

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 8x12b; D/A 1x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount, Wettable Flank
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf51qu32vfm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.2.3 Voltage and current operating behaviors Table 3. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = - 9 mA	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -3 mA	$V_{DD} - 0.5$	_	V	
	Output high voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2 mA	$V_{DD} - 0.5$	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{ mA}$	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9 mA	—	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 3 mA	_	0.5	V	
	Output low voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2 mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{ mA}$	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin)				
	@ full temperature range	—	1.0	μA	1
	• @ 25 °C	_	0.1	μA	
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μΑ	
I _{OZ}	Total Hi-Z (off-state) leakage current (all input pins)	—	4	μΑ	
R _{PU}	Internal pullup resistors	22	50	kΩ	2
R _{PD}	Internal pulldown resistors	22	50	kΩ	3

1. Tested by ganged leakage method

2. Measured at Vinput = V_{SS}

3. Measured at Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx-RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 50 MHz
- Bus clock (and flash and Mini-FlexBus clocks) = 25 MHz

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from RAM, exercising flash memory					3
	• @ 1.8 V	_	20	23.5	mA	
	• @ 3.0 V		20	25	mA	
I _{DD_WAIT}	Wait mode current at 3.0 V — all peripheral clocks disabled		5.8	6.8	mA	4
I _{DD_STOP}	Stop mode current at 3.0 V • @ -40 to 25 °C		0.34	0.41	mA	
	• @ 105 °C	_	0.90	1.8	mA	
I _{DD_VLPR}	Very low-power run mode current at 3.0 V — all peripheral clocks disabled		0.63	1.32	mA	5
I _{DD_VLPR}	Very low-power run mode current at 3.0 V — all peripheral clocks enabled		0.78	1.46	mA	6
I _{DD_VLPW}	Very low-power wait mode current at 3.0 V		0.15	0.62	mA	7
I _{DD_VLPS}	Very low-power stop mode current at 3.0 V • @ -40 to 25 °C		19	45	μA	8
	• @ 105 °C	_	145	312		
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					8,9,10
	• @ -40 to 25 °C	—	3.0	4.8	μA	
	• @ 105 °C	_	53.3	157	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					8,9,10
	• @ -40 to 25 °C	_	1.8	3.3	μA	
	• @ 105 °C	_	39.2	115	μΑ	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					8,9
	• @ -40 to 25 °C	_	1.6	2.8	μA	
	• @ 105 °C	_	22.2	65	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					8,9
	• @ -40 to 25 °C	_	1.4	2.6	μA	
	• @ 105 °C	_	17.6	50	μA	
I _{DD_RTC}	Average current adder for real-time clock function	_	0.7	_	μΑ	11
	• @ -40 to 25 °C					

Table 5. Power consumption operating behaviors (continued)

1. The analog supply current is the sum of the active current for each of the analog modules on the device. See each module's specification for its supply current.

2. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode. All peripheral clocks disabled.

3. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode. All peripheral clocks enabled, but peripherals are not in active operation.

4. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode.

Thermal specifications

The following general purpose specifications apply to all signals configured for RGPIO, FTM, and UART. The conditions are 25 pf load, $V_{DD} = 3.6$ V to 1.71 V, and full temperature range. The GPIO are set for high drive, no slew rate control, and no input filter, digital or analog, unless otherwise specified.

Symbol	Description	Min.	Max.	Unit
R1	CPUCLK from CLK_OUT pin high to GPIO output valid	—	16	ns
R2	CPUCLK from CLK_OUT pin high to GPIO output invalid (output hold)	1		ns
R3	GPIO input valid to bus clock high	17	_	ns
R4	CPUCLK from CLK_OUT pin high to GPIO input invalid	—	2	ns

Table 10. RGPIO General Control Timing

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	115	°C
T _A	Ambient temperature	-40	105	°C

System modules

 To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.

6.2 System modules

6.2.1 VREG electrical specifications

Table 13.	VREG electrica	I specifications
-----------	----------------	------------------

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	—	5.5	V	
I _{DDon}	Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V	_	120	186	μΑ	
IDDstby	Quiescent current — Standby mode, load current equal zero	_	1.1	1.54	μA	
I _{DDoff}	 Quiescent current — Shutdown mode VREGIN = 5.0 V and temperature=25C Across operating voltage and temperature 	_	650 —	 4	nA μA	
I _{LOADrun}	Maximum load current — Run mode	_	_	120	mA	
I _{LOADstby}	Maximum load current — Standby mode	_	_	1	mA	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) > 3.6 V					
	Run mode	3	3.3	3.6	v	
	Standby mode	2.1	2.8	3.6	v	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode	2.1	_	3.6	V	2
C _{OUT}	External output capacitor	1.76	2.2	8.16	μF	
ESR	External output capacitor equivalent series resistance	1	—	100	mΩ	
I _{LIM}	Short circuit current	_	290	_	mA	

1. Typical values assume VREGIN = 5.0 V, Temp = 25 $^{\circ}$ C unless otherwise stated.

2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.

- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

Symbol	Description	Min.	Tvp.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 1 MHz	_	200	_	μA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μA	
	• 1 MHz	_	300	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	—	2.5	_	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	-	4	-	mA	
C _x	EXTAL load capacitance	—	—	-		2, 3
Cy	XTAL load capacitance	_	_	_		2, 3

6.3.2.1 Oscillator DC electrical specifications Table 15. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	
t _{hversscr}	Sector Erase high-voltage time		13	113	ms	1
t _{hversblk32k}	Erase Block high-voltage time for 32 KB		52	452	ms	1
t _{hversblk128k}	Erase Block high-voltage time for 128 KB	_	208	1808	ms	1

Table 17. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

6.4.1.2 Flash timing specifications — commands Table 18. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					
t _{rd1blk32k}	32 KB data flash	—	—	0.5	ms	
t _{rd1blk128k}	128 KB program flash	_	_	1.7	ms	
t _{rd1sec1k}	Read 1s Section execution time (data flash sector)	_	_	60	μs	1
t _{pgmchk}	Program Check execution time			45	μs	1
t _{rdrsrc}	Read Resource execution time	—	_	30	μs	1
t _{pgm4}	Program Longword execution time	—	65	145	μs	
	Erase Flash Block execution time					2
t _{ersblk32k}	32 KB data flash	_	55	465	ms	
t _{ersblk128k}	128 KB program flash	_	220	1850	ms	
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
	Program Section execution time					
t _{pgmsec512}	• 512 B flash	—	4.7	—	ms	
t _{pgmsec1k}	• 1 KB flash	_	9.3	_	ms	
t _{rd1all}	Read 1s All Blocks execution time			1.8	ms	
t _{rdonce}	Read Once execution time	—	—	25	μs	1
t _{pgmonce}	Program Once execution time		65		μs	
t _{ersall}	Erase All Blocks execution time		275	2350	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—		30	μs	1
	Program Partition for EEPROM execution time					
t _{pgmpart32k}	32 KB FlexNVM	_	70	_	ms	

Figure 5. EEPROM backup writes to FlexRAM

6.4.2 EzPort Switching Specifications

All timing is shown with respect to a maximum pin load of 50 pF and input signal transitions of 3 ns.

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	_	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)		f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}		ns
EP3	EZP_CS input valid to EZP_CK high (setup)	15	_	ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	0.0	—	ns
EP5	EZP_D input valid to EZP_CK high (setup)	15	_	ns

Table 21. EzPort switching specifications

Table continues on the next page...

Num	Description	Min.	Max.	Unit
EP6	EZP_CK high to EZP_D input invalid (hold)	0.0	—	ns
EP7	EZP_CK low to EZP_Q output valid (setup)	_	25	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0.0	—	ns
EP9	EZP_CS negation to EZP_Q tri-state	—	12	ns

Table 21. EzPort switching specifications (continued)

Figure 6. EzPort Timing Diagram

6.4.3 Mini-Flexbus Switching Specifications

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Mini-Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation		25	MHz	
FB1	Clock period	40	_	ns	

Table 22. Flexbus switching specifications

6.6 Analog

6.6.1 ADC electrical specifications

All ADC channels meet the 12-bit single-ended accuracy specifications.

Symbol	Description	Conditions	Min.	Typ ¹	Max.	Unit	Notes
	Supply voltage	Absolute	1.71		3.6	V	110100
ΔV _{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} - V _{DDA})	-100	0	+100	mV	2
ΔV _{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} - V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	Reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage		V _{REFL}	_	V _{REFH}	V	
C _{ADIN}	Input capacitance	8/10/12 bit modes	_	4	5	pF	
R _{ADIN}	Input resistance		_	2	5	kΩ	
R _{AS}	Analog source resistance	12 bit modes f _{ADCK} < 4MHz	_	_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 12 bit modes	1.0	_	18.0	MHz	4
C _{rate}	ADC conversion rate	 ≤ 12 bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time 	20.000	_	818.330	Ksps	5

6.6.1.1 12-bit ADC operating conditions Table 23. 12-bit ADC operating conditions

1. Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

2. DC potential difference.

- 3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The R_{AS}/ C_{AS} time constant should be kept to <1ns.
- 4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.

Figure 10. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)

6.8 Communication interfaces

6.8.1 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted, as well as input signal transitions of 3 ns and a 50 pF maximum load on all SPI pins. All timing assumes slew rate control is disabled and high drive strength is enabled for SPI output pins.

Num.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{BUS} /2048	f _{BUS} /2	Hz	f _{BUS} is the bus clock as defined in Table 8.
2	t _{SPSCK}	SPSCK period	2 x t _{BUS}	2048 x t _{BUS}	ns	t _{BUS} = 1/ f _{BUS}
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	
4	t _{Lag}	Enable lag time	1/2		t _{SPSCK}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{BUS} - 30	1024 x t _{BUS}	ns	
6	t _{SU}	Data setup time (inputs)	21	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	—
8	t _v	Data valid (after SPSCK edge)	—	25	ns	—
9	t _{HO}	Data hold time (outputs)	0	_	ns	—
10	t _{RI}	Rise time input	—	t _{BUS} - 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	-
	t _{FO}	Fall time output				

Table 32. SPI master mode timing

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
Res	Resolution	—	—	16	bits	
T _{Con20}	Response time @ 20 pF	8	15	25	μs	11
I _{TSI_RUN}	Current added in run mode	_	55	_	μA	
I _{TSI_LP}	Low power mode current adder		1.3	2.5	μA	12

Table 34. TSI electrical specifications (continued)

1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.

- 2. CAPTRM=7, DELVOL=7, and fixed external capacitance of 20 pF.
- 3. CAPTRM=0, DELVOL=2, and fixed external capacitance of 20 pF.
- 4. CAPTRM=0, EXTCHRG=9, and fixed external capacitance of 20 pF.
- 5. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 6. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 7. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 8. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.
- 10. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN). Sensitivity depends on the configuration used. The typical value listed is based on the following configuration: lext = 5 μA, EXTCHRG = 4, PS = 128, NSCN = 2, I_{ref} = 16 μA, REFCHRG = 15, C_{ref} = 1.0 pF. The minimum sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best sensitivity but is described as a minimum because it's the smallest number). The minimum sensitivity parameter is based on the following configuration: I_{ext} = 1 μA, EXTCHRG = 0, PS = 128, NSCN = 32, I_{ref} = 32 μA, REFCHRG = 31, C_{ref} = 0.5 pF
- 11. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, DELVOL = 2, EXTCHRG = 15.
- 12. CAPTRM=7, DELVOL=2, REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to http://www.freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin QFN	98ARE10566D
44-pin Laminate QFN	98ASA00239D
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W

Figure 18. 64-pin LQFP

Figure 21. 32-pin QFN

8.3 Module-by-module signals

NOTE

- On PTB0, EZP_MS_b is active only during reset. Refer to the detailed boot description.
- PTC1 is open drain.

Table 35. Module signals by GPIO port and pin

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)		
Power and ground							
1					VDD		
24	20	18			VDD		

Table continues on the next page ...

Table 35.	Module signals by GPIO	port and pin	(continued)
	module signals by all lo	port und pin	(continued)

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)	
63	47	43	31	PTC4	LLWU_P15	
	RGPIO					
51	38	34	27	PTC0	RGPIO0	
56	40	36		PTF3	RGPIO1	
57	41	37	29	PTC2	RGPIO2	
62	46	42	30	PTC3	RGPIO3	
63	47	43	31	PTC4	RGPIO4	
64	48	44	32	PTC5	RGPIO5	
3				PTC6	RGPIO6	
4				PTC7	RGPIO7	
5	1			PTD0	RGPIO8	
6	2			PTD1	RGPIO9	
26				PTD2	RGPIO10	
27	22	20		PTD3	RGPIO11	
28				PTD4	RGPIO12	
29				PTD5	RGPIO13	
31	24	22		PTD6	RGPIO14	
32				PTD7	RGPIO15	
		LP ⁻	ſMR			
25	21	19	15	PTA6	LPTMR_ALT1	
36	26	24	18	PTB1	LPTMR_ALT2	
41	29			PTE4	LPTMR_ALT3	
	•	LPTM	R-TOD			
50	37	33	26	PTB7	EXTAL1	
47	34	30	23	PTB6	EXTAL2	
25	21	19	15	PTA6	LPTMR_ALT1	
36	26	24	18	PTB1	LPTMR_ALT2	
41	29			PTE4	LPTMR_ALT3	
51	38	34	27	PTC0	XTAL1	
46	33	29	22	PTB5	XTAL2	
		P	ТА			
7	3	1	1	PTA0	PTA0	
8	4	2	2	PTA1	PTA1	
9	5	3	3	PTA2	PTA2	
10	6	4	4	PTA3	PTA3	

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)
11	7	5	5	PTA4	PTA4
12	8	6	6	PTA5	PTA5
25	21	19	15	PTA6	PTA6
30	23	21	16	PTA7	PTA7
	•	P	ГВ	•	
35	25	23	17	PTB0	PTB0
36	26	24	18	PTB1	PTB1
39	27	25	19	PTB2	PTB2
40	28	26	20	PTB3	PTB3
45	32	28	21	PTB4	PTB4
46	33	29	22	PTB5	PTB5
47	34	30	23	PTB6	PTB6
50	37	33	26	PTB7	PTB7
		P	ГС	•	
51	38	34	27	PTC0	PTC0
52	39	35	28	PTC1	PTC1
57	41	37	29	PTC2	PTC2
62	46	42	30	PTC3	PTC3
63	47	43	31	PTC4	PTC4
64	48	44	32	PTC5	PTC5
3				PTC6	PTC6
4				PTC7	PTC7
		P	ГD		
5	1			PTD0	PTD0
6	2			PTD1	PTD1
26				PTD2	PTD2
27	22	20		PTD3	PTD3
28				PTD4	PTD4
29				PTD5	PTD5
31	24	22		PTD6	PTD6
32				PTD7	PTD7
		P	ΓE		
33				PTE0	PTE0
34				PTE1	PTE1
38				PTE3	PTE2

Table 35. Module signals by GPIO port and pin (continued)

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)
54 E4			p	DTE1	
54				PIFI	FDa_AD0
55				PTF2	FBa_AD7
56	40	36		PTF3	FBa_AD8
60	44	40		PTF6	FBa_AD9
61	45	41		PTF7	FBa_AD10
3				PTC6	FBa_AD11
4				PTC7	FBa_AD12
5	1			PTD0	FBa_AD13
6	2			PTD1	FBa_AD14
7	3	1	1	PTA0	FBa_AD15
8	4	2	2	PTA1	FBa_AD16
25	21	19	15	PTA6	FBa_AD17
57	41	37	29	PTC2	FBa_AD18
58	42	38		PTF4	FBa_AD19
40	28	26	20	PTB3	FBa_ALE
39	27	25	19	PTB2	FBa_CS0_b
37				PTE2	FBa_D0
34				PTE1	FBa_D1

Table 35. Module signals by GPIO port and pin (continued)

39	27	25	19	PTB2	FBa_CS0_b
37				PTE2	FBa_D0
34				PTE1	FBa_D1
33				PTE0	FBa_D2
32				PTD7	FBa_D3
31	24	22		PTD6	FBa_D4
30	23	21	16	PTA7	FBa_D5
29				PTD5	FBa_D6
28				PTD4	FBa_D7
38				PTE3	FBa_OE_b
59	43	39		PTF5	FBa_RW_b
		DATA	_BUS		
8	4	2	2	PTA1	FBa_AD16
39	27	25	19	PTB2	FBa_CS0_b
61	45	41		PTF7	FBa_D0
60	44	40		PTF6	FBa_D1
59	43	39		PTF5	FBa_D2
58	42	38		PTF4	FBa_D3
31	24	22		PTD6	FBa_D4
30	23	21	16	PTA7	FBa_D5

Table 35.	Module signals b	by GPIO	port and	pin	(continued)
-----------	------------------	---------	----------	-----	-------------

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)		
27	22	20		PTD3	FBa_D6		
25	21	19	15	PTA6	FBa_D7		
44	31	27		PTE7	FBa_RW_b		
I2C0 and I2C1							
3				PTC6	I2C0_SCL		
35	25	23	17	PTB0	I2C0_SCL		
4				PTC7	I2C0_SDA		
36	26	24	18	PTB1	I2C0_SDA		
6	2			PTD1	I2C1_SCL		
42	30			PTE5	I2C1_SCL		
51	38	34	27	PTC0	I2C1_SCL		
5	1			PTD0	I2C1_SDA		
43				PTE6	I2C1_SDA		
50	37	33	26	PTB7	I2C1_SDA		
I2C2 and I2C3							
7	3	1	1	PTA0	I2C2_SCL		
11	7	5	5	PTA4	I2C2_SCL		
8	4	2	2	PTA1	I2C2_SDA		
12	8	6	6	PTA5	I2C2_SDA		
32				PTD7	I2C3_SCL		
37				PTE2	I2C3_SCL		
33				PTE0	I2C3_SDA		
38				PTE3	I2C3_SDA		
SPI0							
39	27	25	19	PTB2	SPI0_MISO		
55				PTF2	SPI0_MISO		
63	47	43	31	PTC4	SPI0_MISO		
38				PTE3	SPI0_MOSI		
40	28	26	20	PTB3	SPI0_MOSI		
56	40	36		PTF3	SPI0_MOSI		
64	48	44	32	PTC5	SPI0_MOSI		
36	26	24	18	PTB1	SPI0_SCLK		
54				PTF1	SPI0_SCLK		
62	46	42	30	PTC3	SPI0_SCLK		
7	3	1	1	PTA0	SPI0_SS		

Revision History

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)	
44	31	27		PTE7	UART0_TX	
64	48	44	32	PTC5	UART0_TX	
UART1						
11	7	5	5	PTA4	UART1_CTS_b	
58	42	38		PTF4	UART1_CTS_b	
12	8	6	6	PTA5	UART1_RTS_b	
57	41	37	29	PTC2	UART1_RTS_b	
10	6	4	4	PTA3	UART1_RX	
59	43	39		PTF5	UART1_RX	
9	5	3	3	PTA2	UART1_TX	
60	44	40		PTF6	UART1_TX	

 Table 35. Module signals by GPIO port and pin (continued)

9 Revision History

The following table summarizes content changes since the previous release of this document.

Rev. No.	Date	Substantial Changes
4	01/2012	Thermal operating requirements: Changed maximum T_J value from 125°C to 115°C

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:rescale} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$

© 2010–2012 Freescale Semiconductor, Inc.

Document Number: MCF51QU128 Rev. 4, 01/2012