

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

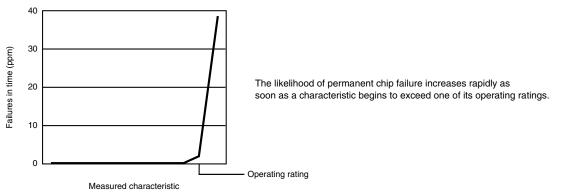
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

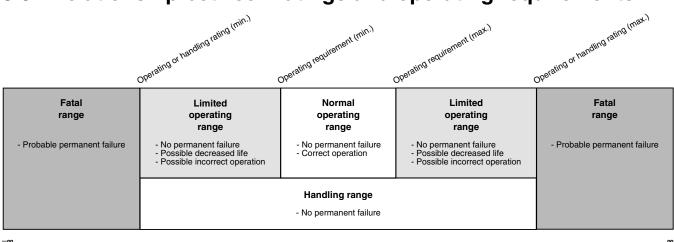
E·XF

Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFLGA Exposed Pad
Supplier Device Package	44-MAPLGA (5x5)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51qu32vhs

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4.1 Example


This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

Result of exceeding a rating 3.5

Relationship between ratings and operating requirements 3.6

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

• Never exceed any of the chip's ratings.

5.2 Nonswitching electrical specifications

5.2.1 Voltage and Current Operating Requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{\rm SS} - V_{\rm SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				1
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.7 \times V_{DD}$	—	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				2
	• 2.7 V \leq V _{DD} \leq 3.6 V	_	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	—	$0.3 \times V_{DD}$	V	
I _{IC}	DC injection current — single pin				3
	• V _{IN} > V _{DD}	0	2	mA	
	• V _{IN} < V _{SS}	0	-0.2	mA	
	DC injection current — total MCU limit, includes sum				3
	of all stressed pins • V _{IN} > V _{DD}	0	25	mA	
	 V_{IN} > V_{DD} V_{IN} < V_{SS} 	0	-5	mA	
V _{RAM}	V _{DD} voltage required to retain RAM	1.2		V	

1. The device always interprets an input as a 1 when the input is greater than or equal to V_{IH} (min.) and less than or equal to V_{IH} (max.), regardless of whether input hysteresis is turned on.

2. The device always interprets an input as a 0 when the input is less than or equal to V_{IL} (max.) and greater than or equal to V_{IL} (min.), regardless of whether input hysteresis is turned on.

3. All functional non-supply pins are internally clamped to VSS and VDD. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.		300	μs	1
	• VLLS1 → RUN	_	150	μs	1, 2
	• VLLS2 \rightarrow RUN				1, 2
		_	75	μs	
	• VLLS3 → RUN				1, 2
		—	75	μs	
	• LLS \rightarrow RUN				2
		—	6.5	μs	
	VLPS → RUN				2
		—	4.6	μs	
	• STOP \rightarrow RUN				2
		—	4.6	μs	

Table 4. Power mode transition operating behaviors

1. Normal boot (FTFL_FOPT[LPBOOT] is 1)

2. The wakeup time includes the execution time for a small amount of firmware used to produce a GPIO clear event. Wakeup time is measured from the falling edge of the external wakeup event to the falling edge of a GPIO clear performed by software.

5.2.5 Power consumption operating behaviors

Table 5. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	—	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from RAM					2
	• @ 1.8 V	_	13	_	mA	
	• @ 3.0 V	_	13	16	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash memory with page buffering disabled					2
	• @ 1.8 V	—	14.3	-	mA	
	• @ 3.0 V	—	14.5	17.9	mA	

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from RAM, exercising flash memory					3
	• @ 1.8 V	—	20	23.5	mA	
	• @ 3.0 V	—	20	25	mA	
I _{DD_WAIT}	Wait mode current at 3.0 V — all peripheral clocks disabled	_	5.8	6.8	mA	4
I _{DD_STOP}	Stop mode current at 3.0 V • @ -40 to 25 °C	_	0.34	0.41	mA	
	• @ 105 °C	_	0.90	1.8	mA	
I _{DD_VLPR}	Very low-power run mode current at 3.0 V — all peripheral clocks disabled	_	0.63	1.32	mA	5
I _{DD_VLPR}	Very low-power run mode current at 3.0 V — all peripheral clocks enabled	_	0.78	1.46	mA	6
I _{DD_VLPW}	Very low-power wait mode current at 3.0 V		0.15	0.62	mA	7
I _{DD_VLPS}	Very low-power stop mode current at 3.0 V • @ -40 to 25 °C		19	45	μΑ	8
	• @ 105 °C	_	145	312		
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					8,9,10
	• @ -40 to 25 °C	_	3.0	4.8	μΑ	
	• @ 105 °C	—	53.3	157	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					8,9,10
	• @ -40 to 25 °C	—	1.8	3.3	μA	
	• @ 105 °C	—	39.2	115	μA	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					8,9
	• @ -40 to 25 °C	_	1.6	2.8	μΑ	
	• @ 105 °C	—	22.2	65	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					8,9
	• @ -40 to 25 °C	—	1.4	2.6	μA	
	• @ 105 °C	—	17.6	50	μA	
I _{DD_RTC}	Average current adder for real-time clock					11

Table 5. Power consumption operating behaviors (continued)

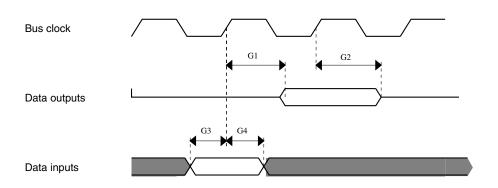
1. The analog supply current is the sum of the active current for each of the analog modules on the device. See each module's specification for its supply current.

2. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode. All peripheral clocks disabled.

3. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode. All peripheral clocks enabled, but peripherals are not in active operation.

4. 50 MHz core and system clocks, and 25 MHz bus clock. MCG configured for FEI mode.

5.3.1 General Switching Specifications

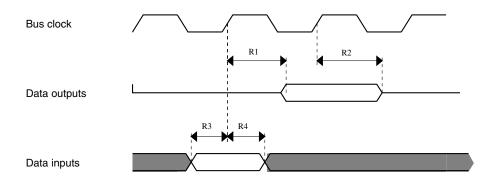

These general purpose specifications apply to all signals configured for EGPIO, MTIM, CMT, PDB, IRQ, and I²C signals. The conditions are 50 pf load, $V_{DD} = 1.71$ V to 3.6 V, and full temperature range. The GPIO are set for high drive, no slew rate control, and no input filter, digital or analog, unless otherwise specified.

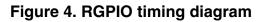
Symbol	Description	Min.	Max.	Unit
G1	Bus clock from CLK_OUT pin high to GPIO output valid	—	32	ns
G2	Bus clock from CLK_OUT pin high to GPIO output invalid (output hold)	1	—	ns
G3	GPIO input valid to bus clock high	28	—	ns
G4	Bus clock from CLK_OUT pin high to GPIO input invalid	—	4	ns
	GPIO pin interrupt pulse width (digital glitch filter disabled) Synchronous path ¹	1.5	-	Bus clock cycles
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) Asynchronous path ²	100	-	ns
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled)	50	-	ns
	Asynchronous path ²			
	External reset pulse width (digital glitch filter disabled)	100	—	ns
	Mode select (MS) hold time after reset deassertion	2	_	Bus clock cycles

Table 9. EGPIO General Control Timing

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.




Thermal specifications

The following general purpose specifications apply to all signals configured for RGPIO, FTM, and UART. The conditions are 25 pf load, $V_{DD} = 3.6$ V to 1.71 V, and full temperature range. The GPIO are set for high drive, no slew rate control, and no input filter, digital or analog, unless otherwise specified.

Symbol	Description	Min.	Max.	Unit
R1	CPUCLK from CLK_OUT pin high to GPIO output valid	—	16	ns
R2	CPUCLK from CLK_OUT pin high to GPIO output invalid (output hold)	1	—	ns
R3	GPIO input valid to bus clock high	17	—	ns
R4	CPUCLK from CLK_OUT pin high to GPIO input invalid	—	2	ns

Table 10. RGPIO General Control Timing

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	115	°C
T _A	Ambient temperature	-40	105	°C

System modules

 To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.

6.2 System modules

6.2.1 VREG electrical specifications

Table 13.	VREG electrical specifications
-----------	--------------------------------

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	—	5.5	V	
I _{DDon}	Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V	_	120	186	μΑ	
I _{DDstby}	Quiescent current — Standby mode, load current equal zero	_	1.1	1.54	μΑ	
I _{DDoff}	 Quiescent current — Shutdown mode VREGIN = 5.0 V and temperature=25C Across operating voltage and temperature 	_	650 —	4	nA μA	
I _{LOADrun}	Maximum load current — Run mode	_	—	120	mA	
I _{LOADstby}	Maximum load current — Standby mode	—	—	1	mA	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) > 3.6 V					
	Run mode	3	3.3	3.6	v	
	Standby mode	2.1	2.8	3.6	v	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode	2.1	-	3.6	V	2
C _{OUT}	External output capacitor	1.76	2.2	8.16	μF	
ESR	External output capacitor equivalent series resistance	1	-	100	mΩ	
I _{LIM}	Short circuit current	_	290	—	mA	

1. Typical values assume VREGIN = 5.0 V, Temp = 25 $^{\circ}$ C unless otherwise stated.

2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to I_{Load}.

6.3 Clock modules

6.3.1 MCG specifications

Table 14. MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — nominal VDD and 25 °C	_	32.768	—	kHz	
f _{ints_t}	Internal reference frequency (slow clock) — user trimmed		31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$		ned average DCO output voltage and temperature — d SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$		ned average DCO output voltage and temperature — y	_	± 0.2	± 0.5	%f _{dco}	1
Δf_{dco_t}		trimmed average DCO output Itage and temperature	_	± 10	—	%f _{dco}	1
Δf_{dco_t}	Total deviation of f frequency over fixe range of 0–70°C	—	± 1.0	± 4.5	%f _{dco}	1	
f _{intf_ft}	Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C		_	3.3	4	MHz	
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C		3	—	5	MHz	
f _{loc_low}	Loss of external clock minimum frequency — RANGE = 00		(3/5) x f _{ints_t}	_	_	kHz	
f _{loc_high}	Loss of external cl RANGE = 01, 10,	ock minimum frequency — or 11	(16/5) x f _{ints_t}	_	—	kHz	
		FL	L				•
f _{fll_ref}	FLL reference free	luency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fl_ref}	20	20.97	25	MHz	2, 3
		Mid range (DRS=01) 1280 × f _{fll_ref}	40	41.94	50	MHz	1
		Mid-high range (DRS=10) 1920 × f _{fll_ref}	60	62.91	75	MHz	
		High range (DRS=11) 2560 × f _{fll_ref}	80	83.89	100	MHz	-

Table continues on the next page...

The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFL to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Writes_FlexRAM = $\frac{\text{EEPROM} - 2 \times \text{EEESIZE}}{\text{EEESIZE}} \times \text{Write_efficiency} \times n_{\text{nvmcycd}}$

where

- Writes_FlexRAM minimum number of writes to each FlexRAM location
- EEPROM allocated FlexNVM based on DEPART; entered with Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with Program Partition command
- Write_efficiency
 - 0.25 for 8-bit writes to FlexRAM
 - 0.50 for 16-bit or 32-bit writes to FlexRAM
- n_{nvmcycd} data flash cycling endurance

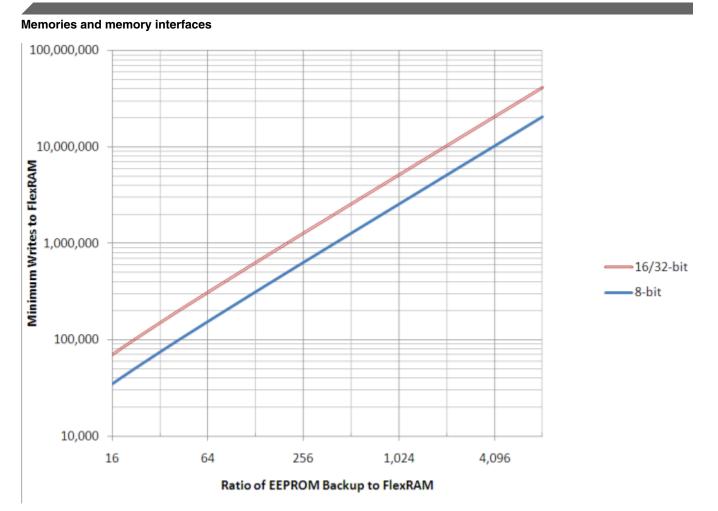


Figure 5. EEPROM backup writes to FlexRAM

6.4.2 EzPort Switching Specifications

All timing is shown with respect to a maximum pin load of 50 pF and input signal transitions of 3 ns.

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	_	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)	-	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	—	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	15	_	ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	0.0	—	ns
EP5	EZP_D input valid to EZP_CK high (setup)	15	_	ns

Table 21. EzPort switching specifications

Table continues on the next page...

Analog

5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/ files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1

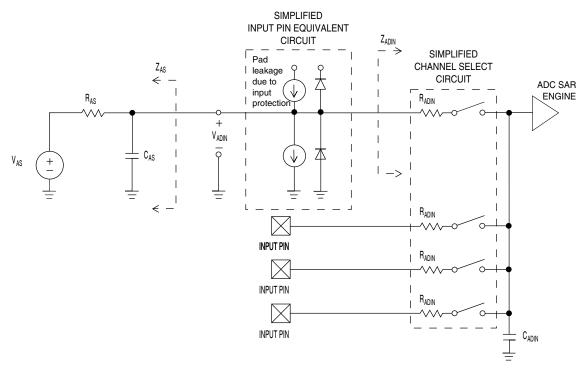


Figure 9. ADC input impedance equivalency diagram

6.6.1.2 12-bit ADC electrical characteristics Table 24. 12-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC	ADLPC=1, ADHSC=0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
4	asynchronous clock source	ADLPC=1, ADHSC=1	3.0	4.0	7.3	MHz	f _{ADACK}
f _{ADACK}		ADLPC=0, ADHSC=0	2.4	5.2	6.1	MHz	
		ADLPC=0, ADHSC=1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapte	r for sample t	times			
TUE	Total unadjusted	12 bit modes	—	±4	±6.8	LSB ⁴	5
	error	12 bit modes	—	±1.4	±2.1		
DNL	Differential non- linearity	12 bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		• <12 bit modes	_	±0.2	-0.3 to 0.5		
INL	INL Integral non- linearity • 12 bit modes		—	±1.0	-2.7 to +1.9	LSB ⁴	5
		 <12 bit modes 	_	±0.5	-0.7 to +0.5		

Table continues on the next page...

12-bit DAC electrical characteristics

- 5. Calculated by a best fit curve from $V_{SS}\text{+}100\ \text{mV}$ to $V_{DACR}\text{-}100\ \text{mV}$
- VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_CO:LPEN = 0), DAC set to 0x800, Temp range from -40C to 105C

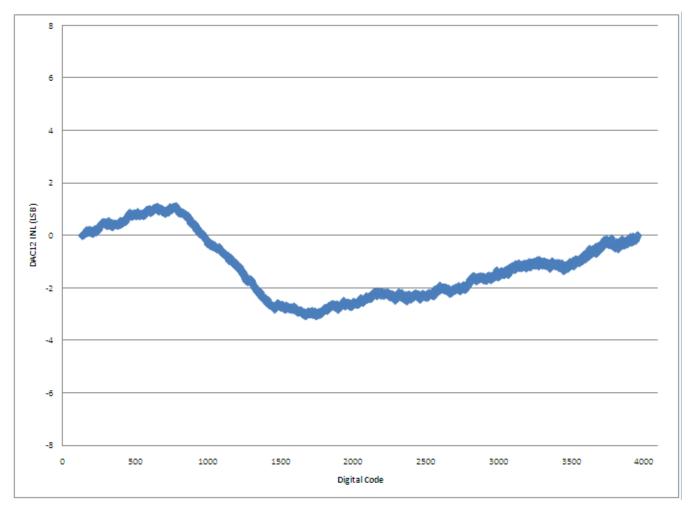


Figure 12. Typical INL error vs. digital code

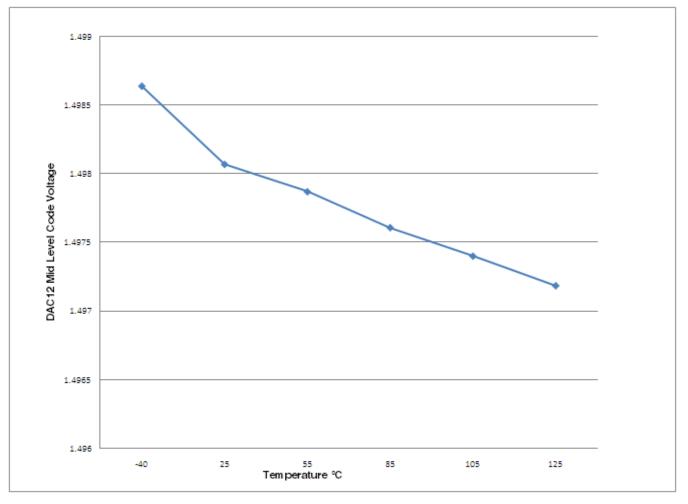


Figure 13. Offset at half scale vs. temperature

6.6.4 Voltage reference electrical specifications

Table 28.	VREF full-range	operating	requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	-40	-40 105		
CL	Output load capacitance	100		nF	1

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1965	1.2	1.2027	V	
V _{out}	Voltage reference output with— factory trim	1.1584		1.2376	V	
V _{out}	Voltage reference output — user trim	1.198	_	1.202	V	
V _{step}	Voltage reference trim step	_	0.5	—	mV	
V _{tdrift}	V _{tdrift} Temperature drift (Vmax -Vmin across the full temperature range)		—	80	mV	
I _{bg}	Bandgap only (MODE_LV = 00) current	_		80	μA	
l _{tr}	Tight-regulation buffer (MODE_LV =10) current	_	_	1.1	mA	
ΔV_{LOAD}	Load regulation (MODE_LV = 10)				mV	1
	• current = + 1.0 mA	_	2	_		
	• current = - 1.0 mA	_	5	_		
T _{stup}	Buffer startup time			100	μs	
V _{vdrift}	V _{vdrift} Voltage drift (Vmax -Vmin across the full voltage range) (MODE_LV = 10, REGEN = 1)		2	_	mV	

Table 29. VREF full-range operating behaviors

1. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 30. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 31. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

6.7 Timers

See General Switching Specifications.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
Res	Resolution	—	—	16	bits	
T _{Con20}	Response time @ 20 pF	8	15	25	μs	11
I _{TSI_RUN}	Current added in run mode	_	55	_	μA	
I _{TSI_LP}	Low power mode current adder		1.3	2.5	μA	12

Table 34. TSI electrical specifications (continued)

1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.

- 2. CAPTRM=7, DELVOL=7, and fixed external capacitance of 20 pF.
- 3. CAPTRM=0, DELVOL=2, and fixed external capacitance of 20 pF.
- 4. CAPTRM=0, EXTCHRG=9, and fixed external capacitance of 20 pF.
- 5. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 6. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 7. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 8. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.
- 10. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN). Sensitivity depends on the configuration used. The typical value listed is based on the following configuration: lext = 5 μA, EXTCHRG = 4, PS = 128, NSCN = 2, I_{ref} = 16 μA, REFCHRG = 15, C_{ref} = 1.0 pF. The minimum sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best sensitivity but is described as a minimum because it's the smallest number). The minimum sensitivity parameter is based on the following configuration: I_{ext} = 1 μA, EXTCHRG = 0, PS = 128, NSCN = 32, I_{ref} = 32 μA, REFCHRG = 31, C_{ref} = 0.5 pF
- 11. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, DELVOL = 2, EXTCHRG = 15.
- 12. CAPTRM=7, DELVOL=2, REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to http://www.freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin QFN	98ARE10566D
44-pin Laminate QFN	98ASA00239D
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W

8 Pinout

8.1 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Mux Control module is responsible for selecting which ALT functionality is available on each pin.

NOTE

• On PTB0, EZP_MS_b is active only during reset. Refer to the detailed boot description.

64- pin	48- pin	44- pin	32- pin	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
1	_	_	_	VDD	VDD								
2	_	_	_	VSS	VSS								
3	_	_	_	Disabled	Disabled	PTC6	UART0_TX	I2C0_SCL	RGPIO6	SPI1_MOSI	FBa_AD11		
4	_	_	_	Disabled	Disabled	PTC7	UART0_RX	I2C0_SDA	RGPI07	SPI1_MISO	FBa_AD12		
5	1	_	_	Disabled	Disabled	PTD0	UART0_CT S_b	I2C1_SDA	RGPIO8	SPI1_SCLK	FBa_AD13		
6	2	_	_	Disabled	Disabled	PTD1	UART0_RT S_b	I2C1_SCL	RGPIO9	SPI1_SS	FBa_AD14		
7	3	1	1	Disabled	Disabled	PTA0		I2C2_SCL	FTM1_CH0	SPI0_SS	FBa_AD15		
8	4	2	2	Disabled	Disabled	PTA1		I2C2_SDA	FTM1_CH1		FBa_AD16		
9	5	3	3	Disabled	Disabled	PTA2	UART1_TX		FTM1_CH2	SPI1_SS			
10	6	4	4	Disabled	Disabled	PTA3	UART1_RX		FTM1_CH3	SPI1_SCLK			EZP_CLK
11	7	5	5	ADC0_SE2	ADC0_SE2	PTA4	UART1_CT S_b	I2C2_SCL	FTM1_CH4	SPI1_MISO			EZP_DI
12	8	6	6	ADC0_SE3	ADC0_SE3	PTA5	UART1_RT S_b	I2C2_SDA	FTM1_CH5	SPI1_MOSI	CLKOUT		EZP_DO
13	9	7	7	VDDA	VDDA								
14	10	8	_	VREFH	VREFH								
15	11	9	_	VREF_OUT	VREF_OUT								
16	12	10	-	VREFL	VREFL								
17	13	11	8	VSSA	VSSA								
18	14	12	9	DAC0_OUT	DAC0_OUT								
19	15	13	10	ADC0_SE0	ADC0_SE0								
20	16	14	11	ADC0_SE1	ADC0_SE1								
21	17	15	12	VREGIN	VREGIN								
22	18	16	13	VOUT33	VOUT33								
23	19	17	14	VSS	VSS								

• PTC1 is open drain.

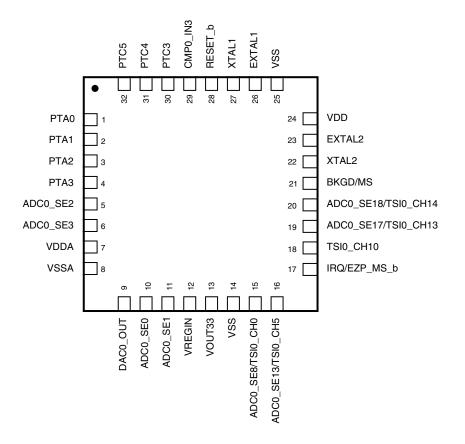


Figure 21. 32-pin QFN

8.3 Module-by-module signals

NOTE

- On PTB0, EZP_MS_b is active only during reset. Refer to the detailed boot description.
- PTC1 is open drain.

Table 35. Module signals by GPIO port and pin

64-pin	48-pin	44-pin 32-pin P		Port	Module signal(s)						
Power and ground											
1					VDD						
24	20	18			VDD						

Table continues on the next page ...

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)
27	22	20		PTD3	FBa_D6
25	21	19	15	PTA6	FBa_D7
44	31	27		PTE7	FBa_RW_b
		I2C0 a	nd I2C1	1	
3				PTC6	I2C0_SCL
35	25	23	17	PTB0	I2C0_SCL
4				PTC7	I2C0_SDA
36	26	24	18	PTB1	I2C0_SDA
6	2			PTD1	I2C1_SCL
42	30			PTE5	I2C1_SCL
51	38	34	27	PTC0	I2C1_SCL
5	1			PTD0	I2C1_SDA
43				PTE6	I2C1_SDA
50	37	33	26	PTB7	I2C1_SDA
		12C2 a	nd I2C3	1	
7	3	1	1	PTA0	I2C2_SCL
11	7	5	5	PTA4	I2C2_SCL
8	4	2	2	PTA1	I2C2_SDA
12	8	6	6	PTA5	I2C2_SDA
32				PTD7	I2C3_SCL
37				PTE2	I2C3_SCL
33				PTE0	I2C3_SDA
38				PTE3	I2C3_SDA
		SI	P10	1	
39	27	25	19	PTB2	SPI0_MISO
55				PTF2	SPI0_MISO
63	47	43	31	PTC4	SPI0_MISO
38				PTE3	SPI0_MOSI
40	28	26	20	РТВЗ	SPI0_MOSI
56	40	36		PTF3	SPI0_MOSI
64	48	44	32	PTC5	SPI0_MOSI
36	26	24	18	PTB1	SPI0_SCLK
54				PTF1	SPI0_SCLK
62	46	42	30	PTC3	SPI0_SCLK
7	3	1	1	PTA0	SPI0_SS

Table continues on the next page...

Table 35.	Module signals b	y GPIO po	ort and pin ((continued)
-----------	------------------	-----------	---------------	-------------

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)
34				PTE1	SPI0_SS
53				PTF0	SPI0_SS
61	45	41		PTF7	SPI0_SS
		S	PI1		
4				PTC7	SPI1_MISO
11	7	5	5	PTA4	SPI1_MISO
43				PTE6	SPI1_MISO
59	43	39		PTF5	SPI1_MISO
3				PTC6	SPI1_MOSI
12	8	6	6	PTA5	SPI1_MOSI
44	31	27		PTE7	SPI1_MOSI
60	44	40		PTF6	SPI1_MOSI
5	1			PTD0	SPI1_SCLK
10	6	4	4	PTA3	SPI1_SCLK
42	30			PTE5	SPI1_SCLK
58	42	38		PTF4	SPI1_SCLK
6	2			PTD1	SPI1_SS
9	5	3	3	PTA2	SPI1_SS
41	29			PTE4	SPI1_SS
57	41	37	29	PTC2	SPI1_SS
		UA	RT0	-	
5	1			PTD0	UART0_CTS_b
32				PTD7	UART0_CTS_b
42	30			PTE5	UART0_CTS_b
62	46	42	30	PTC3	UART0_CTS_b
6	2			PTD1	UART0_RTS_b
33				PTE0	UART0_RTS_b
41	29			PTE4	UART0_RTS_b
61	45	41		PTF7	UART0_RTS_b
4				PTC7	UART0_RX
31	24	22		PTD6	UART0_RX
43				PTE6	UART0_RX
63	47	43	31	PTC4	UART0_RX
3				PTC6	UART0_TX
30	23	21	16	PTA7	UART0_TX

Table continues on the next page...

Revision History

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)
44	31	27		PTE7	UART0_TX
64	48	44	32	PTC5	UART0_TX
	•	UAI	RT1		
11	7	5	5	PTA4	UART1_CTS_b
58	42	38		PTF4	UART1_CTS_b
12	8	6	6	PTA5	UART1_RTS_b
57	41	37	29	PTC2	UART1_RTS_b
10	6	4	4	PTA3	UART1_RX
59	43	39		PTF5	UART1_RX
9	5	3	3	PTA2	UART1_TX
60	44	40		PTF6	UART1_TX

 Table 35. Module signals by GPIO port and pin (continued)

9 Revision History

The following table summarizes content changes since the previous release of this document.

Rev. No.	Date	Substantial Changes
4	01/2012	Thermal operating requirements: Changed maximum T_J value from 125°C to 115°C