E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f683-i-md

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Pin Diagram (PDIP, SOIC)

8-Pin Diagram (DFN)

8-Pin Diagram (DFN-S)

TABLE 1: 8-PIN SUMMARY

I/O	Pin	Analog	Comparators	Timer	ССР	Interrupts	Pull-ups	Basic
GP0	7	AN0	CIN+	_	—	IOC	Y	ICSPDAT/ULPWU
GP1	6	AN1/VREF	CIN-	—	—	IOC	Y	ICSPCLK
GP2	5	AN2	COUT	T0CKI	CCP1	INT/IOC	Y	—
GP3 ⁽¹⁾	4	_	_	_	_	IOC	Y(2)	MCLR/Vpp
GP4	3	AN3	—	T1G	—	IOC	Y	OSC2/CLKOUT
GP5	2		—	T1CKI	—	IOC	Y	OSC1/CLKIN
	1		—	—	—	—	—	Vdd
	8		_	_	_	_	_	Vss

Note 1: Input only.

2: Only when pin is configured for external \overline{MCLR} .

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 128 x 8 in the PIC12F683. Each register is accessed, either directly or indirectly, through the File Select Register FSR (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: DATA ME

DATA MEMORY MAP OF THE PIC12F683

	File Address		File Address
Indirect addr.(1)	00h	Indirect addr. ⁽¹⁾	80h
TMR0	01h	OPTION REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
GPIO	05h	TRISIO	85h
	06h		86h
	07h		87h
	08h		88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1I	0Eh	PCON	8Fh
TMR1H	0Fh	OSCCON	8Fh
T1CON	10h	OSCTUNE	- 90h
TMR2	11h		91h
T2CON	12h	PR2	92h
CCPR1L	13h		93h
CCPR1H	14h		94h
CCP1CON	15h		95h
	16h	100	
	17h	100	07h
WDTCON	196		- 9/11 08b
CMCONO	10h	VRCON	9011 00h
CMCON1	14h	FEDAT	
OMOONT	186	EEADP	
	1Ch	ELADK EECONI	- 9Dii
	100		9CH
	156		0Eh
ADCONO	156		9Eh
ADCONO	20h	General	A0h
	2011	Purpose	-
		Registers	DEL
General		32 Bytes	BEN
Purpose			CUN
Registers			
96 Bytes			
			EFh
		Accesses 70h-7Fh	FOh
BANKO	J 7Fh		_ı ⊢⊢n
DAINE U		DAINE	
Unimplemente	ed data me	mory locations read a	as '0'
Note 1: Not a physical	l register.		

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank (0										
00h	INDF	Addressin	ddressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx 17							17, 90	
01h	TMR0	Timer0 M	odule Regis	ster						xxxx xxxx	41, 90
02h	PCL	Program	Counter's (F	PC) Least S	ignificant By	/te				0000 0000	17, 90
03h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	11, 90
04h	FSR	Indirect D	ata Memory	Address P	ointer				-	xxxx xxxx	17, 90
05h	GPIO		—	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	31, 90
06h	—	Unimplem	nented							—	—
07h	—	Unimplem	nented							—	—
08h	—	Unimplem	nented							—	—
09h	—	Unimplem	nented	1	r					—	—
0Ah	PCLATH	—	—	—	Write Buffe	r for upper 5	5 bits of Pro	gram Count	er	0 0000	17, 90
0Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	13, 90
0Ch	PIR1	EEIF	ADIF	CCP1IF	—	CMIF	OSFIF	TMR2IF	TMR1IF	000- 0000	15, 90
0Dh	_	Unimplem	nented							—	—
0Eh	TMR1L	Holding R	Holding Register for the Least Significant Byte of the 16-bit TMR1 xxxx xxxx 44,								44, 90
0Fh	TMR1H	Holding R	legister for t	he Most Sig	nificant Byt	e of the 16-b	bit TMR1			XXXX XXXX	44, 90
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	47, 90
11h	TMR2	Timer2 M	odule Regis	ster					1	0000 0000	49, 90
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	50, 90
13h	CCPR1L	Capture/C	Compare/PV	VM Register	1 Low Byte	;				XXXX XXXX	76, 90
14h	CCPR1H	Capture/C	Compare/PV	VM Register	⁻ 1 High Byt	e				XXXX XXXX	76, 90
15h	CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	75, 90
16h	—	Unimplem	nented								—
17h	—	Unimplem	nented							_	—
18h	WDTCON		—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	97, 90
19h	CMCON0		COUT		CINV	CIS	CM2	CM1	CM0	-0-0 0000	56, 90
1Ah	CMCON1			—	—	—	—	T1GSS	CMSYNC	10	57, 90
1Bh		Unimplem	nented								
1Ch		Unimplem	nented							—	_
1Dh	-	Unimplem	nented							—	—
1Eh	ADRESH	Most Sigr	nificant 8 bits	s of the left :	shifted A/D	result or 2 b	ts of right s	hifted result		XXXX XXXX	61,90
1Fh	ADCON0	ADFM	VCFG	—	_	CHS1	CHS0	GO/DONE	ADON	00 0000	65,90

 $\label{eq:logend: Legend: Legend: -= unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented$

Note 1: IRP and RP1 bits are reserved, always maintain these bits clear.

PIC12F683

TABLE 3-2:	SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
CONFIG ⁽²⁾	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_
INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	x000 000x
OSCCON	—	IRCF2	IRCF1	IRCF0	OSTS	HTS	LTS	SCS	-110 x000	-110 x000
OSCTUNE	—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu
PIE1	EEIE	ADIE	CCP1IE	—	CMIE	OSFIE	TMR2IE	TMR1IE	000- 0000	000- 0000
PIR1	EEIF	ADIF	CCP1IF	—	CMIF	OSFIF	TMR2IF	TMR1IF	000- 0000	000- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by oscillators.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: See Configuration Word register (Register 12-1) for operation of all register bits.

U-0	R/W-0	R/W-0 R/W-0		R/W-1	R/W-1	R/W-1	R/W-1		
_	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0		
bit 7			•	•		-	bit 0		
Legend:									
R = Reada	ble bit	W = Writable bi	t	U = Unimplem	ented bit, read as	\$ '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	own		
bit 7	Unimplement	ted: Read as 'o'							
bit 6-4	ADCS<2:0>:	A/D Conversion C	lock Select bits						
	000 = Fosc/2								
	001 = FOSC/8	2							
	x11 = FRC (cl	ock derived from a	a dedicated inter	nal oscillator = 5	500 kHz max)				
	100 = Fosc/4				,				
	101 = FOSC/1	6							
	110 = FOSC/6	4 							
DIT 3-0	ANS<3:U>: Al	halog Select bits	r digital function	on nine AN-2:0					
	1 = Analog in	out Pin is assigne	d as analog inp	ut(1)	, respectively.				
	0 = Digital I/O	. Pin is assigned t	o port or special	function.					
				a dha a dhafaa lataa a	- 1				
NOTE 1:	Jote 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and interrupt-on-change, if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on								

REGISTER 4-3: ANSEL: ANALOG SELECT REGISTER

the pin.

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CONFIG ⁽¹⁾	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_
CMCON1	_	_	_	_	_	_	T1GSS	CMSYNC	10	10
INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	x000 0000x
PIE1	EEIE	ADIE	CCP1IE	—	CMIE	OSFIE	TMR2IE	TMR1IE	000- 0000	000- 0000
PIR1	EEIF	ADIF	CCP1IF	_	CMIF	OSFIF	TMR2IF	TMR1IF	000- 0000	000- 0000
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register									uuuu uuuu
TMR1L	Holding Re	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu								
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: See Configuration Word register (Register 12-1) for operation of all register bits.

8.2 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 8-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

FIGURE 8-3: ANALOG INPUT MODEL

8.4 Comparator Control

The CMCON0 register (Register 8-1) provides access to the following comparator features:

- Mode selection
- Output state
- · Output polarity
- Input switch

8.4.1 COMPARATOR OUTPUT STATE

The Comparator state can always be read internally via the COUT bit of the CMCON0 register. The comparator state may also be directed to the COUT pin in the following modes:

- CM<2:0> = 001
- CM<2:0> = 011
- CM<2:0> = 101

When one of the above modes is selected, the associated TRIS bit of the COUT pin must be cleared.

8.4.2 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CINV bit of the CMCON0 register. Clearing CINV results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 8-1.

TABLE 8-1: OUTPUT STATE VS. INPUT CONDITIONS

Input Conditions	CINV	COUT
VIN- > VIN+	0	0
VIN- < VIN+	0	1
VIN- > VIN+	1	1
VIN- < VIN+	1	0

Note: COUT refers to both the register bit and output pin.

8.4.3 COMPARATOR INPUT SWITCH

The inverting input of the comparator may be switched between two analog pins in the following modes:

- CM<2:0> = 101
- CM<2:0> = 110

In the above modes, both pins remain in analog mode regardless of which pin is selected as the input. The CIS bit of the CMCON0 register controls the comparator input switch.

8.5 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 15.0 "Electrical Specifications"** for more details.

8.7 Operation During Sleep

The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in **Section 15.0** "**Electrical Specifications**". If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. The comparator is turned off by selecting mode CM<2:0> = 000 or CM<2:0> = 111 of the CMCON0 register.

A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CMIE bit of the PIE1 register and the PEIE bit of the INTCON register must be set. The instruction following the Sleep instruction always executes following a wake from Sleep. If the GIE bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine.

8.8 Effects of a Reset

A device Reset forces the CMCON0 and CMCON1 registers to their Reset states. This forces the Comparator module to be in the Comparator Reset mode (CM<2:0> = 000). Thus, all comparator inputs are analog inputs with the comparator disabled to consume the smallest current possible.

REGISTER 8-1: CMCON0: COMPARATOR CONFIGURATION REGISTER

U-0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	COUT	—	CINV	CIS	CM2	CM1	CM0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as	ʻ0'	
-n = Value at POF	र	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unknow	vn
hit 7	Unimplementer	H. Pood on 'o'					
bit 6	COUT: Compara	ator Output bit					
Site	<u>When $CINV = 0$</u>	<u>:</u>					
	1 = VIN + > VIN - VIN						
	0 = VIN + < VIN- When CINV = 1						
	1 = VIN + < VIN-	-					
	0 = VIN+ > VIN-						
bit 5	Unimplemented	d: Read as '0'					
bit 4	CINV: Comparat	tor Output Inversio	n bit				
	1 = Output inver	ted overted					
bit 3	CIS: Comparato	r Input Switch bit					
	When CM<2:0>	<u>= 110 or 101:</u>					
	1 = CIN+ conne	cts to VIN-					
	0 = CIN - connectWhen CM<2.0>	= $0 \times x$ or 100 or 1	11.				
	CIS has no effect	<u></u>	<u></u>				
bit 2-0	CM<2:0>: Comp	parator Mode bits (See Figure 8-5)			
	000 = CIN pins	are configured as	analog, COUT p	oin configured as I/	O, Comparator o	utput turned off	
	001 = CIN pins	are configured as	analog, COUT p analog, COUT r	oin configured as C	Comparator outpu	t utput available inte	ernally
	011 = CIN- pin i	s configured as an	alog, CIN+ pin	is configured as I/C	D, COUT pin conf	igured as	interity
	Comparat	or output, CVREF i	s non-inverting	input			
	100 = CIN- pin i available	s configured as an internally CVREE i	alog, CIN+ pin i s non-inverting	is configured as I/C), COUT pin is co	onfigured as I/O, Co	omparator output
	101 = CIN pins	are configured as	analog and mul	tiplexed, COUT pin	is configured as		
	Compara	tor output, CVREF	is non-inverting	input			
	110 = CIN pins	are configured as	analog and mult	tiplexed, COUT pin	n is configured as	I/O,	
	111 = CIN pins	are configured as	I/O, COUT pin i	s configured as I/O	, Comparator out	tput disabled, Com	parator off.

9.3 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 9-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 9-4. **The maximum recommended impedance for analog sources is 10 k** Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed),

an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 9-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 9-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 50°C and external impedance of 10k
$$\Omega$$
 5.0V VDD

$$TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
= TAMP + TC + TCOFF
= 2µs + TC + [(Temperature - 25°C)(0.05µs/°C)]
The value for TC can be approximated with the following equations:
$$V_{APPLIED}\left(1 - \frac{1}{2047}\right) = V_{CHOLD} \qquad :[1] V_{CHOLD} charged to within 1/2 lsb
V_{APPLIED}\left(1 - e^{\frac{-TC}{RC}}\right) = V_{CHOLD} \qquad :[2] V_{CHOLD} charge response to VAPPLIED
$$V_{APPLIED}\left(1 - e^{\frac{-TC}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{2047}\right) \qquad :combining [1] and [2]$$
Solving for TC:

$$TC = -CHOLD(RIC + RSS + RS) \ln(1/2047)$$

$$= -10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$$

$$= 1.37\mu s$$
Therefore:

$$TACQ = 2\mu S + 1.37\mu S + [(50°C - 25°C)(0.05\mu S/°C)]$$$$$$

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

2: The charge holding capacitor (CHOLD) is not discharged after each conversion.

3: The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

 $= 4.67 \mu S$

12.2 Calibration Bits

Brown-out Reset (BOR), Power-on Reset (POR) and 8 MHz internal oscillator (HFINTOSC) are factory calibrated. These calibration values are stored in fuses located in the Calibration Word (2009h). The Calibration Word is not erased when using the specified bulk erase sequence in the "*PIC12F6XX/16F6XX Memory Programming Specification*" (DS41244) and thus, does not require reprogramming.

12.3 Reset

The PIC12F683 differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- Power-on Reset
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset (BOR)

WDT wake-up does not cause register resets in the same manner as a WDT Reset since wake-up is viewed as the resumption of normal operation. $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different Reset situations, as indicated in Table 12-2. Software can use these bits to determine the nature of the Reset. See Table 12-4 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 12-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See **Section 15.0** "**Electrical Specifications**" for pulse-width specifications.

FIGURE 12-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

12.10 In-Circuit Serial Programming™

The PIC12F683 microcontrollers can be serially programmed while in the end application circuit. This is simply done with five connections for:

- clock
- data
- power
- ground
- programming voltage

This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the GP0 and GP1 pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the "*PIC12F6XX/16F6XX Memory Programming Specification*" (DS41204) for more information. GP0 becomes the programming data and GP1 becomes the programming clock. Both GP0 and GP1 are Schmitt Trigger inputs in Program/Verify mode.

A typical In-Circuit Serial Programming connection is shown in Figure 12-11.

FIGURE 12-11: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

12.11 In-Circuit Debugger

Since in-circuit debugging requires access to three pins, MPLAB[®] ICD 2 development with a 14-pin device is not practical. A special 14-pin PIC12F683 ICD device is used with MPLAB ICD 2 to provide separate clock, data and MCLR pins and frees all normally available pins to the user.

A special debugging adapter allows the ICD device to be used in place of a PIC12F683 device. The debugging adapter is the only source of the ICD device.

When the ICD pin on the PIC12F683 ICD device is held low, the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB ICD 2. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 12-9 shows which features are consumed by the background debugger.

TABLE 12-9: DEBUGGER RESOURCES

Resource	Description
Stack	1 level
Program Memory	Address 0h must be NOP 700h-7FFh

For more information, see "*MPLAB*[®] *ICD 2 In-Circuit Debugger User's Guide*" (DS51331), available on Microchip's web site (www.microchip.com).

FIGURE 12-12: 14-PIN ICD PINOUT

13.0 INSTRUCTION SET SUMMARY

The PIC12F683 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 13-1, while the various opcode fields are summarized in Table 13-1.

Table 13-2 lists the instructions recognized by the MPASMTM assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8-bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

13.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended consequence of clearing the condition that set the RAIF flag.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

15.8 AC Characteristics: PIC12F683 (Industrial, Extended)

FIGURE 15-4: CLOCK TIMING

TABLE 15-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC		37	kHz	LP Oscillator mode
			DC	—	4	MHz	XT Oscillator mode
			DC	—	20	MHz	HS Oscillator mode
			DC	—	20	MHz	EC Oscillator mode
		Oscillator Frequency ⁽¹⁾	—	32.768	—	kHz	LP Oscillator mode
			0.1	—	4	MHz	XT Oscillator mode
			1	—	20	MHz	HS Oscillator mode
			DC	—	4	MHz	RC Oscillator mode
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	—	•	μs	LP Oscillator mode
			250	—	•	ns	XT Oscillator mode
			50	—	•	ns	HS Oscillator mode
			50	—	•	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	-	30.5	_	μs	LP Oscillator mode
			250	—	10,000	ns	XT Oscillator mode
			50	—	1,000	ns	HS Oscillator mode
			250	—	—	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	TCY = 4/FOSC
OS04*	TosH,	External CLKIN High,	2	—		μs	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	—	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	—	•	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	•	ns	XT oscillator
			0	—	•	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

NOTES:

PIC12F683

FIGURE 16-20: WDT PERIOD vs. TEMPERATURE OVER VDD (5.0V)

FIGURE 16-21: CVREF IPD vs. VDD OVER TEMPERATURE (HIGH RANGE)

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A

This is a new data sheet.

Revision B

Rewrites of the Oscillator and Special Features of the CPU sections. General corrections to Figures and formatting.

Revision C

Revisions throughout document. Incorporated Golden Chapters.

Revision D

Replaced Package Drawings; Revised Product ID Section (SN package to 3.90 mm); Replaced PICmicro with PIC; Replaced Dev Tool Section.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other PIC devices to the PIC12F683 device.

B.1 PIC16F676 to PIC12F683

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F676	PIC12F683
Max Operating Speed	20 MHz	20 MHz
Max Program Memory (Words)	1024	2048
SRAM (bytes)	64	128
A/D Resolution	10-bit	10-bit
Data EEPROM (Bytes)	128	256
Timers (8/16-bit)	1/1	2/1
Oscillator Modes	8	8
Brown-out Reset	Y	Y
Internal Pull-ups	RA0/1/2/4/5	GP0/1/2/4/5, MCLR
Interrupt-on-change	RA0/1/2/3/4/5	GP0/1/2/3/4/5
Comparator	1	1
ECCP	N	Ν
Ultra Low-Power Wake-Up	N	Y
Extended WDT	N	Y
Software Control Option of WDT/BOR	N	Y
INTOSC Frequencies	4 MHz	32 kHz- 8 MHz
Clock Switching	N	Y

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.

WDTCON (Watchdog Timer Control)	97
WPU (Weak Pull-Up GPIO)	34
Resets	85
Brown-out Reset (BOR)	85
MCLR Reset, Normal Operation	85
MCLR Reset, Sleep	85
Power-on Reset (POR)	85
WDT Reset, Normal Operation	85
WDT Reset, Sleep	85
Revision History	

S

Sleep	
Power-Down Mode	
Wake-up	
Wake-up Using Interrupts	
Software Simulator (MPLAB SIM)	
Special Event Trigger	64
Special Function Registers	8
STATUS Register	12

Т

T1CON Register				
T2CON Register				
Thermal Considerations	123			
Time-out Sequence				
Timer0	41			
Associated Registers	43			
External Clock				
Interrupt	13. 43			
Operation	41 44			
Specifications				
TOCKI	42			
Timer1	44			
Associated registers	48			
Asynchronous Counter Mode	45			
Reading and Writing				
Interrupt				
Modes of Operation				
Operation During Sleep				
Dreeseler				
Specifications				
Timer'i Gate				
Inverting Gate				
Selecting Source	45, 57			
Synchronizing COUT w/Timer1				
TMR1H Register				
TMR1L Register				
Timer2				
Associated registers				
Timers				
Timer1				
T1CON				
Timer2				
T2CON				
Timing Diagrams				
A/D Conversion				
A/D Conversion (Sleep Mode)				
Brown-out Reset (BOR)				
Brown-out Reset Situations				
CLKOUT and I/O				
Clock Timing				
Comparator Output				
Enhanced Capture/Compare/PWM (FCCP)				
Fail-Safe Clock Monitor (FSCM)				

INT Pin Interrupt94
Internal Oscillator Switch Timing
Reset, WDT, OST and Power-up Timer 128
Time-out Sequence on Power-up (Delayed MCLR) 89
Time-out Sequence on Power-up (MCLR with VDD) 89
Timer0 and Timer1 External Clock 130
Timer1 Incrementing Edge 46
Two Speed Start-up
Wake-up from Sleep Through Interrupt
Timing Parameter Symbology 124
TRISIO Register
Two-Speed Clock Start-up Mode

U

Ultra Low-Power Wake-up 32, 35
V
Voltage Reference. See Comparator Voltage
Reference (CVREF)
Voltage References
Associated registers 59
VREF. SEE ADC Reference Voltage

W

Wake-up Using Interrupts	
Watchdog Timer (WDT)	
Associated Registers	97
Clock Source	
Modes	
Period	
Specifications	129
WDTCON Register	97
WPU Register	34
WWW Address	171
WWW, On-Line Support	3