
E. Analog Devices Inc./Maxim Integrated - MAXQ610J-0000+T Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MAXQ20S
Core Size	16-Bit
Speed	12MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Infrared, Power-Fail, POR, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-WFQFN Exposed Pad
Supplier Device Package	44-TQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/maxq610j-0000-t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS	
Absolute Maximum Ratings	
Recommended DC Operating Conditions	
SPI Electrical Characteristics	
Pin Description	
Block Diagram	
Detailed Description	
Microprocessor	
Memory	
Memory Protection	
Stack Memory	
Utility ROM	
Watchdog Timer	
IR Carrier Generation and Modulation Timer	
Carrier Generation Module	
IR Transmission	
IR Transmit—Independent External Carrier and Modulator Outputs	
IR Receive	
Carrier Burst-Count Mode	
16-Bit Timers/Counters	
General-Purpose I/O	
USART	
Serial Peripheral Interface (SPI)	
On-Chip Oscillator	
ROM Loader	
Loading Flash Memory	
In-Application Flash Programming	
In-Circuit Debug and JTAG Interface	
Operating Modes	
Power-Fail Detection	
Applications Information	
Grounds and Bypassing	
Differences for ROM Versions	
Additional Documentation	
Development and Technical Support	
Selector Guide	
Pin Configurations	
Package Information	
Revision History	

LIST OF TABLES

Table 1. Memory Areas and Associated Maximum Privilege Levels	12
Table 2. Watchdog Interrupt Timeout (Sysclk = 12MHz, CD[1:0] = 00)	13
Table 3. USART Mode Details	18
Table 4. Power-Fail Detection States During Normal Operation	23
Table 5. Stop Mode Power-Fail Detection States with Power-Fail Monitor Enabled	24
Table 6. Stop Mode Power-Fail Detection States with Power-Fail Monitor Disabled	25

MAXQ610

ABSOLUTE MAXIMUM RATINGS

Voltage Range on V_{DD} with Respect to GND-0.3V to +3.6V Voltage Range on Any Lead with Respect

to GND except V_{DD} -0.3V to (V_{DD} + 0.5V)

Continuous Power Dissipation (Multilayer Board, $T_A = +70^{\circ}$ C)

32 TQFN (derate 34.5mW/°C above +70°C)2758.6mW

44 TQFN (derate 37mW/°C above +70°C)2758.6mW

Operating Temperature Range	0°C to +70°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(V_{DD} = V_{RST} \text{ to } 3.6V, T_A = 0^{\circ}C \text{ to } +70^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CON	IDITIONS	MIN	ТҮР	MAX	UNITS
Supply Voltage	V _{DD}			V _{RST}		3.6	V
1.8V Internal Regulator	VREG18			1.62	1.8	1.98	V
Power-Fail Warning Voltage for Supply (Notes 2, 3)	VPFW	Monitors V _{DD}		1.75	1.8	1.85	V
Power-Fail Reset Voltage (Note 4)	V _{RST}	Monitors V _{DD}		1.64	1.67	1.70	V
Power-On Reset Voltage	VPOR	Monitors V _{DD}		1.0		1.42	V
RAM Data-Retention Voltage	VDRV	(Note 5)		1.0			V
Active Current (Note 6)	IDD_1	Sysclk = 12MHz			3.75	5.1	mA
	I _{S1}	Power-Fail Off	$T_A = +25^{\circ}C$		0.2	2.0	
Stop-Mode Current		Fower-Fail Off	$T_A = 0^{\circ}C \text{ to } + 70^{\circ}C$		0.2	12	
Stop-mode Current	I _{S2}	Power-Fail On	$T_A = +25^{\circ}C$		22	29.5	- μΑ
			$T_A = 0^{\circ}C \text{ to } + 70^{\circ}C$		27.6	42	
Current Consumption During Power-Fail	IPFR	(Notes 5, 7)			52) + ((PC + I _{NANO}))		μA
Power Consumption During Power-On Reset	IPOR	(Note 8)			100		nA
Stop-Mode Resume Time	ton			375	+ 8192t _H	FXIN	μs
Power-Fail Monitor Startup Time	tprm_on	(Note 5)				150	μs
Power-Fail Warning Detection Time	tpfw	(Notes 5, 9)		10			μs
Input Low Voltage for IRTX, IRRX, RESET, and All Port Pins	VIL			VGND		0.3 x V _{DD}	V
Input High Voltage for IRTX, IRRX, RESET, and All Port Pins	VIH			0.7 x V _{DD}		V _{DD}	V
Input Hysteresis (Schmitt)	VIHYS				300		mV
Input Low Voltage for HFXIN	VIL_HFXIN			VGND		0.3 x V _{DD}	V

RECOMMENDED DC OPERATING CONDITIONS (continued)

 $(V_{DD} = V_{RST} \text{ to } 3.6V, T_A = 0^{\circ}C \text{ to } +70^{\circ}C.) \text{ (Note 1)}$

PARAMETER	SYMBOL	CONDITIONS	MIN TY	P MAX	UNITS	
WAKE-UP TIMER		•	·		•	
Wake-Up Timer Interval	twakeup		1/f _{NANO}	65,535/ ^f NANO	S	
FLASH MEMORY	·		·		•	
System Clock During Flash Programming/Erase	f FPSYSCLK		6		MHz	
Flash Erase Time	tME	Mass erase	20	40	- ms	
	terase	Page erase	20	40	1115	
Flash Programming Time per Word	^t PROG	(Note 11)	20	100	μs	
Write/Erase Cycles			20,000		Cycles	
Data Retention		$T_{A} = +25^{\circ}C$	100		Years	
IR						
Carrier Frequency	fiR	(Note 5)		f _{CK} /2	Hz	

Note 1: Specifications to 0°C are guaranteed by design and are not production tested.

Note 2: It is not recommended to write to flash memory when the supply voltage drops below the power-fail warning levels as there is uncertainty in the duration of continuous power supply. The user application should check the status of the power-fail warning flag before writing to flash to ensure complete write operations.

- **Note 3:** The power-fail warning monitor and the power-fail reset monitor track each other with a minimum delta between the two of 0.11V.
- Note 4: The power-fail reset and power-on-reset (POR) detectors operate in tandem to ensure that one or both signals are active at all times when $V_{DD} < V_{RST}$. Doing so ensures the device maintains the reset state until the minimum operating voltage is achieved.
- **Note 5:** Guaranteed by design and not production tested.

Note 6: Measured on the V_{DD} pin and the part not in reset. All inputs are connected to GND or V_{DD}. Outputs do not source/sink any current. Part is executing code from flash memory.

Note 7: The power-check interval (PCI) can be set to always on, 1024, 2048, or 4096 nanopower ring oscillator clock cycles.

Note 8: Current consumption during POR when powering up while V_{DD} < V_{POR}.

Note 9: The minimum amount of time that V_{DD} must be below V_{PFW} before a power-fail event is detected.

Note 10: The maximum total current, I_{OH} (max) and I_{OL} (max), for all listed outputs combined should not exceed 32mA to satisfy the maximum specified voltage drop. This does not include the IRTX output.

Note 11: Programming time does not include overhead associated with utility ROM interface.

Pin Description

PIN				FUNCTION				
32 TQFN	40 TQFN	44 TQFN	NAME	FUNCTION				
				POWER PINS				
15, 29	18, 38	19, 41	V _{DD}	Supply Voltage				
13, 22, 30	_	17, 20, 28, 42	GND	Ground. These pins must be directly connected to the ground plane. The 40-pin TQFN package does not have any ground pins and connects to ground through the exposed pad.				
14	17	18	REGOUT	Regulator Capacitor. This pin must be connected to ground through a 1.0μ F external ceramic-chip capacitor. The capacitor must be placed as close to this pin as possible. No devices other than the capacitor should be connected to this pin.				
			EP	Exposed Pad. For the 32-pin TQFN package, leave unconnected. For the 40-pin TQFN package, the exposed pad is internally connected to GND. Connect to the ground plane. For the 44-pin TQFN package, the EP has no internal connection to the device. Leave unconnected. Not intended as an electrical connection point.				
	I		I	RESET PINS				
28	37	40	RESET	Digital, Active-Low, Reset Input/Output. The CPU is held in reset when this pin is low and begins executing from the reset vector when released. The pin includes pullup current source and should be driven by an open-drain, external source capable of sinking in excess of 4mA. This pin is driven low as an output when an internal reset condition occurs.				
	I		1	CLOCK PINS				
18	21	23	HFXIN	High-Frequency Crystal Input. Connect external crystal or resonator between HFXIN and HFXOUT as the high-frequency system clock. Alternatively, HFXIN is				
19	22	24	HFXOUT	the input for an external, high-frequency clock source when HFXOUT is unconnected.				
			•	IR FUNCTION PINS				
31	39	43	IRTX	IR Transmit Output. IR transmit pin capable of sinking 25mA. This pin defaults to high-impedance input with the weak pullup disabled during all forms of reset. Software must configure this pin after release from reset to remove the high-impedance input condition.				
32	40	44	IRRX	IR Receive Input. IR receive pin. This pin defaults to high-impedance input with the weak pullup disabled during all forms of reset. Software must configure this pin after release from reset to remove the high-impedance input condition.				

	PIN					-				
32 TQFN	40 TQFN	44 TQFN	NAME	FUNCTION						
			GENERAL-	PURPOSE I/	O AND SPE	CIAL FUNCT	ION PINS			
			P0.0-	bidirectiona Software m	General-Purpose, Digital, I/O, Type-C Port. These port pins function as bidirectional I/O pins. All port pins default to high-impedance mode after a reset. Software must configure these pins after release from reset to remove the high-impedance input condition. All alternate functions must be enabled from software					
			P0.7; IRTXM,	32 TQFN	40 TQFN	44 TQFN	PORT	SPECIAL FUNCTION		
		1, 3,	RX0, TX0,	1	1	1	P0.0	IRTXM		
1–8	1, 3, 5–10	5–10	RX1, TX1,	2	3	3	P0.1	RX0		
			TBA0/ TBA1,	3	5	5	P0.2	TX0		
			TBAT, TBB0/	4	6	6	P0.3	RX1		
			TBB1	5	7	7	P0.4	TX1		
				6	8	8	P0.5	TBA0/TBA1		
				7	9	9	P0.6	TBB0		
				8	10	10	P0.7	TBB1		
				General-Purpose, Digital, I/O, Type-D Port; External Edge-Selectable Internal These port pins function as bidirectional I/O pins or as interrupts. All port pin default to high-impedance mode after a reset. Software must configure these pins after release from reset to remove the high-impedance input condition. A interrupt functions must be enabled from software.						
				32 TQFN	40 TQFN	44 TQFN	PORT	SPECIAL FUNCTION		
0 10 10	11–14,	11–14,	P1.0-	9	11	11	P1.0	INTO		
9–12, 16, 17, 20, 21	19, 20,	21, 22,	P1.7; INT0-	10	12	12	P1.1	INT1		
, 20, 21	23, 24	25, 26	INT7	11	13	13	P1.2	INT2		
				12	14	14	P1.3	INT3		
				16	19	21	P1.4	INT4		
				17	20	22	P1.5	INT5		
				20	23	25	P1.6	INT6		
				21	24	26	P1.7	INT7		

Pin Description (continued)

Pin Description (continued)

PIN						-				
32 TQFN	40 TQFN	44 TQFN	NAME	FUNCTION						
24–27	25, 26, 29–32,	27, 29, 32–35,	P2.0- P2.7; MOSI, MISO, SCLK,	the SC register. P2.7 functions as the JTAG test-data output on reset and defaults to an input with a weak pullup. The output function of the test data is only enabled during the TAP's Shift_IR or Shift_DR states.						
	35, 36	38, 39	SSEL,	32 TQFN	40 TQFN	44 TQFN	PORT	SPECIAL FUNCTION		
		TCK, TDI, TMS,	_	25	27	P2.0	MOSI			
			TDO	_	26	29	P2.1	MISO		
				_	29	32	P2.2	SCLK		
				_	30	33	P2.3	SSEL		
				24	31	34	P2.4	ТСК		
				25	32	35	P2.5	TDI		
				26	35	38	P2.6	TMS		
				27	36	39	P2.7	TDO		
				These port default to h pins after re	pins functior igh-impedan elease from r	n as bidirecti ce mode afte eset to remo	onal I/O pins o er a reset. Softv	al Edge-Selectable Interrupt. r as interrupts. All port pins vare must configure these pedance input condition. All SPECIAL FUNCTION		
	0 4 15	2, 4, 15,	P3.0-	JZ TQIT	2	2	P3.0	INT8		
_	2, 4, 15, 16, 27,	16, 30,	P3.7;		4	4	P3.1	INT9		
	28, 33, 34	31, 36,	INT8-		15	15	P3.2	INT10		
		37	INT15		16	16	P3.3	INT18		
					27	30	P3.4	INT12		
					28	31	P3.5	INT12		
				<u> </u>	33	36	P3.6	INT14		
					34	37	P3.7	INT14		
		1	1				10.7	111110		
23			N.C.	NO CONNECTION PINS N.C. No Connection. Reserved for future use. Leave this pin unconnected.						

MAXQ610

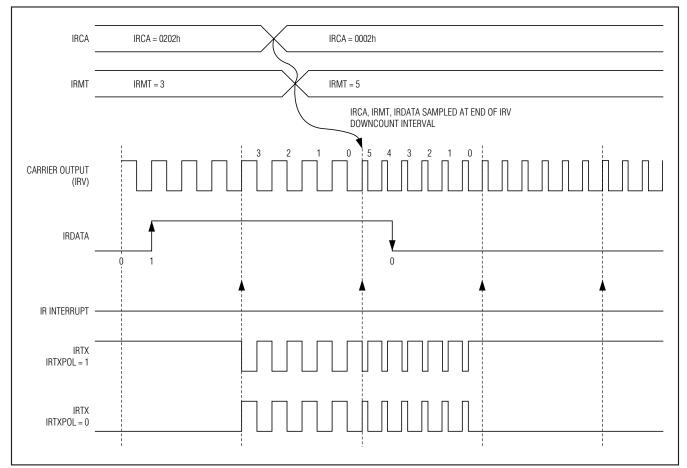


Figure 1. IR Transmit Frequency Shifting Example (IRCFME = 0)

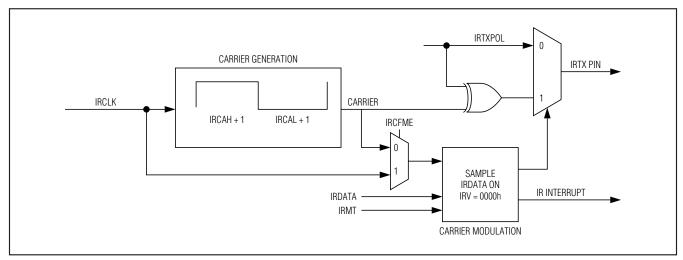


Figure 2. IR Transmit Carrier Generation and Carrier Modulator Control

///XI/M

The IRTXPOL bit defines the starting/idle state as well as the carrier polarity for the IRTX pin. If IRTXPOL = 1, the IRTX pin is set to a logic-high when the IR timer module is enabled. If IRTXPOL = 0, the IRTX pin is set to a logic-low when the IR timer is enabled.

A separate register bit, IR data (IRDATA), is used to determine whether the carrier generator output is output to the IRTX pin for the next IRMT carrier cycles. When IRDATA = 1, the carrier waveform (or inversion of this waveform if IRTXPOL = 1) is output on the IRTX pin during the next IRMT cycles. When IRDATA = 0, the idle condition, as defined by IRTXPOL, is output on the IRTX pin during the next IRMT cycles.

The IR timer acts as a downcounter in transmit mode. An IR transmission starts when 1) the IREN bit is set to 1 when IRMODE = 1, 2) the IRMODE bit is set to 1 when IREN = 1, or 3) when IREN and IRMODE are both set to 1 in the same instruction. The IRMT and IRCA registers, along with the IRDATA and IRTXPOL bits, are sampled at the beginning of the transmit process and every time the IR timer value reloads its value. When the IRV reaches 0000h value, on the next carrier clock, it does the following:

- 1) Reloads IRV with IRMT.
- 2) Samples IRCA, IRDATA, and IRTXPOL.

- 3) Generates IRTX accordingly.
- 4) Sets IRIF to 1.
- 5) Generates an interrupt to the CPU if enabled (IRIE = 1).

To terminate the current transmission, the user can switch to receive mode (IRMODE = 0) or clear IREN to 0.

Carrier Modulation Time = IRMT + 1 carrier cycles

IR Transmit—Independent External Carrier and Modulator Outputs

The normal transmit mode modulates the carrier based upon the IRDATA bit. However, the user has the option to input the modulator (envelope) on an external pin if desired. If the IRENV[1:0] bits are configured to 01b or 10b, the modulator/envelope is output to the IRTXM pin. The IRDATA bit is output directly to the IRTXM pin (if IRTXPOL = 0) on each IRV downcount interval boundary just as if it were being used to internally modulate the carrier frequency. If IRTXPOL = 1, the inverse of the IRDATA bit is output to the IRTXM pin on the IRV interval downcount boundaries. The envelope output is illustrated in Figure 4. When the envelope mode is enabled, it is possible to output either the modulated (IRENV[1:0] = 01b) or unmodulated (IRENV[1:0] = 10b) carrier to the IRTX pin.

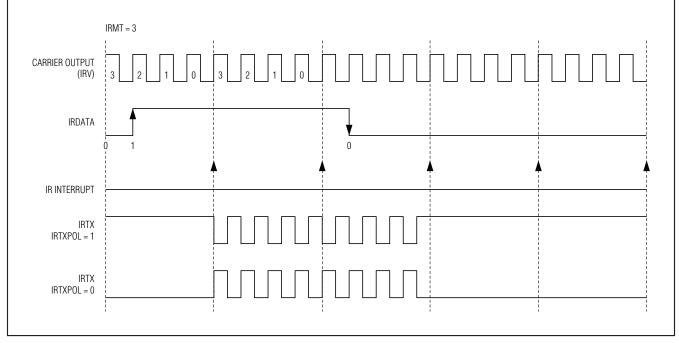


Figure 3. IR Transmission Waveform (IRCFME = 0)

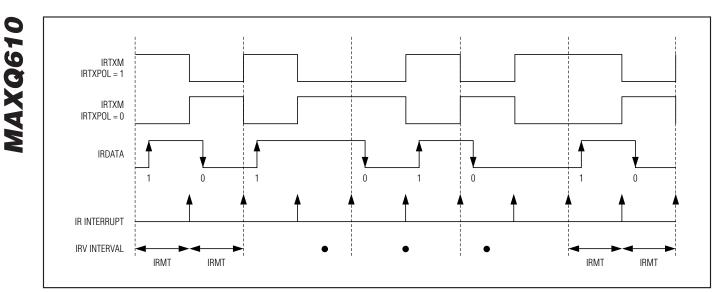


Figure 4. External IRTXM (Modulator) Output

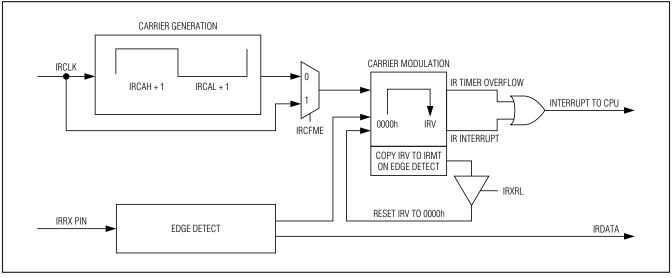


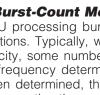
Figure 5. IR Capture

IR Receive

When configured in receive mode (IRMODE = 0), the IR hardware supports the IRRX capture function. The IRRXSEL[1:0] bits define which edge(s) of the IRRX pin should trigger IR timer capture function.

The IR module starts operating in the receive mode when IRMODE = 0 and IREN = 1. Once started, the IR timer (IRV) starts up counting from 0000h when a quali-

fied capture event as defined by IRRXSEL happens. The IRV register is, by default, counting carrier cycles as defined by the IRCA register. However, the IR carrier frequency detect (IRCFME) bit can be set to 1 to allow clocking of the IRV register directly with the IRCLK for finer resolution. When IRCFME = 0, the IRCA defined carrier is counted by IRV. When IRCFME = 1, the IRCLK clocks the IRV register.


On the next gualified event, the IR module does the following:

- 1) Captures the IRRX pin state and transfers its value to IRDATA. If a falling edge occurs, IRDATA = 0. If a rising edge occurs, IRDATA = 1.
- 2) Transfers its current IRV value to the IRMT.
- 3) Resets IRV content to 0000h (if IRXRL = 1).
- 4) Continues counting again until the next qualified event.

If the IR timer value rolls over from 0FFFFh to 0000h before a qualified event happens, the IR timer overflow (IROV) flag is set to 1 and an interrupt generated if enabled. The IR module continues to operate in receive mode until it is stopped by switching into transmit mode (IRMODE = 1) or clearing IREN = 0.

Carrier Burst-Count Mode

A special mode reduces the CPU processing burden when performing IR learning functions. Typically, when operating in an IR learning capacity, some number of carrier cycles are examined for frequency determination. Once the frequency has been determined, the IR receive function can be reduced to counting the number of carrier pulses in the burst and the duration of the combined mark-space time within the burst. To simplify this process, the receive burst-count mode (as enabled by the RXBCNT bit) can be used. When RXBCNT = 0, the standard IR receive capture functionality is in place.

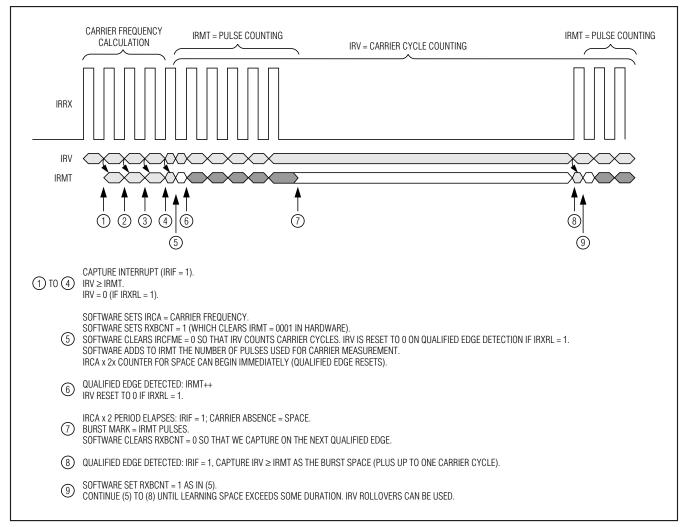


Figure 6. Receive Burst-Count Example

On-Chip Oscillator

An external quartz crystal or a ceramic resonator can be connected between HFXIN and HFXOUT on the MAXQ610, as illustrated in Figure 9.

Noise at HFXIN and HFXOUT can adversely affect onchip clock timing. It is good design practice to place the crystal and capacitors near the oscillator circuitry and connect HFXIN and HFXOUT to ground with a direct short trace. The typical values of external capacitors vary with the type of crystal to be used and should be initially selected based on the load capacitance as suggested by the crystal manufacturer.

ROM Loader

The MAXQ610 includes a ROM loader. The loader denies access to the system, user loader, or user-application memories unless an area-specific password is provided. The ROM loader is not available in ROM-only versions of the MAXQ610.

Loading Flash Memory

An internal bootstrap loader allows the device to be reloaded over a simple JTAG interface. As a result, software can be upgraded in-system, eliminating the need for a costly hardware retrofit when updates are required. Remote software uploads are possible that enable physically inaccessible applications to be frequently updated. The interface hardware can be a JTAG connection to another microcontroller, or a connection to a PC serial port using a serial-to-JTAG converter, such as the MAXQJTAG-001 available from Maxim Integrated Products. If in-system programmability is not required, a commercial gang programmer can be used for mass programming. Activating the JTAG interface and loading the test access port (TAP) with the system programming instruction invokes the bootstrap loader. Setting the SPE bit to 1 during reset through the JTAG interface executes the bootstraploader-mode program that resides in the utility ROM. When programming is complete, the bootstrap loader can clear the SPE bit and reset the device, allowing the device to bypass the utility ROM and begin execution of the application software.

In addition, the ROM loader also enforces the memoryprotection policies. 16-word passwords are required to access the ROM loader interface.

Loading memory is not possible for ROM-only versions of the MAXQ610 family.

In-Application Flash Programming

From user-application code, flash can be programmed using the ROM utility functions from either C or assembly language. The function declarations that follow show examples of some of the ROM utility functions provided for in-application flash programming.

/* Write one 16-bit word to code address 'dest'.

- * Dest must be aligned to 16 bits.
- * Returns 0 = failure, 1 = OK.
- * /

int flash write (uint16 t dest, uint16 t data);

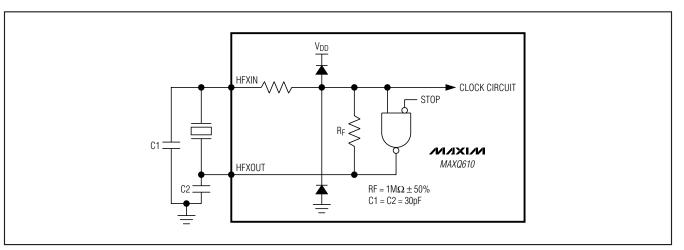


Figure 9. On-Chip Oscillator

To erase, the following function would be used:

 $/\star\,$ Erase the given Flash page

```
* addr: Flash offset (anywhere within page)
*/
```

```
int flash_erasepage(uint16_t addr);
```

The in-application flash programming must call ROM utility functions to erase and program any of the flash memory. Memory protection is enforced by the ROM utility functions.

In-application programming is not available in ROMonly versions of the MAXQ610 family.

In-Circuit Debug and JTAG Interface

Embedded debug hardware and software are developed and integrated into the MAXQ610 to provide full in-circuit debugging capability in a user application environment. These hardware and software features include:

- A debug engine.
- A set of registers providing the ability to set breakpoints on register, code, or data using debug service routines stored in ROM.

Collectively, these hardware and software features support two modes of in-circuit debug functionality:

- 1) Background Mode
 - CPU is executing the normal user program.
 - Allows the host to configure and set up the in-circuit debugger.
- 2) Debug Mode
 - The debugger takes over the control of the CPU.
 - Read/write accesses to internal registers and memory.
 - Single-step of the CPU for trace operation.

The interface to the debug engine is the TAP controller. The interface allows for communication with a bus master that can either be automatic test equipment or a component that interfaces to a higher level test bus as part of a complete system. The communication operates across a 4-wire serial interface from a dedicated TAP that is compatible to the JTAG IEEE Std 1149. The TAP provides an independent serial channel to communicate synchronously with the host system.

To prevent unauthorized access of the protected memory regions through the JTAG interface, the debug engine prevents modification of the privilege registers and disallows all access to system memory, unless memory protection is disabled. In addition, all services (such as register display or modification) are denied when code is executing inside the system area.

The debugger is not available for ROM-only versions of the MAXQ610 family.

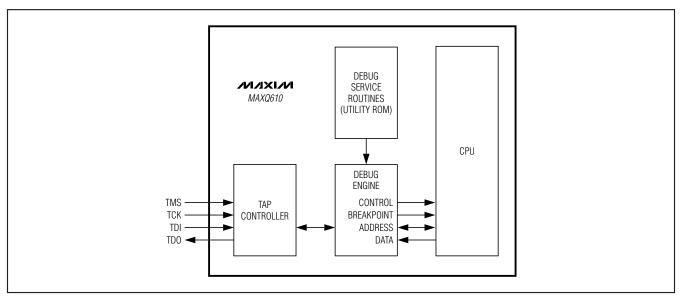


Figure 10. In-Circuit Debugger

Operating Modes

The lowest power mode of operation for the MAXQ610 is stop mode. In this mode, CPU state and memories are preserved, but the CPU is not actively running. Wake-up sources include external I/O interrupts, the power-fail warning interrupt, or a power-fail reset. Any time the microcontroller is in a state where code does not need to be executed, the user software can put the MAXQ610 into stop mode. The nanopower ring oscillator is an internal ultra-low-power (400nA), 8kHz ring oscillator that can be used to drive a wake-up timer that exits stop mode. The wake-up timer is programmable by software in steps of 125µs up to approximately 8s.

The power-fail monitor is always on during normal operation. However, it can be selectively disabled during stop mode to minimize power consumption. This feature is enabled using the power-fail monitor disable (PFD) bit in the PWCN register. The reset default state for the PFD bit is 1, which disables the power-fail monitor function during stop mode. If power-fail monitoring is disabled (PFD = 1) during stop mode, the circuitry responsible for generating a power-fail warning or reset is shut down and neither condition is detected. Thus, the V_{DD} < V_{RST} condition does not invoke a reset state. However, in the event that V_{DD} falls below the POR level, a POR is generated. The power-fail monitor is enabled prior to stop mode exit and before code execution begins. If a power-fail warning condition (V_{DD} < V_{PFW}) is then detected, the power-fail interrupt flag is set on stop mode exit. If a power-fail condition is detected (V_{DD} < V_{RST}), the CPU goes into reset.

Power-Fail Detection

Figures 11, 12, and 13 show the power-fail detection and response during normal and stop mode operation.

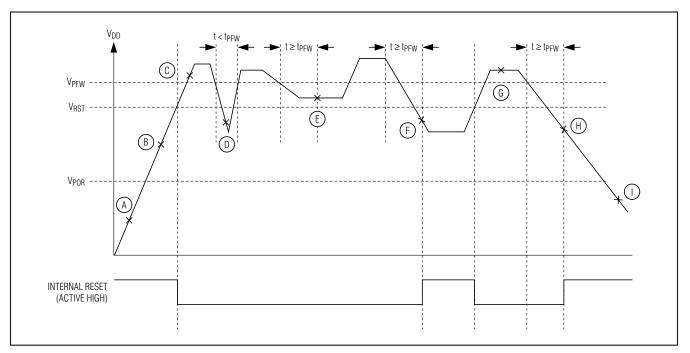
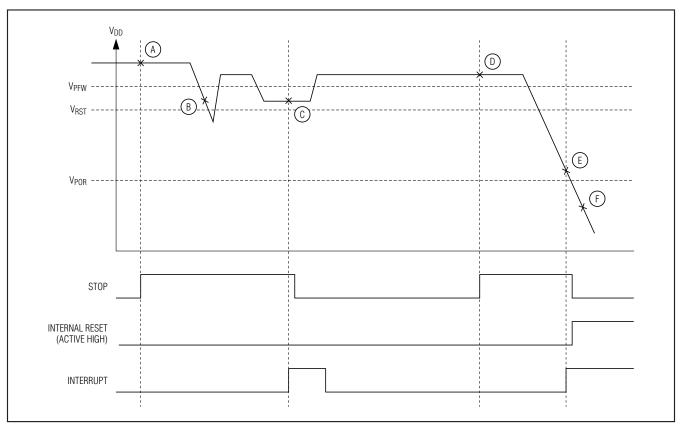


Figure 11. Power-Fail Detection During Normal Operation

STATE	POWER-FAIL	INTERNAL REGULATOR	CRYSTAL OSCILLATOR	SRAM RETENTION	COMMENTS
A	On	Off	Off	—	V _{DD} < V _{POR} .
В	On	On	On		V _{POR} < V _{DD} < V _{RST.} Crystal warmup time, t _{XTAL_RDY} . CPU held in reset.
С	On	On	On	_	V _{DD} > V _{RST} . CPU normal operation.
D	On	On	On	_	Power drop too short. Power-fail not detected.
E	On	On	On	_	$\label{eq:VRST} \begin{array}{l} V_{\text{RST}} < V_{\text{DD}} < V_{\text{PFW}}. \\ PFI \text{ is set when } V_{\text{RST}} < V_{\text{DD}} < V_{\text{PFW}} \text{ and maintains} \\ this state for at least t_{\text{PFW}}, at which time a power-fail interrupt is generated (if enabled). \\ CPU \ continues \ normal operation. \end{array}$
F	On (Periodically)	Off	Off	Yes	VPOR < VDD < VRST. Power-fail detected. CPU goes into reset. Power-fail monitor turns on periodically.
G	On	On	On		V _{DD} > V _{RST.} Crystal warmup time, t _{XTAL_RDY} . CPU resumes normal operation from 8000h.
н	On (Periodically)	Off	Off	Yes	V _{POR} < V _{DD} < V _{RST.} Power-fail detected. CPU goes into reset. Power-fail monitor is turned on periodically.
I	Off	Off	Off		V _{DD} < V _{POR.} Device held in reset. No operation allowed.

Table 4. Power-Fail Detection States During Normal Operation


If a reset is caused by a power-fail, the power-fail monitor can be set to one of the following intervals:

- Always on—continuous monitoring
- 2¹¹ nanopower ring oscillator clocks (~256ms)
- 2¹² nanopower ring oscillator clocks (~512ms)
- 2¹³ nanopower ring oscillator clocks (~1.024s)

In the case where the power-fail circuitry is periodically turned on, the power-fail detection is turned on for two nanopower ring oscillator cycles. If $V_{DD} > V_{RST}$ during

detection, V_{DD} is monitored for an additional nanopower ring oscillator period. If V_{DD} remains above V_{RST} for the third nanopower ring period, the CPU exits the reset state and resumes normal operation from utility ROM at 8000h after satisfying the crystal warmup period.

If a reset is generated by any other event, such as the RESET pin being driven low externally or the watchdog timer, the power-fail, internal regulator, and crystal remain on during the CPU reset. In these cases, the CPU exits the reset state in less than 20 crystal cycles after the reset source is removed.

16-Bit Microcontroller with Infrared Module

Table 6. Stop Mode Power-Fail Detection States with Power-Fail Monitor Disabled

STATE	POWER-FAIL	INTERNAL REGULATOR	CRYSTAL OSCILLATOR	SRAM RETENTION	COMMENTS
A	Off	Off	Off	Yes	Application enters stop mode. V _{DD} > V _{RST} . CPU in stop mode.
В	Off	Off	Off	Yes	V _{DD} < V _{PFW} . Power-fail not detected because power-fail monitor is disabled.
с	On	On	On	Yes	V _{RST} < V _{DD} < V _{PFW} . An interrupt occurs that causes the CPU to exit stop mode. Power-fail monitor is turned on, detects a power- fail warning, and sets the power-fail interrupt flag. Turn on regulator and crystal. Crystal warmup time, t _{XTAL_RDY} . On stop mode exit, CPU vectors to the higher priority of power-fail and the interrupt that causes stop mode exit.

Figure 13. Stop Mode Power-Fail Detection with Power-Fail Monitor Disabled

Table 6. Stop Mode Power-Fail Detection States with Power-Fail Monitor Disabled (continued)

STATE	POWER-FAIL	INTERNAL REGULATOR	CRYSTAL OSCILLATOR	SRAM RETENTION	COMMENTS
D	Off	Off	Off	Yes	Application enters stop mode. V _{DD} > V _{RST} . CPU in stop mode.
E	On (Periodically)	Off	Off	Yes	VPOR < VDD < VRST. An interrupt occurs that causes the CPU to exit stop mode. Power-fail monitor is turned on, detects a power- fail, puts CPU in reset. Power-fail monitor is turned on periodically.
F	Off	Off	Off		V _{DD} < V _{POR} Device held in reset. No operation allowed.

_Applications Information

The low-power, high-performance RISC architecture of this device makes it an excellent fit for many portable or battery-powered applications. It is ideally suited for applications such as universal remote controls that require the cost-effective integration of IR transmit/ receive capability.

Grounds and Bypassing

Careful PCB layout significantly minimizes system-level digital noise that could interact with the microcontroller or peripheral components. The area under any digital components should be a continuous ground plane if possible. Keep any bypass capacitor leads short for best noise rejection and place the capacitors as close to the leads of the devices as possible.

CMOS design guidelines for any semiconductor require that no pin be taken above V_{DD} or below GND. Violation of this guideline can result in a hard failure (damage to the silicon inside the device) or a soft failure (unintentional modification of memory contents). Voltage spikes above or below the device's absolute maximum ratings can potentially cause a devastating IC latchup.

Microcontrollers commonly experience negative voltage spikes through either their power pins or generalpurpose I/O pins. Negative voltage spikes on power pins are especially problematic as they directly couple to the internal power buses. Devices such as keypads can conduct electrostatic discharges directly into the microcontroller and seriously damage the device. System designers must protect components against these transients that can corrupt system memory.

_Differences for ROM Versions

The ROM-only versions of the MAXQ610 family devices operate in the same manner as their flash counterparts with the following exceptions:

- The ROM loader is not available in the ROM version.
- Loading memory and in-application programming are not supported.
- The debugger is not available in the ROM version.

Additional Documentation

Designers must have the following documents to fully use all the features of this device. This data sheet contains pin descriptions, feature overviews, and electrical specifications. Errata sheets contain deviations from published specifications. The user's guides offer detailed information about device features and operation. The following documents can be downloaded from **www.maxim-ic.com/microcontrollers**.

- This MAXQ610 data sheet, which contains electrical/ timing specifications and pin descriptions.
- The MAXQ610 revision-specific errata sheet (www.maxim-ic.com/errata).
- The *MAXQ610 User's Guide*, which contains detailed information on core features and operation, including programming.

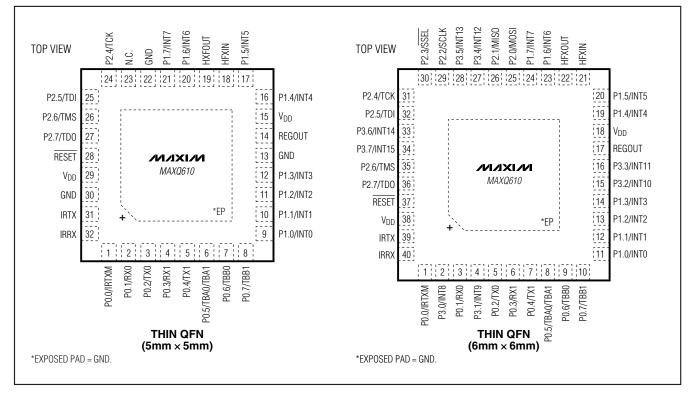
Development and Technical Support

Maxim and third-party suppliers provide a variety of highly versatile, affordably priced development tools for this microcontroller, including the following:

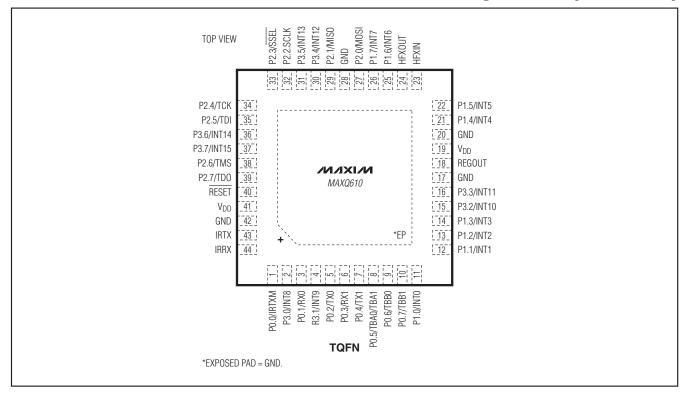
- Compilers
- In-circuit emulators

- Integrated Development Environments (IDEs)
- JTAG-to-serial converters for programming and debugging

A partial list of development tool vendors can be found at **<u>www.maxim-ic.com/MAXQ_tools</u>**.


Technical support is available at <u>https://support.maxim-</u> ic.com/micro.

Selector Guide


PART	OPERATING VOLTAGE (V)	PROGRAM MEMORY (KB)	DATA MEMORY (KB)	PIN-PACKAGE
MAXQ610A-0000+	1.70 to 3.6	64 Flash	2	32 TQFN-EP
MAXQ610B-0000+	1.70 to 3.6	64 Flash	2	40 TQFN-EP
MAXQ610J-0000+	1.70 to 3.6	64 Flash	2	44 TQFN-EP
MAXQ610X-0000+	1.70 to 3.6	64 Flash	2	Bare die

Note: Contact factory for information about masked ROM devices.

Pin Configurations

Pin Configurations (continued)

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
32 TQFN-EP	T3255+3	<u>21-0140</u>	<u>90-0001</u>
40 TQFN-EP	T4066+2	<u>21-0141</u>	<u>90-0053</u>
44 TQFN-EP	T4477+2	<u>21-0144</u>	<u>90-0127</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/08	Initial release	—
1	11/08	Removed the SyscIk = 1MHz condition for the Active Current parameter, changed the R _{PU} min values from 18k Ω and 19k Ω to 16k Ω and 17k Ω , and changed the f _{NANO} T _A = +25°C min and max values from 4.2kHz and 14.0kHz to 3.0kHz and 20.0kHz, respectively, in the <i>Recommended DC Operating Conditions</i> table	
		Added the sentence "Software must configure this pin after release from reset to remove the high-impedance input condition." to the IRRX, P0.x, P1.x, P2.x, and P3.x descriptions in the <i>Pin Description</i> table	8, 9
	1/09	Added future status to the 32 TQFN package in the Ordering Information table	1
2		Changed the REGOUT pin series resistance from 1Ω to 2Ω to 10Ω in the Pin Description table	8
3	7/09	Changed the t _{IRRX_A} minimum spec from 200ns to 300ns in the <i>Recommended DC Operating Conditions</i> table	5
3		Removed the statement about the use of multilayer boards from the <i>Grounds and Bypassing</i> section	25
4	10/09	Adjusted the minimum resonator frequency from DCMHz to 1MHz and the minimum programming frequency from 5MHz to 6MHz in the <i>Recommended DC Operating Conditions</i> table	5, 6
5	2/10	Added the 44-pin TQFN package	1, 8, 9, 10, 26, 27, 28
6	7/11	Removed future status from the MAXQ610A-0000+ in the Ordering Information table; added the continuous power dissipation, lead temperature, and soldering temperature information to the Absolute Maximum Ratings section	1, 4

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.