

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	4
Program Memory Size	768B (512 x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	23 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	SOT-23-6
Supplier Device Package	SOT-23-6
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10f222t-e-ot

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC10F220/222 Product Identification System at the back of this data sheet to specify the correct part number.

2.1 Quick Turn Programming (QTP) Devices

Microchip offers a QTP programming service for factory production orders. This service is made available for users who choose not to program medium-to-high quantity units and whose code patterns have stabilized. The devices are identical to the Flash devices but with all Flash locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.2 Serialized Quick Turn ProgrammingSM (SQTPSM) Devices

Microchip offers a unique programming service, where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number.

4.3 Data Memory Organization

Data memory is composed of registers or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: Special Function Registers (SFR) and General Purpose Registers (GPR).

The Special Function Registers include the TMR0 register, the Program Counter (PCL), the STATUS register, the I/O register (GPIO) and the File Select Register (FSR). In addition, Special Function Registers are used to control the I/O port configuration and prescaler options.

The General Purpose Registers are used for data and control information under command of the instructions.

For the PIC10F220, the register file is composed of 9 Special Function Registers and 16 General Purpose Registers (Figure 4-3, Figure 4-4).

For the PIC10F222, the register file is composed of 9 Special Function Registers and 23 General Purpose Registers (Figure 4-4).

4.3.1 GENERAL PURPOSE REGISTER FILE

The General Purpose Register file is accessed, either directly or indirectly, through the File Select Register (FSR). See Section 4.9 "Indirect Data Addressing; INDF and FSR Registers".

FIGURE 4-3: PIC10F220 REGISTER FILE MAP

FIGURE 4-4: PIC10F222 REGISTER FILE MAP

File Address					
00h	INDF ⁽¹⁾				
01h	TMR0				
02h	PCL				
03h	STATUS				
04h	FSR				
05h	OSCCAL				
06h	GPIO				
07h	ADCON0				
08h	ADRES				
09h					
	General Purpose Registers				
1Fh					
Note 1: Not a physical register. See Section 4.9 "Indirect Data Addressing; INDF and FSR Registers".					

4.3.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral functions to control the operation of the device (Table 4-1).

The Special Function Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

4.6 OSCCAL Register

REGISTER 4-3:

The Oscillator Calibration (OSCCAL) register is used to calibrate the internal precision 4/8 MHz oscillator. It contains seven bits for calibration.

Note:	Erasing the device will also erase the pre-
	programmed internal calibration value for
	the internal oscillator. The calibration
	value must be read prior to erasing the
	part so it can be reprogrammed correctly
	later.

After you move in the calibration constant, do not change the value. See Section 8.2.2 "Internal 4/8 MHz Oscillator".

R/W-1	R/W-0						
CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	FOSC4
bit 7							bit 0

OSCCAL – OSCILLATOR CALIBRATION REGISTER (ADDRESS: 05h)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 7-1
 CAL<6:0>: Oscillator Calibration bits

 0111111 = Maximum frequency

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

 <

Note 1: Overrides GP2/T0CKI control registers when enabled.

4.7 Program Counter

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one every instruction cycle, unless an instruction changes the PC.

For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The PC Latch (PCL) is mapped to PC<7:0>.

For a CALL instruction or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (Figure 4-5).

Instructions where the PCL is the destination or Modify PCL instructions, include MOVWF PC, ADDWF PC and BSF PC, 5.

Note:	Because PC<8> is cleared in the CALL
	instruction or any Modify PCL instruction,
	all subroutine calls or computed jumps are
	limited to the first 256 locations of any
	program memory page (512 words long).

FIGURE 4-5: LOADING OF PC BRANCH INSTRUCTIONS

4.7.1 EFFECTS OF RESET

The PC is set upon a Reset, which means that the PC addresses the last location in program memory (i.e., the oscillator calibration instruction). After executing MOVLW XX, the PC will roll over to location 0000h and begin executing user code.

4.8 Stack

The PIC10F220 device has a 2-deep, 8-bit wide hardware PUSH/POP stack.

The PIC10F222 device has a 2-deep, 9-bit wide hardware PUSH/POP stack.

A CALL instruction will PUSH the current value of stack 1 into stack 2 and then PUSH the current PC value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will POP the contents of stack level 1 into the PC and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2.

- **Note 1:** The W register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.
 - **2:** There are no Status bits to indicate stack overflows or stack underflow conditions.
 - 3: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL and RETLW instructions.

4.9 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

4.9.1 INDIRECT ADDRESSING

- · Register file 09 contains the value 10h
- · Register file 0A contains the value 0Ah
- · Load the value 09 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 0A)
- A read of the INDR register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected).

A simple program to clear RAM locations 10h-1Fh using Indirect addressing is shown in Example 4-1.

FIGURE 4-6: DIRECT/INDIRECT ADDRESSING

NEXT	MOVLW MOVWF CLRF INCF BTFSC GOTO	0x10 FSR INDF FSR,F FSR,4 NEXT	<pre>;initialize pointer ;to RAM ;clear INDF ;register ;inc pointer ;all done? :NO, clear next</pre>
CONTIN	IUE		
	:		;YES, continue
	:		

The FSR is a 5-bit wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

Note: Do not use banking. FSR <7:5> are unimplemented and read as '1's.

-											
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	TRISGPIO	—	_	_	_	I/O Co	ntrol Reg	gisters		1111	1111
N/A	OPTION	GPWU	GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03h	STATUS	GPWUF	—	-	TO	PD	Z	DC	С	0001 1xxx	q00q quuu (1)
06h	GPIO	_		_	_	GP3	GP2	GP1	GP0	xxxx	uuuu

TABLE 5-3: SUMMARY OF PORT REGISTERS

Legend: Shaded cells not used by PORT registers, read as '0', -= unimplemented, read as '0', x = unknown, u = unchanged, q = depends on condition.

Note 1: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.

5.4 I/O Programming Considerations

5.4.1 BIDIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit 2 of GPIO will cause all eight bits of GPIO to be read into the CPU, bit 2 to be set and the GPIO value to be written to the output latches. If another bit of GPIO is used as a bidirectional I/O pin (say bit 0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

Example 5-1 shows the effect of two sequential Read-Modify-Write instructions (e.g., BCF, BSF, etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 5-1: I/O PORT READ-MODIFY-WRITE INSTRUCTIONS

;Initial GPIO Settings								
;GPIO<3:2> Inputs								
;GPIO<1:0> Output	s							
;								
;	GPIO latch	GPIO pins						
;								
BCF GPIO, 1	; pp01	pp11						
BCF GPIO, 0	; pp10	pp11						
MOVLW 007h;								
TRIS GPIO	; pp10	pp11						
;								
Note: The user may have expected the pin values to								
be pp00. The second BCF caused GP1								
to be lato	to be latched as the pin value (High).							

5.4.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-5). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction causes that file to be read into the CPU. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1	Q2 Q3 Q4	Q1 Q2 Q3 Q4	
Instruction	PC	PC + 1	X	PC + 2	PC + 3	This example shows a write to GPIO followed by a read from GPIO.
i etched	MOVWF GPIO	MOVF GPIO, W	1	NOP	NOP	Data setup time = (0.25 TCY – TPD)
GP<2:0>			x	1 T		where: TCY = instruction cycle
Instruction		Port pin written here		Port pin sampled here		TPD = propagation delay Therefore, at higher clock frequencies, a write followed by a read may be problematic.
Executed		MOVWF GPIO (Write to GPIO)	мс (I	OVF GPIO,W Read GPIO)	NOP	

FIGURE 5-5: SUCCESSIVE I/O OPERATION

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
01h	TMR0	Timer0 –	ïmer0 – 8-Bit Real-Time Clock/Counter							XXXX XXXX	uuuu uuuu
N/A	OPTION	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
N/A	TRISGPIO ⁽¹⁾	_	_		_	I/O Cor	ntrol Reg	ister		1111	1111

Legend: Shaded cells not used by Timer0, - = unimplemented, x = unknown, u = unchanged.

Note 1: The TRIS of the TOCKI pin is overridden when TOCS = 1

6.1 Using Timer0 With An External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-4). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 2Tt0H) and low for at least 2Tosc (and a small RC delay of 2Tt0H). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 4Tt0H) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of Tt0H. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

TABLE 8-2: RE	ESET CONDITION FOR SPECIAL REGISTERS
---------------	--------------------------------------

	STATUS Addr: 03h	PCL Addr: 02h
Power-on Reset	01 1xxx	1111 1111
MCLR Reset during normal operation	0u uuuu	1111 1111
MCLR Reset during Sleep	01 Ouuu	1111 1111
WDT Reset during Sleep	00 Ouuu	1111 1111
WDT Reset normal operation	00 uuuu	1111 1111
Wake-up from Sleep on pin change	11 Ouuu	1111 1111

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

8.3.1 MCLR ENABLE

This Configuration bit, when unprogrammed (left in the '1' state), enables the external MCLR function. When programmed, the MCLR function is tied to the internal VDD and the pin is assigned to be a I/O. See Figure 8-1.

8.4 **Power-on Reset (POR)**

The PIC10F220/222 devices incorporate an on-chip Power-on Reset (POR) circuitry, which provides an internal chip Reset for most power-up situations.

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. To take advantage of the internal POR, program the GP3/ $\overline{\text{MCLR}}$ /VPP pin as $\overline{\text{MCLR}}$ and tie through a resistor to VDD, or program the pin as GP3. An internal weak pull-up resistor is implemented using a transistor (refer to Table 10-1 for the pull-up resistor ranges). This will eliminate external RC components usually needed to create a Power-on Reset.

When the devices start normal operation (exit the Reset condition), device operating parameters (volt-age, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the devices must be held in Reset until the operating parameters are met.

A simplified block diagram of the on-chip Power-on Reset circuit is shown in Figure 8-2.

The Power-on Reset circuit and the Device Reset Timer (see **Section 8.5 "Device Reset Timer (DRT)**") circuit are closely related. On power-up, the Reset latch is set and the DRT is reset. The DRT timer begins counting once it detects MCLR to be high. After the time-out period, which is typically 1.125 ms, it will reset the Reset latch and thus end the on-chip Reset signal.

A power-up example where MCLR is held low is shown in Figure 8-3. VDD is allowed to rise and stabilize before bringing MCLR high. The chip will actually come out of Reset TDRT msec after MCLR goes high.

In Figure 8-4, the on-chip Power-on Reset feature is being used (MCLR and VDD are tied together or the pin is programmed to be GP3). The VDD is stable before the Start-up timer times out and there is no problem in getting a proper Reset. However, Figure 8-5 depicts a problem situation where VDD rises too slowly. The time between when the DRT senses that MCLR is high and when MCLR and VDD actually reach their full value, is too long. In this situation, when the start-up timer times out, VDD has not reached the VDD (min) value and the chip may not function correctly. For such situations, we recommend that external RC circuits be used to achieve longer POR delay times (Figure 8-4).

Note:	When the devices start normal operation		
	(exit the Reset condition), device operat-		
	ing parameters (voltage, frequency, tem-		
	perature, etc.) must be met to ensure		
	proper operation. If these conditions are		
	not met, the device must be held in Reset		
	until the operating conditions are met.		

For additional information on design considerations related to the use of PIC10F220/222 devices with their short device Reset timer, refer to Application Notes AN522, *"Power-Up Considerations"* (DS00522) and AN607, *"Power-up Trouble Shooting"* (DS00607).

NOTES:

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	$(f) - 1 \rightarrow (dest)$
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

Decrement f, Skip if 0

[label] DECFSZ f,d

(f) $-1 \rightarrow d$; skip if result = 0

The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register

If the result is '0', the next instruction, which is already fetched, is

discarded and a NOP is executed

instead making it a two-cycle

 $0 \le f \le 31$ $d \in [0,1]$

None

'f'.

DECFSZ

Operands:

Operation:

Description:

Status Affected:

Syntax:

Syntax.	
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
INCES7	Increment f. Skip if 0
Syntax:	[<i>label</i>] INCFSZ f,d
Syntax: Operands:	$ [label] INCFSZ f,d 0 \le f \le 31 d \in [0,1] $
Syntax: Operands: Operation:	$[label] INCFSZ f,d$ $0 \le f \le 31$ $d \in [0,1]$ (f) + 1 \rightarrow (dest), skip if result = 0
Syntax: Operands: Operation: Status Affected:	[<i>label</i>] INCFSZ f,d $0 \le f \le 31$ $d \in [0,1]$ (f) + 1 \rightarrow (dest), skip if result = 0 None
Syntax: Operands: Operation: Status Affected: Description:	[<i>label</i>] INCFSZ f,d $0 \le f \le 31$ $d \in [0,1]$ (f) + 1 \rightarrow (dest), skip if result = 0 None The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

Increment f

INCF

GOTO **Unconditional Branch** Syntax: [label] GOTO k Operands: $0 \leq k \leq 511$ Operation: $k \rightarrow PC < 8:0>;$ STATUS<6:5> \rightarrow PC<10:9> Status Affected: None Description: GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a twocycle instruction.

instruction.

ORLW	Inclusive OR literal with W		
Syntax:	[<i>label</i>] IORLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	(W) .OR. (k) \rightarrow (W)		
Status Affected:	Z		
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.		

cycle instruction.

executed instead making it a two-

FIGURE 10-4: **TIMER0 CLOCK TIMINGS**

TIMER0 CLOCK REQUIREMENTS **TABLE 10-4**:

АС СНА	ARACT	ERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (industrial)} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ (extended)} \end{array}$			ecified)		
Param No.	Sym	Characte	eristic	Min	Тур ⁽¹⁾	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse	No Prescaler	0.5 Tcy + 20*	—		ns	
		Width	With Prescaler	10*	—		ns	
41	Tt0L	T0CKI Low Pulse	No Prescaler	0.5 TCY + 20*	—		ns	
		Width	With Prescaler	10*	—		ns	
42	Tt0P	T0CKI Period	•	20 or Tcy + 40* N	—	_	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)

These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

12.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

12.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

12.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

12.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

6-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		0.95 BSC	
Contact Pad Spacing	С		2.80	
Contact Pad Width (X6)	Х			0.60
Contact Pad Length (X6)	Y			1.10
Distance Between Pads	G	1.70		
Distance Between Pads	GX	0.35		
Overall Width	Z			3.90

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2028A

8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν	8			
Pitch	е	0.50 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Length	D	2.00 BSC			
Overall Width	E	3.00 BSC			
Exposed Pad Length	D2	1.30	_	1.55	
Exposed Pad Width	E2	1.50	_	1.75	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-123C

8-Lead Plastic Dual Flat, No Lead Package (MC) - 2x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		N	ILLIMETER	S
Dimension Limits		MIN	NOM	MAX
Contact Pitch E		0.50 BSC		
Optional Center Pad Width	W2			1.45
Optional Center Pad Length	T2			1.75
Contact Pad Spacing	C1		2.90	
Contact Pad Width (X8)	X1			0.30
Contact Pad Length (X8)	Y1			0.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2123B

W

Wake-up from Sleep	41
Watchdog Timer (WDT)	
Period	
Programming Considerations	
WWW Address	75
WWW, On-Line Support	3
Z	
Zero bit	9

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC10F220-I/P = Industrial temp., PDIP package (Pb-free) b) PIC10F222T-E/OT = Extended temp., SOT-23 package (Pb-free), Tape and Reel
Device:	PIC10F220 PIC10F222 PIC10F220T (Tape & Reel) PIC10F222T (Tape & Reel)	 c) PIC10F222-E/MC = Extended temp., DFN package (Pb-free)
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package:	P = 300 mil PDIP (Pb-free) OT = SOT-23, 6-LD (Pb-free) MC = DFN, 8-LD 2x3 (Pb-free)	
Pattern:	Special Requirements	

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820