h	PCL ⁽¹⁾	Low Orde	er 8 Bits of	PC						1111 1111	19
03h	STATUS	GPWUF	—	_	TO	PD	Z	DC	С	01 1xxx ⁽³⁾	15
04h	FSR	Indirect D	ata Memo	ry Addres	s Pointer					111x xxxx	20
05h	OSCCAL	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	FOSC4	1111 1110	18
06h	GPIO	—		—		GP3	GP2	GP1	GP0	xxxx	21
07h	ADCON0	ANS1	ANS0	_	_	CHS1	CHS0	GO/DONE	ADON	11 1100	30
08h	ADRES	Result of Analog-to-Digital Conversion								XXXX XXXX	31
N/A	TRISGPIO	—	—	—	—	I/O Conti	1111	23			
N/A	OPTION	GPWU	GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	17

TABLE 4-1: SPECIAL FUNCTION REGISTER (SFR) SUMMARY

Legend: -= unimplemented, read as '0', x = unknown, u = unchanged, g = value depends on condition.

Note 1: The upper byte of the Program Counter is not directly accessible. See **Section 4.7 "Program Counter"** for an explanation of how to access these bits.

2: Other (non Power-up) Resets include external Reset through MCLR, Watchdog Timer and wake-up on pin change Reset.

3: See Table 8-1 for other Reset specific values.

4.4 STATUS Register

This register contains the arithmetic status of the ALU, the Reset status and the page preselect bit.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

Therefore, it is recommended that only BCF, BSF and MOVWF instructions be used to alter the STATUS register. These instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions, which do affect Status bits, see Instruction Set Summary.

4.9 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

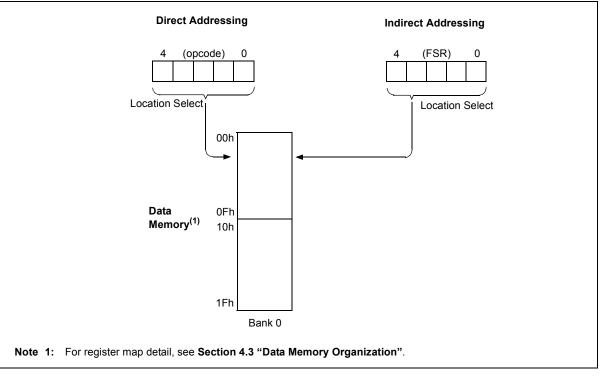
4.9.1 INDIRECT ADDRESSING

- · Register file 09 contains the value 10h
- · Register file 0A contains the value 0Ah
- · Load the value 09 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 0A)
- A read of the INDR register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected).

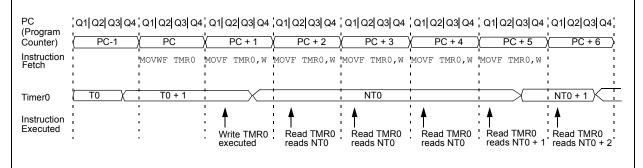
A simple program to clear RAM locations 10h-1Fh using Indirect addressing is shown in Example 4-1.

FIGURE 4-6: DIRECT/INDIRECT ADDRESSING



			DILLOUINO
NEXT	MOVLW MOVWF CLRF INCF	0x10 FSR INDF FSR,F	;initialize pointer ;to RAM ;clear INDF ;register ;inc pointer
	BTFSC GOTO	FSR , 4 NEXT	;all done? ;NO, clear next
CONT	INUE		
	:		;YES, continue
	:		

The FSR is a 5-bit wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.


The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

Note: Do not use banking. FSR <7:5> are unimplemented and read as '1's.

NOTES:

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
01h	TMR0	Timer0 –	8-Bit Rea	I-Time CI	ock/Cour	nter				XXXX XXXX	uuuu uuuu
N/A	OPTION	GPWU	GPPU	TOCS	T0SE	PSA PS2 PS1 PS0				1111 1111	1111 1111
N/A	TRISGPIO ⁽¹⁾	—	_			I/O Cor	ntrol Reg	ister		1111	1111

Legend: Shaded cells not used by Timer0, - = unimplemented, x = unknown, u = unchanged.

Note 1: The TRIS of the TOCKI pin is overridden when TOCS = 1

6.1 Using Timer0 With An External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-4). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 2Tt0H) and low for at least 2Tosc (and a small RC delay of 2Tt0H). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 4Tt0H) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of Tt0H. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-4 shows the delay from the external clock edge to the timer incrementing.

6.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer (WDT), respectively (see Section 8.6 "Watchdog Timer (WDT)"). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet.

Note:	The prescaler may be used by either the
	Timer0 module or the WDT, but not both.
	Thus, a prescaler assignment for the
	Timer0 module means that there is no
	prescaler for the WDT and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

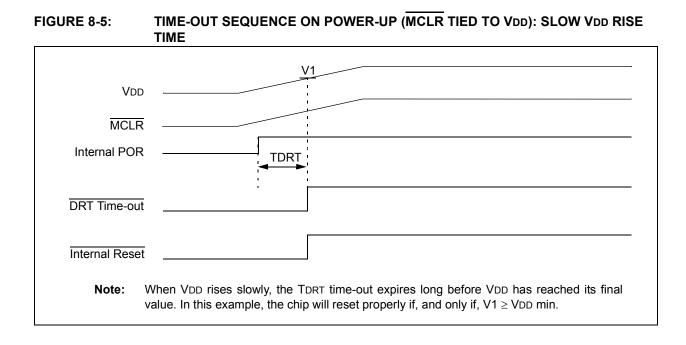
When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a Reset, the prescaler contains all '0's.

7.7 Analog Conversion Result Register

The ADRES register contains the results of the last conversion. These results are present during the sampling period of the next analog conversion process. After the sampling period is over, ADRES is cleared (= 0). A 'leading one' is then right shifted into the ADRES to serve as an internal conversion complete bit. As each bit weight, starting with the MSb, is converted, the leading one is shifted right and the converted bit is stuffed into ADRES. After a total of 9 right shifts of the 'leading one' have taken place, the conversion is complete; the 'leading one' has been shifted out and the GO/DONE bit is cleared.

If the GO/DONE bit is cleared in software during a conversion, the conversion stops. The data in ADRES is the partial conversion result. This data is valid for the bit weights that have been converted. The position of the 'leading one' determines the number of bits that have been converted. The bits that were not converted before the GO/DONE was cleared are unrecoverable.

7.8 Internal Absolute Voltage Reference


The function of the Internal Absolute Voltage Reference is to provide a constant voltage for conversion across the devices VDD supply range. The A/D Converter is ratiometric with the conversion reference voltage being VDD. Converting a constant voltage of 0.6V (typical) will result in a result based on the voltage applied to VDD of the device. The result of conversion of this reference across the VDD range can be approximated by: Conversion Result = 0.6V/(VDD/256)

Note: The actual value of the Absolute Voltage Reference varies with temperature and part-to-part variation. The conversion is also susceptible to analog noise on the VDD pin and noise generated by the sinking or sourcing of current on the I/O pins.

REGISTER 7-1: ADCON0: A/D CONVERTER 0 REGISTER

R/W-1	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-0	R/W-0
ANS1	ANS0	—	—	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:			
R = Reada	ble bit W = Writable	U = Unimplemented bit,	read as '0'
-n = Value	at POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	ANS1: ADC Analog Input Pin 1 = GP1/AN1 configured for an 0 = GP1/AN1 configured as di	og input	
bit 6	ANS0: ADC Analog Input Pin 1 = GP0/AN0 configured as ar 0 = GP0/AN0 configured as di	nalog input	
bit 5-4	Unimplemented: Read as '0'		
bit 3-2	CHS<1:0>: ADC Channel Sele 00 = Channel 00 (GP0/AN0) 01 = Channel 01 (GP1/AN1) 1x = 0.6V absolute Voltage re		
bit 1	by hardware when the Al	 Setting this bit starts an ADC conversion is done converting. Inot in progress. Manually clearing this 	
bit 0	ADON: ADC Enable bit 1 = ADC module is operating 0 = ADC module is shut-off a	consumes no power	
Note 1: 2: 3:	When the ANS bits are set, the char function previously defined. The ANS<1:0> bits are active regar CHS<1:0> bits default to 11 after an		to analog mode regardless of the pin
4:	If the ADON bit is clear, the GO/DOI	bit cannot be set.	

TABLE 9-2: IN	ISTRUCTION SET	SUMMARY
---------------	----------------	---------

Mnem	nonic,	Description	Cycles	12-1	Bit Opc	ode	Status	Notes
Oper	ands	Description	Cycles	MSb		LSb	Affected	Notes
ADDWF	f, d	Add W and f	1	0001	11df	ffff	C,DC,Z	1,2,4
ANDWF	f, d	AND W with f	1	0001	01df	ffff	Z	2,4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	-	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2,4
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	0010	11df	ffff	None	2,4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2,4
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	0011	11df	ffff	None	2,4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2,4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2,4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1,4
NOP	_	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2,4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2,4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C,DC,Z	1,2,4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2,4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2,4
		BIT-ORIENTED FILE REGISTE	R OPER	ATIONS	;			
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2,4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2,4
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	0110	bbbf	ffff	None	
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	0111	bbbf	ffff	None	
		LITERAL AND CONTROL C	PERATIO	ONS			1	
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT	k	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR Literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	1100	kkkk	kkkk	None	
OPTION	-	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None	
SLEEP	-	Go into standby mode	1	0000	0000	0011	TO, PD	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR Literal to W	1	1111	kkkk	kkkk	Z	
Note 1:	The 9th b	bit of the program counter will be forced to a '0	by any i	nstructio	on that v	vrites to	the PC exc	cept for

GOTO. See Section 4.7 "Program Counter".

2: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 6 causes the contents of the W register to be written to the tri-state latches of PORTB. A '1' forces the pin to a high-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

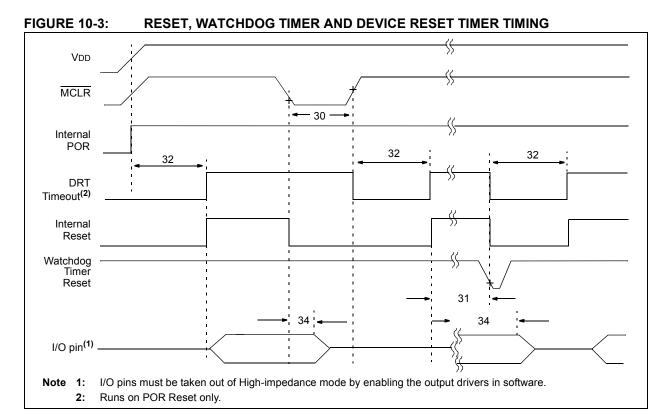
10.2 DC Characteristics: PIC10F220/222 (Extended)

DC CHA	RACTER	ISTICS		Standard Operating Conditions (unless otherwise specified) Operating Temperature -40×C £ TA £ +125×C (extended)							
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions				
D001	Vdd	Supply Voltage	2.0		5.5	V	See Figure 10-1				
D002	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5*			V	Device in Sleep mode				
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	-	Vss	-	V					
	IDD	Supply Current ⁽³⁾									
D010				175 0.625 250 0.800	275 1.1 400 1.5	μΑ mA μA mA	VDD = 2.0V, Fosc = 4 MHz VDD = 5.0V, Fosc = 4 MHz VDD = 2.0V, Fosc = 8 MHz VDD = 5.0V, Fosc = 8 MHz				
	IPD	Power-down Current ⁽⁴⁾									
D020			_	0.1 1	9 15	μΑ μΑ	VDD = 2.0V VDD = 5.0V				
	Iwdt	WDT Current ⁽⁴⁾	•	•		-	•				
D022			_	1.0 7	18 22	μΑ μΑ	VDD = 2.0V VDD = 5.0V				

These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

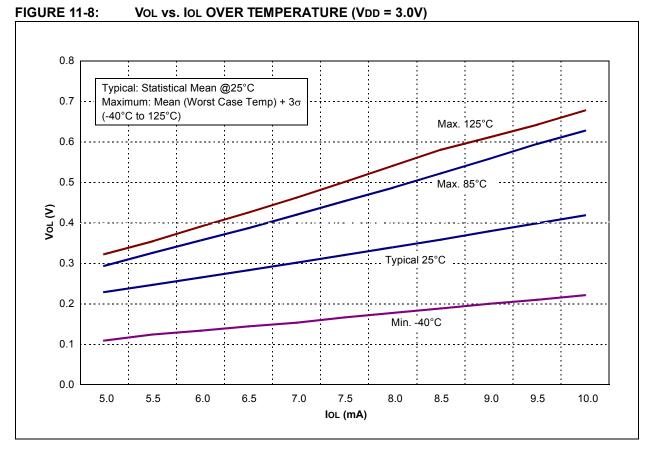

3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in active operation mode are:

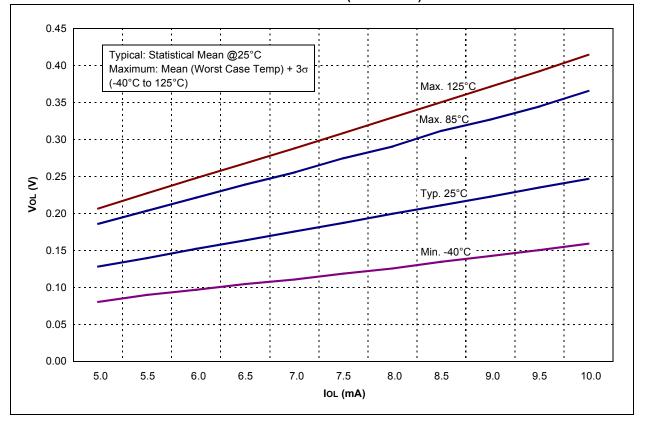
All I/O pins tri-stated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

b) For standby current measurements, the conditions are the same, except that the device is in Sleep mode.

4: Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss. The peripheral current is the sum of the base IPD and the additional current consumed when the peripheral is enabled.



RESET, WATCHDOG TIMER AND DEVICE RESET TIMER - PIC10F220/222 TABLE 10-3:


АС СНА	ARACTE	RISTICS	Standard Operating Conditions (unless otherwise specifie Operating Temperature -40°C ≤ TA ≤ +85°C (industrial) -40°C ≤ TA ≤ +125°C (extended) Operating Voltage VDD range is described in Section 10.1 "Do Characteristics: PIC10F220/222 (Industrial)"							
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
30	Тмс _L	MCLR Pulse Width (low)	2* 5*	_		μS μS	VDD = 5V, -40°C to +85°C VDD = 5.0V			
31	Twdt	Watchdog Timer Time-out Period (no prescaler)	10 10	18 18	29 31	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)			
32	Tdrt*	Device Reset Timer Period (standard)	0.600 0.600	1.125 1.125	1.85 1.95	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)			
34	Tioz	I/O High-impedance from MCLR low	—	_	2*	μS				

These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

© 2005-2013 Microchip Technology Inc.

12.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

12.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

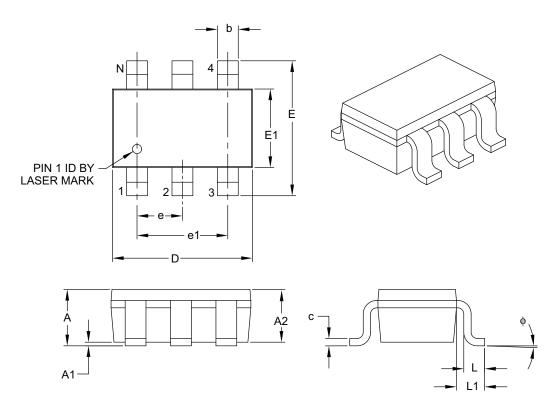
12.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction


12.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

6-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		6
Dimensio	Dimension Limits		NOM	MAX
Number of Pins	Ν	6		
Pitch	е	0.95 BSC		
Outside Lead Pitch	e1	1.90 BSC		
Overall Height	Α	0.90	-	1.45
Molded Package Thickness	A2	0.89	-	1.30
Standoff	A1	0.00	-	0.15
Overall Width	Е	2.20	-	3.20
Molded Package Width	E1	1.30	-	1.80
Overall Length	D	2.70	-	3.10
Foot Length	L	0.10	-	0.60
Footprint	L1	0.35	-	0.80
Foot Angle	φ	0°	-	30°
Lead Thickness	С	0.08	-	0.26
Lead Width	b	0.20	-	0.51

Notes:

- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-028B

8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
	Dimension Limits	MIN NOM MA		MAX
Number of Pins	N	8		
Pitch	e	0.50 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Length	D	2.00 BSC		
Overall Width	E	3.00 BSC		
Exposed Pad Length	D2	1.30	-	1.55
Exposed Pad Width	E2	1.50	-	1.75
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-123C

INDEX

	۰.
,	۰.

A/D	
Specifications	60
ADC	
Internal Sampling Switch (RSS) IMPEDANCE	32
Source Impedance	32
ALU	9
Assembler	
MPASM Assembler	62

В

Block Diagram	
•	
On-Chip Reset Circuit	
Timer0	
TMR0/WDT Prescaler	
Watchdog Timer	39
Block Diagrams	
Analog Input Model	
Brown-Out Protection Circuit	

С

C Compilers	
MPLAB C18	
MPLAB C30	
Carry	9
Clocking Scheme	
Code Protection	
Configuration Bits	
Customer Change Notification Service	
Customer Notification Service	75
Customer Support	75

D

DC and AC Characteristics	65
Development Support	61
Digit Carry	9

Е

F

Family of Devices	
PIC10F22X	5
FSR	

G

GPIO	21
I	
I/O Interfacing	21
I/O Ports	21
I/O Programming Considerations	23
ID Locations	. 33, 41
INDF	20
Indirect Data Addressing	20
Instruction Cycle	11
Instruction Flow/Pipelining	
Instruction Set Summary	44
Internal Sampling Switch (RSS) IMPEDANCE	32
Internet Address	75
L	

Loading of PC 19

Μ

Memory Organization 13 Data Memory 14 Program Memory (PIC10F220) 13 Program Memory (PIC10F222) 13 Microchip Internet Web Site 75 MPLAB ASM30 Assembler, Linker, Librarian 62 MPLAB ICD 2 In-Circuit Debugger 63 MPLAB ICE 2000 High-Performance Universal 1 In-Circuit Emulator 63 MPLAB Integrated Development Environment Software 61 MPLAB REAL ICE In-Circuit Emulator System 63 MPLINK Object Linker/MPLIB Object Librarian 62	
0	
OPTION Register	
P	
PIC10F220/222 Device Varieties	
Power-on Reset (POR)	
TO	
Power-down Mode	
Prescaler	
Q	
Q cycles 11	
R	
Reader Response 76 Read-Modify-Write 23 Register File Map PIC10F220 PIC040F2020 14	
PIC10F22214 Registers	
Special Function	
Reset 33 Reset on Brown-Out 40	
S	
Sleep	
Software Simulator (MPLAB SIM)	
Special Features of the CPU 33	
Special Function Registers	
Stack	

Т

Timer0	
Timer0	25
Timer0 (TMR0) Module	25
TMR0 with External Clock	26
Timing Parameter Symbology and Load Conditions	57
TRIS Registers	21

W

Wake-up from Sleep	41
Watchdog Timer (WDT)	33, 38
Period	
Programming Considerations	
WWW Address	75
WWW, On-Line Support	3
Z	
Zero bit	9