

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application energific microcontrollars are analyzared to

Details

E·XFI

Details	
Product Status	Active
Applications	-
Core Processor	-
Program Memory Type	-
Controller Series	-
RAM Size	-
Interface	-
Number of I/O	-
Voltage - Supply	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/tle9832qvxuma3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

1.1 Device Types / Ordering Information

The TLE983x product family features devices with different peripheral modules, configurations and program memory sizes to offer cost-effective solutions for different application requirements. **Table 1** describes the TLE9832 device configuration.

 Table 1
 Device Configuration

Device Name	Max Clock Frequency	High Side Switches	High Voltage Monitor Inputs	Flash Size	Bidirectional Parallel Port I/O´s	Operational Amplifier
TLE9832QV	40 MHz	1	5	36 kByte	11	no
TLE9832QX	40 MHz	1	5	36 kByte	11	no

Summary of Features

1.2 Abbreviations

The following acronyms and terms are used within this document. List see in Table 2.

Table 2 Acronyms Name Acronyms ALU Arithmetic Logic Unit CCU6 Capture Compare Unit 6 CGU **Clock Generation Unit** CMU Cyclic Management Unit DAP **Device Access Port** DPP Data Post Processing ECC Error Correction Code EEPROM Electrically Erasable Programmable Read Only Memory GPIO General Purpose Input Output FSR Full Scale Range ICU Interrupt Control Unit IRAM Internal Random Access Memory - Internal Data Memory LDO Low DropOut voltage regulator LIN Local Interconnect Network LSB Least Significant Bit MCU Micro Controller Unit MDU Multiplication Division Unit MMC Monitor Mode Control MSB Most Significant Bit NMI Non Maskable Interrupt OCDS On Chip Debug Support OTP One Time Programmable OSC Oscillator PC **Program Counter** PCU **Power Control Unit** PD Pull Down PGU Power supply Generation Unit PLL Phase Locked Loop PMU Power Management Unit PSW Program Status Word PU Pull Up PWM Pulse Width Modulation RAM Random Access Memory RCU **Reset Control Unit** RMU Reset Management Unit

TLE9832

Summary of Features

Table 2 Acronyms	
Acronyms	Name
ROM	Read Only Memory
SCK	SSC Clock
SFR	Special Function Register
SOW	Short Open Window (for WDT1)
SPI	Serial Peripheral Interface
SSC	Synchronous Serial Channel
SSU	System Status Unit
TMS	Test Mode Select
UART	Universal Asynchronous Receiver Transmitter
UDIG	Universal Digital Controller for ADC1
VBG	Voltage reference Band Gap
WDT	Watchdog timer
WMU	Wake-up Management Unit
XRAM	On-Chip eXternal Data Memory
XSFR	On-Chip eXternal Special Function Register

TLE9832

General Device Information

Symbol	Pin Number	Туре	Reset State	Function					
VAREF	34	I/O	0	5V ADC1 reference voltage					
XTAL1	27	I	I	External oscillator input					
XTAL2	28	0	Hi-Z	External oscillator output					
TMS	18	I	I/PD	TMStest mode select inputDAP1Debug Access Port 1					
RESET	21	I/O	I/O/PU	Reset input, not available during Sleep Mode					
VBAT_SENSE	48	I	I	Battery supply voltage sense input					
N.C.	10, 29, 40, 41, 46	-	-	Not connected - can be connected to GND					
N.C.	4	-	-	Not connected - leave pin open					

Block Diagram

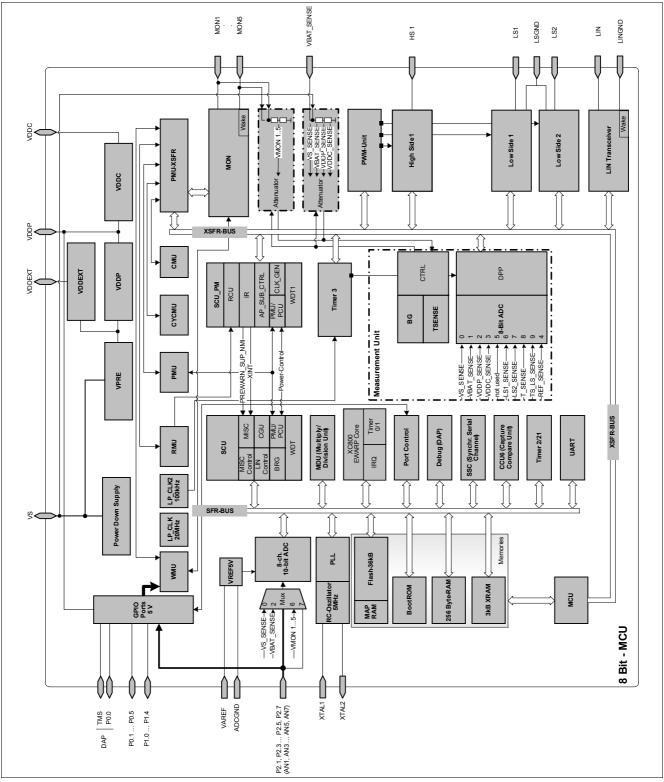


Figure 2 Block Diagram

The TLE9832 has several operational modes mainly to support low power consumption requirements. The low power modes and state transitions are depicted in **Figure 3** below.

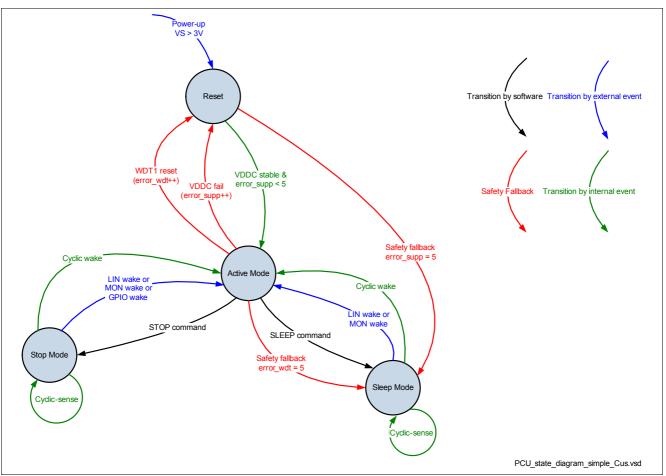


Figure 3 Power Control State Diagram

Reset Mode

The Reset Mode is a transition mode e.g. during power-up of the device after a power-on reset. In this mode the on-chip power supplies are enabled and all other modules are initialized. Once the core supply VDDC is stable, the Active Mode is entered. In case the watchdog timer WDT1 fails for more than four times, a fail-safe transition to the Sleep Mode is done.

Active Mode

In Active Mode all modules are activated and the TLE9832 is fully operational.

Stop Mode

The Stop Mode is one out of two low power modes. The transition to the low power modes is done by setting the respective Bits in the mode control register. In Stop Mode the embedded microcontroller is still powered allowing faster wake-up reaction times. A wake-up from this mode is possible by LIN bus activity, the High Voltage Monitor Input pins or the respective 5V GPIOs.

Sleep Mode

The Sleep Mode is the second low-power mode. The transition to the low-power modes is done by setting the respective Bits in the MCU mode control register. In Sleep Mode the embedded microcontroller power supply is deactivated allowing the lowest system power consumption, but the wake-up time is longer compared to the Stop Mode. A wake-up from this mode is possible by LIN bus activity or the High Voltage Monitor Input pins. A wake-up from Sleep Mode behaves similar to a power-on reset.

Mod. Name	Modules	Functions
Power Down Supply	Independent Supply Voltage Generation for PMU	This supply is only dedicated to the PMU to ensure a independent operation of generated power supplies (VDDP, VDDC).
LP_CLK (= 20 MHz)	 Clock Source for all PMU submodules Backup Clock Source for System Clock Source for WDT1 	This ultra low power oscillator generates the clock for the PMU. This clock is also used as backup clock for the system in case of PLL clock failure and as independent clock source for WDT1
LP_CLK2 (= 100 kHz)	Clock Source for PMU	This ultra low power oscillator generates the clock for the PMU mainly in Stop Mode and in the cyclic modes.
Peripherals	Peripheral blocks of PMU	This blocks includes all relevant peripherals to ensure a stable and fail safe PMU startup and operation
Power Supply Generation Unit (PGU)	Voltage regulators for VDDP and VDDC	This block includes the voltage regulators for the pad supply (VDDP) and the core supply (VDDC) including all diagnosis and safety features
VDDEXT (Hall Sensor Supply)	Voltage regulator for VDDEXT to supply external modules (e.g. Hall Sensors)	This voltage regulator is a dedicated supply for external modules and can also be used for cyclic sense operations (e.g. with hall sensor)
PMU-XSFR	All PMU relevant Extended Special Function Registers	This module contains all PMU relevant registers, which are needed to control and monitor the PMU.
PMU-PCU	Power Control Unit of the PMU	This block is responsible for controlling all power related actions within the PGU Module.
PMU-WMU	Wake-up Management Unit of the PMU	This block is responsible for controlling all wake-up related actions within the PMU Module.
PMU-CYCMU	Cyclic Management Unit of the PMU	This block is responsible for controlling all actions within cyclic mode.
PMU-CMU	Clock Management Unit of the PMU	This block is responsible for controlling all clocking actions within the PMU.
PMU-RMU	Reset Management Unit of the PMU	This block is responsible for generating all system required resets.

Table 5 Description of PMU Submodules

3.1.3 External Voltage Regulator 5.0V (VDDEXT)

The external voltage regulator provides 5 V output voltage in order to supply external circuitry like LEDs, hall sensors or potentiometers.

Features

- Switchable +5 V, 20 mA low-drop voltage regulator
- Switch-on overcurrent blanking time in order to drive small capacitive loads
- Short circuit robust
- Overvoltage monitoring with MCU interrupt signalling
- Undervoltage monitoring with MCU interrupt signalling
- Selectable switch-on slew-rate 0.95 V/µs max. @10 mA supply current, 10 nF capacitive load
- Pull-down current source at the output for Sleep Mode and off mode (100 μA)
- Cyclic sense option together with GPIOs

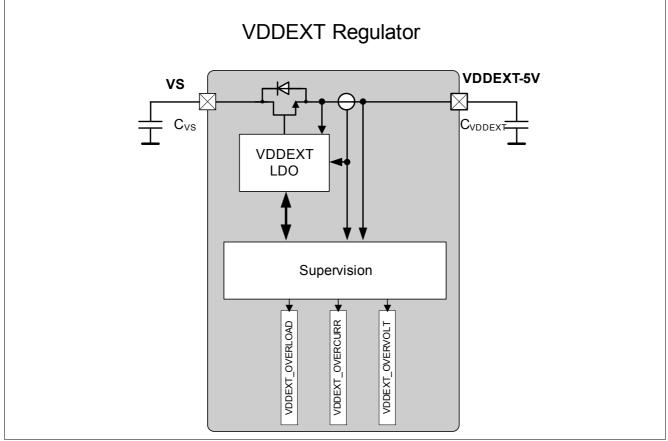


Figure 8 Module Block Diagram

3.8 Interrupt System

The TLE9832 supports 14 interrupt vectors with four priority levels. Eleven of these interrupt vectors are assigned to the on-chip peripherals: Timer 0, Timer 1, UART, SSC and A/D Converter are each assigned to one dedicated interrupt vector; while Timer2, Timer21, MDU, LIN and the Capture/Compare Unit share six interrupt vectors.

Two interrupt vectors are assigned to the external interrupts. External interrupts 0 to 1 are each assigned to one dedicated interrupt vector, external interrupt 2 shares on interrupt vector with Timer21 and the MDU.

One interrupt vector is dedicated to the XINT interrupt events whose interrupt flags are also located in registers in XSFR area.

A non-maskable interrupt (NMI) with the highest priority is shared by the following:

- Watchdog Timer, warning before overflow
- MI_CLK Watchdog Timer overflow event
- PLL, loss of lock
- Flash, on operation complete, e.g. erase.
- OCDS, on user IRAM event
- Oscillator watchdog detection for too low oscillation of f_{OSC}
- Flash map error
- Uncorrectable ECC error on Flash, XRAM and IRAM
- VSUP supply pre warning when any supply voltage drops below or exceeds any threshold.

Figure 14, Figure 15, Figure 16, Figure 17 and Figure 18 give a general overview of the interrupt sources and nodes, and their corresponding control and status flags. Figure 19 gives the corresponding overview for the NMI sources.

TLE9832

Functional Description

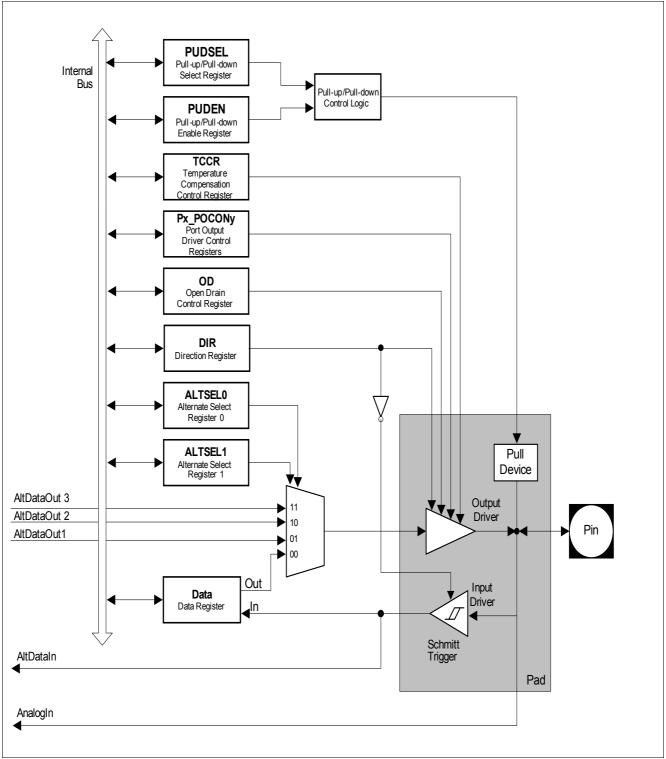


Figure 20 General Structure of a Bidirectional Port Pin

3.14 Capture/Compare Unit 6 (CCU6)

The CCU6 unit is made up of a Timer T12 block with three capture/compare channels and a Timer T13 block with one compare channel. The T12 channels can independently generate PWM signals or accept capture triggers, or they can jointly generate control signal patterns to drive AC-motors or inverters.

A rich set of status Bits, synchronized updating of parameter values via shadow registers, and flexible generation of interrupt request signals provide means for efficient software-control.

Note: The capture/compare module itself is named CCU6 (capture/compare unit 6). A capture/compare channel inside this module is named CC6x.

Timer 12 Block Features

- Three capture/compare channels, each channel can be used either as capture or as compare channel
- Generation of a three-phase PWM supported (six outputs, individual signals for High Side and Low Side Switches)
- 16-Bit resolution, maximum count frequency = peripheral clock
- Dead-time control for each channel to avoid short-circuits in the power stage
- Concurrent update of T12 registers
- · Center-aligned and edge-aligned PWM can be generated
- Single-shot mode supported
- Start can be controlled by external events
- Capability of counting external events
- Multiple interrupt request sources
- Hysteresis-like control mode

Timer 13 Block Features

- One independent compare channel with one output
- 16-Bit resolution, maximum count frequency = peripheral clock
- Concurrent update of T13 registers
- Can be synchronized to T12
- Interrupt generation at period-match and compare-match
- Single-shot mode supported
- Start can be controlled by external events
- Capability of counting external events

TLE9832

Functional Description

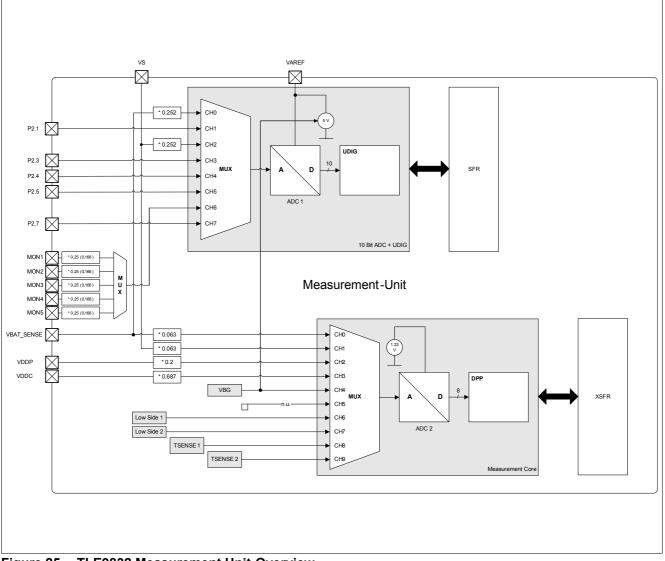


Figure 25 TLE9832 Measurement Unit-Overview

3.19 Measurement Core Module (incl. ADC2)

The basic function of this block is the digital postprocessing of several analog digitized measurement signals by means of filtering, level comparison and interrupt generation. The measurement postprocessing block is built of ten identical channel units attached to the outputs of the 10-channel 8-Bit ADC (ADC2). It processes ten channels, where the channel sequence and prioritization is programmable within a wide range.

Features

- 10 individually programmable channels split into two groups of user configurable and non user configurable
- · Individually programmable channel prioritization scheme for measurement unit
- Two independent filter stages with programmable low-pass and time filter characteristics for each channel
- Two channel configurations:
 - Programmable upper- and lower trigger thresholds comprising a fully programmable hysteresis
 Two individually programmable trigger thresholds with limit hysteresis settings
- Individually programmable interrupts and status for all channel thresholds

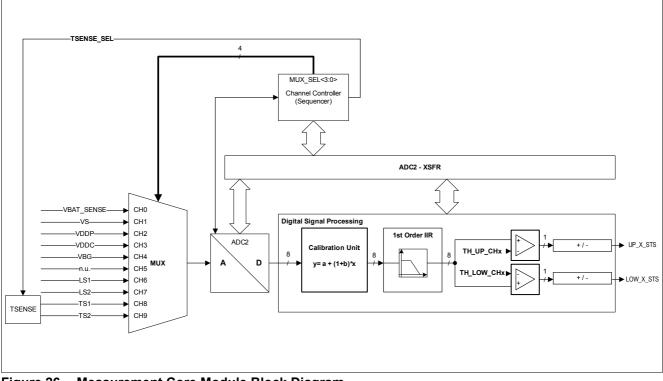


Figure 26 Measurement Core Module Block Diagram

5.1.3 Current Consumption

Table 16 Electrical Characteristics ¹⁾

 $V_{\rm s}$ = 5.5V to 18V, $T_{\rm J}$ = -40°C to 85°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Value	s	Unit	Note / Test Condition	Number	
		Min.	Тур.	Max.				
Current Consumption (②VS pin		1					
Current Consumption in Active Mode	I _{Active}	-	30	40	mA	fsys = 40 MHz no loads on pins, LIN in recessive state, LS1, LS2, HS1 off	P_5.1.25	
Current consumption in Stop Mode	$I_{Powerdown}$	-	85	95	μA	microcontroller in Stop Mode, LIN recessive state, MON1-5 disabled, GPIOs open (no loads)	P_5.1.26	
Current consumption in Stop Mode with cyclic sense enabled	I _{Powerdown2}	-	-	110	μA	microcontroller in Stop Mode, LIN recessive state, GPIOs open (no loads)	P_5.1.27	
Current consumption in Sleep Mode	I _{Sleep}	-	-	25	μA	system in Sleep Mode, microcontroller not powered, LIN recessive state, MON1-5 disabled and GPIOs open (no loads)	P_5.1.28	

1) Not subject to production test, specified by design.

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

5.1.4 Thermal Resistance

Table 17Thermal Resistance

Parameter	Symbol	Values		Values		Unit	Note /	Number
		Min.	Тур.	Max.		Test Condition		
Junction to Ambient	R _{thJA}	_	23.9	_	K/W	1)	P_5.1.29	

1) EIA/JESD 52_2, FR4, 76.2 x 114.3 x 1.5 mm; 35µ Cu, 5µ Sn; 300 mm²

5.2.2 PMU Core Supply Parameters VDDC

Table 20 Electrical Characteristics

 $V_{\rm S}$ = 5.5 V to 27 V, $T_{\rm j}$ = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Value	S	Unit	Note /	Number	
		Min.	Тур.	Max.		Test Condition		
Specified Output Current	I _{VDDC}	0	-	30	mA	¹⁾ only used as internal core supply	P_5.2.11	
Required Output Capacitance	$C_{\rm VDDC}$	0.1	-	10	μF	²⁾ ESR < 1Ω	P_5.2.12	
Output Voltage including line regulation @ Active Mode	V _{DDCOUT}	1.44	1.5	1.56	V	I_{load} < 40mA	P_5.2.13	
Output Voltage including line regulation @ Stop Mode	V _{DDCOUT}	0.89	0.95	1.15	V	I _{load} < 200μΑ	P_5.2.14	
Dynamic Load Regulation	V _{DDCLOR}	-50	-	50	mV	²⁾ 2 30mA; C=330nF; dl/dt=100mA/μs	P_5.2.15	
Dynamic Line Regulation		-25	-	25	mV	²⁾ V _{DDP} = 2.5 5.5V; dV/dt=5V/µs	P_5.2.16	
Over Voltage Detection	V _{DDCOV}	1.61	-	1.68	V	Overvoltage leads to SUPPLY_NMI	P_5.2.17	
Under Voltage Reset	V _{DDVUV}	1.10	-	1.19	V	-	P_5.2.18	
Over Current Shutdown	I _{VDDCOC}	35	-	80	mA	-	P_5.2.19	

1) VDDC is not intended to be used as external voltage regulator

2) Not subject to production test, specified by design

5.2.3 VDDEXT Voltage Regulator 5.0V

Table 21 Electrical Characteristics

 $V_{\rm S}$ = 5.5 V to 27 V, $T_{\rm j}$ = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Symbol		Value	S	Unit	Note /	Number	
	Min.	Тур.	Max.		Test Condition		
I _{VDDEXT}	0	-	20	mA	1)	P_5.2.20	
C_{VDDEXT}	10	-	1000	nF	¹⁾ ESR < 1 Ω	P_5.2.21	
V _{DDEXT}	4.9	5.0	5.1	V	I _{load} < 20mA;Vs > 5.5V	P_5.2.22	
V _s -V _{DDEXT}		-	+400	mV	¹⁾ I_{load} < 20mA; 3V < V_{s} < 5.5V	P_5.2.23	
V _{DDEXTLOR}	-50	-	50	mV	¹⁾ 2 20mA; C=10nF; dl/dt=10mA/μs	P_5.2.24	
	-25	-	25	mV	V _s = 5.5 20V; dV/dt=5V/μs	P_5.2.25	
P _{SSRVDDEXT}	50	-	-	dB	V _s = 13.5V; f=0 1KHz; V _r =2Vpp	P_5.2.26	
V _{VDDEXTOV}	5.05	-	5.4	V	V _s > 5.5V	P_5.2.27	
V _{VDDEXTUV}	2.6	-	2.9	V	$^{2)}V_{\rm s}$ > 3.0V	P_5.2.28	
I _{VDDEXTOC}	25	-	70	mA	-	P_5.2.29	
	I_{VDDEXT} C_{VDDEXT} V_{DDEXT} $V_{s}-V_{DDEXT}$ $V_{DDEXTLOR}$ $V_{VDDEXTLOR}$ $P_{SSRVDDEXT}$ $V_{VDDEXTOV}$ $V_{VDDEXTUV}$	Min. I_{VDDEXT} 0 C_{VDDEXT} 10 V_{DDEXT} 4.9 V_{s} - V_{DDEXT} - $V_{DDEXTLOR}$ -50 $V_{VDDEXTLIR}$ -25 $P_{SSRVDDEXT}$ 50 $V_{VDDEXTOV}$ 5.05 $V_{VDDEXTUV}$ 2.6	Min. Typ. I_{VDDEXT} 0 - C_{VDDEXT} 10 - V_{DDEXT} 4.9 5.0 V_{s} - V_{DDEXT} - - V_{s} - V_{DDEXT} - - $V_{DDEXTLOR}$ -50 - $V_{VDDEXTLIR}$ -25 - $P_{SSRVDDEXT}$ 50 - $V_{VDDEXTOV}$ 5.05 - $V_{VDDEXTUV}$ 2.6 -	Min. Typ. Max. I_{VDDEXT} 0 - 20 C_{VDDEXT} 10 - 1000 V_{DDEXT} 4.9 5.0 5.1 V_{s} - V_{DDEXT} - +400 $V_{DDEXTLOR}$ -50 - 50 $V_{VDDEXTLIR}$ -25 - 25 $P_{SSRVDDEXT}$ 500 - - $V_{VDDEXTOV}$ 5.05 - 5.4 $V_{VDDEXTUV}$ 2.6 - 2.9	Min. Typ. Max. I_{VDDEXT} 0 - 20 mA C_{VDDEXT} 10 - 1000 nF V_{DDEXT} 4.9 5.0 5.1 V V_{s} - V_{DDEXT} - +400 mV V_{s} - V_{DDEXT} - 50 mV $V_{DDEXTLOR}$ -50 - 50 mV $V_{VDDEXTLIR}$ -25 - 25 mV $P_{SSRVDDEXT}$ 50 - 5.4 V $V_{VDDEXTUV}$ 2.6 - 2.9 V	Min. Typ. Max. Test Condition I_{VDDEXT} 0 - 20 mA 1) C_{VDDEXT} 10 - 1000 nF 1) ESR < 1 Ω V_{DDEXT} 4.9 5.0 5.1 V $I_{load} < 20mA; Vs > 5.5V$ $V_{s} - V_{DDEXT}$ - +400 mV 1) $I_{load} < 20mA; 3V < V_s < 5.5V$ $V_{s} - V_{DDEXT}$ - +400 mV 1) $I_{load} < 20mA; 3V < V_s < 5.5V$ $V_{DDEXTLOR}$ -50 - 50 mV 1) 2 20mA; C=10nF; dI/dt=10mA/µs $V_{VDDEXTLIR}$ -25 - 25 mV $V_s = 5.5 20V; dV/dt=5V/µs$ $P_{SSRVDDEXT}$ 50 - - dB $V_s = 13.5V; f=0 1KHz; V_r = 2Vpp$ $V_{VDDEXTOV}$ 5.05 - 5.4 V $V_s > 5.5V$ $V_{VDDEXTUV}$ 2.6 - 2.9 V $^{2}V_s > 3.0V$	

1) Not subject to production test, specified by design

2) When the condition is met, the Bit VDDEXT_CTRL.VDDEXT_SHORT will be set

Electrical Characteristics

Table 22 Electrical Characteristics

 $V_{\rm S}$ = 5.5 V to 27 V, $T_{\rm j}$ = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Symbol Values		Unit	Note / Test Condition	Number	
		Min.	Тур.	Max.			
Accumulated jitter	jacc	-	-	5	ns	for K=1	P_5.3.15
lock-in time	TL	_	_	200	μs	-	P_5.3.16

1) $V_{\text{DDC}} = 1.5 \text{ V}, T_{\text{j}} = 25^{\circ}\text{C}$

5.3.2 External Clock Parameters XTAL1, XTAL2

Table 23 Functional Range

 $V_{\rm S}$ = 5.5 V to 27 V, $T_{\rm j}$ = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note /	Number	
		Min. Typ.		Max.		Test Condition		
Input voltage range limits for signal on XTAL1	V _{IX1_SR}	-1.7 + V _{DDC}	-	1.7	V	1)	P_5.3.17	
Input voltage (amplitude) on XTAL1	V _{AX1_SR}	0.3 x V _{DDP}	-	-	V	²⁾ Peak-to-peak voltage	P_5.3.18	
XTAL1 input current	I _{IL}	-	-	±20	μA	$0 V < V_{IN} < V_{DDC}$	P_5.3.19	
Oscillator frequency	fosc	4	-	24	MHz	Clock signal	P_5.3.20	
Oscillator frequency	fosc	4	-	16	MHz	Crystal or Resonator	P_5.3.21	
High time	<i>t</i> ₁	6	-	-	ns	-	P_5.3.22	
Low time	<i>t</i> ₂	6	-	-	ns	-	P_5.3.23	
Rise time	t ₃	-	8	8	ns	-	P_5.3.24	
Fall time	<i>t</i> ₄	-	8	8	ns	-	P_5.3.25	

1) Overload conditions must not occur on pin XTAL1.

2) The amplitude voltage V_{AX1} refers to the offset voltage V_{OFF} . This offset voltage must be stable during the operation and the resulting voltage peaks must remain within the limits defined by V_{IX1} .

Electrical Characteristics

Port Output Driver Mode	Maximum Out (I _{OLmax} , - I _{OH}	•	Nominal Outp $(I_{OLnom}, -I_{OH})$	Number	
	$\textbf{VDDP} \geq \textbf{4.5V}$	VDDP < 4.5V	$\textbf{VDDP} \geq \textbf{4.5V}$	VDDP < 4.5V	
Strong Driver	7.5 mA	7.5 mA	2.5 mA	2.5 mA	P_5.5.16
Medium Driver	4 mA	2.5 mA	1.0 mA	1.0 mA	P_5.5.17
Weak Driver	0.5 mA 0.5 mA		0.1 mA	0.1 mA	P_5.5.18

Table 27 Current Limits for Port Output Drivers¹⁾

1) Not subject to production test, specified by design.

Note: Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability.

During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < GND$) the voltage on V_{DDP} pins with respect to ground (GND) must not exceed the values defined by the absolute maximum ratings.

5.8 Measurement Unit

5.8.1 Analog Digital Converter 8-Bit

Table 30DC Specifications ADC 8 Bit

 $V_{\rm S}$ = 5.5 V to 27 V, $T_{\rm j}$ = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	5	Unit	Note / Test Condition	Number
		Min.	Тур.	Max.			
Resolution	-	-	8	-	Bit	-	P_5.8.1
Offset error	-	-10	4	+10	mV	_	P_5.8.2
Gain single-ended input mode	GSE	-	1	-		-	P_5.8.3
Input voltage single-ended mode	$V_{\mathrm{ainp}}, V_{\mathrm{ainn}}$	0	-	V _{DD1V5_A}	V	-	P_5.8.4
Gain differential input mode	GDF		1.24	_	_	-	P_5.8.5
Common input voltage in differential mode	V _{icm}	0.5	0.6	V _{DDP} /2 +0.1	-	V _{icm} =(V _{ainp} + V _{ainn})/2	P_5.8.6
Gain error	-	-5	1.5	+5	%FSR	-	P_5.8.7
Differential nonlinearity (DNL)	-	-1.5	0.5	+1.5	LSB	-	P_5.8.8
Integral Nonlinearity (INL)	_	-3	±1.5	3	LSB	-	P_5.8.9

5.8.2 Measurement Unit (VBAT_SENSE - Supply Voltage Attenuator)

Table 31 Supply voltage signal conditioning

 $V_{\rm S}$ = 5.5 V to 27 V, $T_{\rm j}$ = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note / Test Condition	Number
		Min.	Тур.	Max.	4		
Battery Voltage Measurer	nent $V_{\text{BAT}_{\text{SENS}}}$	E					
Nominal operating input voltage range ¹⁾	V _{S/BAT_SENSE}	3	-	20	V	Max. value corresponds to typ. ADC full scale input	P_5.8.10
Measurement input resistance	R _{in,VS/VBAT_SENS}	200	289	380	kΩ	PD_N=1 (on-state)	P_5.8.11
Measurement input leakage current	I _{leak}	0	-	1.0	μA	PD_N=0 (off-state), V _{BAT_SENSE} =13.5V	P_5.8.12
Overall (calibrated) meas	urement accura	cy afte	er A/D-c	onvers	ion ²⁾		
$V_{BAT_SENSE} / V_{s} $ 8-bit ADC	$\Delta V_{BATADC8B}$	-250	-	250	mV	$V_{\rm s}$ = 5.5V to 18V, $T_{\rm j}$ = 4085°C	P_5.8.13
V _{BAT_SENSE} / V _s 10-bit ADC	$\Delta V_{\text{BATADC10B}}$	-200	-	200	mV	$V_{\rm s}$ = 5.5V to 18V, $T_{\rm j}$ = 4085°C	P_5.8.14

Electrical Characteristics

5.9 ADC - 10-Bit

5.9.1 VAREF

5.9.1.1 Functional Range

Table 34 Functional Range

 $V_{\rm S}$ = 5.5 V to 27 V, $T_{\rm j}$ = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note /	Number
		Min.	Тур.	Max.		Test Condition	
VAREF input voltage	V_{AREF_IN}	0	-	V _{DDP} +0.3	V	-	P_5.9.1

5.9.1.2 Electrical Characteristics

Table 35 10-Bit ADC - VAREF

 $V_{\rm S}$ = 5.5 V to 27 V, $T_{\rm j}$ = -40° C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note / Test Condition	Number
		Min.	Тур.	Max.			
Output Capacitance	C_{VAREF}	0.1	_	1	μF	ESR < 1Ω	P_5.9.2
Reference output voltage	V_{AREF}	4.95	5	5.05	V	V _s > 5.5V	P_5.9.3
DC Supply voltage rejection	$DC_{PSRVAREF}$	30	-	-	dB	1)	P_5.9.4
Supply voltage ripple rejection	$AC_{PSRVAREF}$	26	-	-	dB	¹⁾ <i>V</i> _s = 13.5V; f=0 1KHz; Vr=2Vpp	P_5.9.5
Turn ON time	t _{so}	-	-	200	μs	¹⁾ Cext=100nF PD_N to 99.9% of final value (test setup: measure 1τ, calculate 5τ.	P_5.9.6

1) Not subject to production test, specified by design.