E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f683t-i-md

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADL	E Z-1:	FIGIZE	-003 3FE		GISTER	5 SUIVIIVIA		r u				0
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on BOR	Page
Bank ()	_										
00h	INDF	Addressin	g this locatio	on uses conte	ents of FSR	to address d	ata memory	/ (not a physi	cal register)	xxxx	xxxx	17, 90
01h	TMR0	Timer0 M	Fimer0 Module Register xxxx xxxx									
02h	PCL	Program (Counter's (F	PC) Least S	ignificant By	⁄te				0000	0000	17, 90
03h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001	1xxx	11, 90
04h	FSR	Indirect D	ata Memory	Address P	ointer					xxxx	xxxx	17, 90
05h	GPIO	_	_	GP5	GP4	GP3	GP2	GP1	GP0	xx	xxxx	31, 90
06h	_	Unimplem	nented							-	_	_
07h	_	Unimplem	nented							-	_	
08h	_	Unimplem	nented							-	_	
09h	_	Unimplem	nented							-	_	
0Ah	PCLATH	_	_	_	Write Buffe	r for upper 5	5 bits of Pro	gram Count	er	0	0000	17, 90
0Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000	0000	13, 90
0Ch	PIR1	EEIF	ADIF	CCP1IF	_	CMIF	OSFIF	TMR2IF	TMR1IF	000-	0000	15, 90
0Dh	_	Unimplem	nented			•				-	_	
0Eh	TMR1L	Holding R	Holding Register for the Least Significant Byte of the 16-bit TMR1									44, 90
0Fh	TMR1H	Holding R	egister for t	he Most Sig	nificant Byt	e of the 16-b	bit TMR1			xxxx	xxxx	44, 90
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000	0000	47, 90
11h	TMR2	Timer2 M	odule Regis	ter					J	0000	0000	49, 90
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	50, 90
13h	CCPR1L	Capture/C	Compare/PV	VM Register	1 Low Byte	9			J	xxxx	xxxx	76, 90
14h	CCPR1H	Capture/C	Compare/PV	VM Register	r 1 High Byt	е				xxxx	xxxx	76, 90
15h	CCP1CON	_	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	75, 90
16h	_	Unimplem	nented			•				-	_	_
17h	_	Unimplem	nented							-	_	
18h	WDTCON	_	—	—	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0	1000	97, 90
19h	CMCON0	_	COUT	_	CINV	CIS	CM2	CM1	CM0	- 0 - 0	0000	56, 90
1Ah	CMCON1	_	_	_	_	_	_	T1GSS	CMSYNC		10	57, 90
1Bh	_	Unimplem	nented							-	_	_
1Ch	—	Unimplem	nented							-	_	_
1Dh	—	Unimplem	nented							-	_	_
1Eh	ADRESH	Most Sign	nificant 8 bits	s of the left	shifted A/D	result or 2 b	its of right s	hifted result		xxxx	xxxx	61,90
1Fh	ADCON0	ADFM	VCFG	_	_	CHS1	CHS0	GO/DONE	ADON	00	0000	65,90
0000			tod logotion			1	1					

Note 1: IRP and RP1 bits are reserved, always maintain these bits clear.

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, GPIO change and external GP2/INT pin interrupts.

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE of the INTCON register.
	User software should ensure the appropri-
	ate interrupt flag bits are clear prior to
	enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE | PEIE | TOIE | INTE | GPIE | T0IF | INTF | GPIF |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TolE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: GP2/INT External Interrupt Enable bit 1 = Enables the GP2/INT external interrupt 0 = Disables the GP2/INT external interrupt
bit 3	GPIE: GPIO Change Interrupt Enable bit ⁽¹⁾ 1 = Enables the GPIO change interrupt 0 = Disables the GPIO change interrupt
bit 2	T0IF: Timer0 Overflow Interrupt Flag bit ⁽²⁾ 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow
bit 1	INTF: GP2/INT External Interrupt Flag bit 1 = The GP2/INT external interrupt occurred (must be cleared in software) 0 = The GP2/INT external interrupt did not occur
bit 0	GPIF: GPIO Change Interrupt Flag bit 1 = When at least one of the GPIO <5:0> pins changed state (must be cleared in software) 0 = None of the GPIO <5:0> pins have changed state

- Note 1: IOC register must also be enabled.
 - 2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit.

2.2.2.6 PCON Register

The Power Control (PCON) register contains flag bits (see Table 12-2) to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON register also controls the Ultra Low-Power Wake-up and software enable of the BOR.

The PCON register bits are shown in Register 2-6.

REGISTER 2-6: PCON: POWER CONTROL REGISTER

U-0	U-0	R/W-0	R/W-1	U-0	U-0	R/W-0	R/W-x
—	—	ULPWUE	SBOREN	—	—	POR	BOR
bit 7							bit 0

W = Writable bit	U = Unimplemented bit,	read as '0'					
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
plemented: Read as '0'							
	la Eachta bh						
ULPWUE: Ultra Low-Power Wake-Up Enable bit							
= Ultra Low-Power Wake-up enabled							
tra Low-Power Wake-up disab							
SBOREN: Software BOR Enable bit ⁽¹⁾							
1 = BOR enabled							
OR disabled							
plemented: Read as '0'							
POR: Power-on Reset Status bit							
1 = No Power-on Reset occurred							
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)							
BOR: Brown-out Reset Status bit							
1 = No Brown-out Reset occurred							
	ist be set in software after a Po	wer-on Reset or Brown-out Rese					
0	o Brown-out Reset occurred	o Brown-out Reset occurred Brown-out Reset occurred (must be set in software after a Po					

Note 1: Set BOREN<1:0> = 01 in the Configuration Word register for this bit to control the $\overline{\text{BOR}}$.

3.5.3 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). Select 31 kHz, via software, using the IRCF<2:0> bits of the OSCCON register. See **Section 3.5.4** "**Frequency Select Bits (IRCF)**" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<2:0> bits of the OSCCON register = 000) as the system clock source (SCS bit of the OSCCON register = 1), or when any of the following are enabled:

- Two-Speed Start-up IESO bit of the Configuration Word register = 1 and IRCF<2:0> bits of the OSCCON register = 000
- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)

The LF Internal Oscillator (LTS) bit of the OSCCON register indicates whether the LFINTOSC is stable or not.

3.5.4 FREQUENCY SELECT BITS (IRCF)

The output of the 8 MHz HFINTOSC and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). The Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register select the frequency output of the internal oscillators. One of eight frequencies can be selected via software:

- 8 MHz
- 4 MHz (Default after Reset)
- 2 MHz
- 1 MHz
- 500 kHz
- 250 kHz
- 125 kHz
- 31 kHz (LFINTOSC)

Note:	Following any Reset, the IRCF<2:0> bits of
	the OSCCON register are set to '110' and
	the frequency selection is set to 4 MHz.
	The user can modify the IRCF bits to
	select a different frequency.

3.5.5 HF AND LF INTOSC CLOCK SWITCH TIMING

When switching between the LFINTOSC and the HFINTOSC, the new oscillator may already be shut down to save power (see Figure 3-6). If this is the case, there is a delay after the IRCF<2:0> bits of the OSCCON register are modified before the frequency selection takes place. The LTS and HTS bits of the OSCCON register will reflect the current active status of the LFINTOSC and HFINTOSC oscillators. The timing of a frequency selection is as follows:

- 1. IRCF<2:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. CLKOUT is held low and the clock switch circuitry waits for a rising edge in the new clock.
- CLKOUT is now connected with the new clock. LTS and HTS bits of the OSCCON register are updated as required.
- 6. Clock switch is complete.

See Figure 3-1 for more details.

If the internal oscillator speed selected is between 8 MHz and 125 kHz, there is no start-up delay before the new frequency is selected. This is because the old and new frequencies are derived from the HFINTOSC via the postscaler and multiplexer.

Start-up delay specifications are located in the *Electrical Specifications Chapter of this data sheet, under AC Specifications (Oscillator Module).*

U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1			
_	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0			
bit 7	·			·		·	bit 0			
Legend:										
R = Readable	e bit	W = Writable bit	t	U = Unimplem	ented bit, read a	s '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unknown				
bit 7 bit 6-4	Unimplemented: Read as '0' ADCS<2:0>: A/D Conversion Clock Select bits 000 = Fosc/2 001 = Fosc/8 010 = Fosc/32 x11 = FRC (clock derived from a dedicated internal oscillator = 500 kHz max) 100 = Fosc/4 101 = Fosc/16 110 = Fosc/64									
bit 3-0	ANS<3:0> : Analog Select bits Analog select between analog or digital function on pins AN<3:0>, respectively. 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . 0 = Digital I/O. Pin is assigned to port or special function.									
	Setting a pin to an a available. The cor	0 1		o 1						

REGISTER 4-3: ANSEL: ANALOG SELECT REGISTER

the pin.

U-0U-0R/W-1R/W-1U-0R/W-1R/W-1R/W $ -$ WPU5WPU4 $-$ WPU2WPU1WPbit 7Legend: R = Readable bitW = Writable bitU = Unimplemented bit, read as '0' -n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknownbit 7-6Unimplemented: Read as '0' bit 5-4WPU<5:4>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabledUnimplemented: Read as '0'bit 3Unimplemented: Read as '0'Unimplemented: Read as '0'Unimplemented: Read as '0'Unimplemented: Read as '0'	
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as '0' bit 5-4 WPU<5:4>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled	·1
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as '0' bit 5-4 WPU<5:4>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled	10
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as '0' bit 5-4 WPU<5:4>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled	bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 5-4 WPU<5:4>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as '0' WPU<5:4>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled	
bit 7-6 Unimplemented: Read as '0' bit 5-4 WPU<5:4>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled	
bit 5-4 WPU<5:4>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled	
bit 5-4 WPU<5:4>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled	
1 = Pull-up enabled 0 = Pull-up disabled	
0 = Pull-up disabled	
·	
bit 3 Unimplemented: Read as '0'	
bit 2-0 WPU<2:0>: Weak Pull-up Control bits	
1 = Pull-up enabled	
0 = Pull-up disabled	
Note 1: Global GPPU must be enabled for individual pull-ups to be enabled.	

REGISTER 4-4: WPU: WEAK PULL-UP REGISTER

- Clobal Of FO must be enabled for individual pull-ups to be enabled.
 The weak pull-up device is automatically disabled if the pin is in Output mode (TRISIO = 0).
 - 3: The GP3 pull-up is enabled when configured as MCLR and disabled as an I/O in the Configuration Word.
 - 4: WPU<5:4> always reads '1' in XT, HS and LP OSC modes.

REGISTER 4-5: IOC: INTERRUPT-ON-CHANGE GPIO REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **IOC<5:0>:** Interrupt-on-change GPIO Control bits

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.

2: IOC<5:4> always reads '0' in XT, HS and LP OSC modes.

4.2.4 ULTRA LOW-POWER WAKE-UP

The Ultra Low-Power Wake-up (ULPWU) on GP0 allows a slow falling voltage to generate an interrupt-on-change on GP0 without excess current consumption. The mode is selected by setting the ULPWUE bit of the PCON register. This enables a small current sink which can be used to discharge a capacitor on GP0.

To use this feature, the GP0 pin is configured to output '1' to charge the capacitor, interrupt-on-change for GP0 is enabled and GP0 is configured as an input. The ULP-WUE bit is set to begin the discharge and a SLEEP instruction is performed. When the voltage on GP0 drops below VIL, an interrupt will be generated which will cause the device to wake-up. Depending on the state of the GIE bit of the INTCON register, the device will either jump to the interrupt vector (0004h) or execute the next instruction when the interrupt event occurs. See Section 4.2.3 "Interrupt-on-Change" and Section 12.4.3 "GPIO Interrupt" for more information.

This feature provides a low-power technique for periodically waking up the device from Sleep. The time-out is dependent on the discharge time of the RC circuit on GP0. See Example 4-2 for initializing the Ultra Low-Power Wake-up module.

The series resistor provides overcurrent protection for the GP0 pin and can allow for software calibration of the time-out (see Figure 4-1). A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired interrupt delay. This technique will compensate for the affects of temperature, voltage and component accuracy. The Ultra Low-Power Wake-up peripheral can also be configured as a simple Programmable Low-Voltage Detect or temperature sensor.

Note:	For more information, refer to the Applica-								
	tion Note AN879, "Using the Microchip								
	Ultra Low-Power Wake-up Module"								
	(DS00879).								

EXAMPLE 4-2:

ULTRA LOW-POWER WAKE-UP INITIALIZATION

BANKSEL	CMCON0	;
MOVLW	H'7'	;Turn off
MOVWF	CMCON0	;comparators
BANKSEL	ANSEL	;
BCF	ANSEL,0	;RA0 to digital I/O
BCF	TRISA,0	;Output high to
BANKSEL	PORTA	;
BSF	PORTA,0	;charge capacitor
CALL	CapDelay	;
BANKSEL	PCON	;
BSF	PCON, ULPWUE	;Enable ULP Wake-up
BSF	IOCA,0	;Select RA0 IOC
BSF	TRISA,0	;RA0 to input
MOVLW	B'10001000'	;Enable interrupt
MOVWF	INTCON	; and clear flag
SLEEP		;Wait for IOC
NOP		;

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
ADRES9	ADRES8	ADRES7	ADRES6	ADRES5	ADRES4	ADRES3	ADRES2	
bit 7	•	•		•		•	bit 0	
Legend:								
R = Readable bi	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at PC	n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unk			wn	

REGISTER 9-2: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

bit 7-0 ADRES<9:2>: ADC Result Register bits Upper 8 bits of 10-bit conversion result

REGISTER 9-3: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
ADRES1	ADRES0	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

'0' = Bit is cleared

bit 7-6	ADRES<1:0>: ADC Result Register bits
	Lower 2 bits of 10-bit conversion result

'1' = Bit is set

bit 5-0 **Reserved**: Do not use.

-n = Value at POR

REGISTER 9-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x	R/W-x						
—	_	—	—	—	_	ADRES9	ADRES8
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits Upper 2 bits of 10-bit conversion result

REGISTER 9-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower 8 bits of 10-bit conversion result x = Bit is unknown

12.2 Calibration Bits

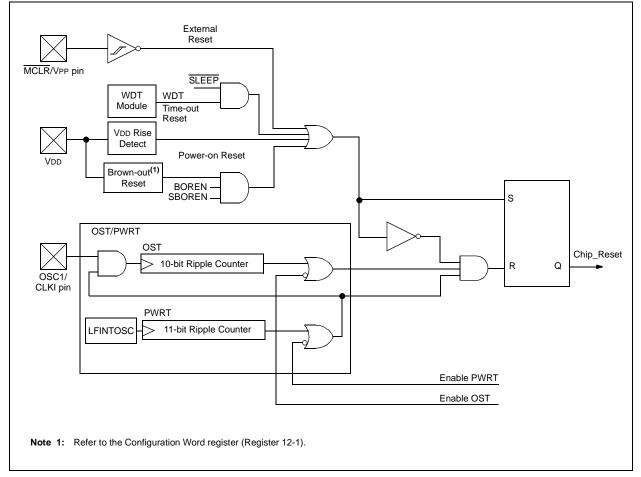
Brown-out Reset (BOR), Power-on Reset (POR) and 8 MHz internal oscillator (HFINTOSC) are factory calibrated. These calibration values are stored in fuses located in the Calibration Word (2009h). The Calibration Word is not erased when using the specified bulk erase sequence in the "*PIC12F6XX/16F6XX Memory Programming Specification*" (DS41244) and thus, does not require reprogramming.

12.3 Reset

The PIC12F683 differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:


- Power-on Reset
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset (BOR)

WDT wake-up does not cause register resets in the same manner as a WDT Reset since wake-up is viewed as the resumption of normal operation. $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different Reset situations, as indicated in Table 12-2. Software can use these bits to determine the nature of the Reset. See Table 12-4 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 12-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See **Section 15.0** "**Electrical Specifications**" for pulse-width specifications.

FIGURE 12-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

12.3.1 POWER-ON RESET

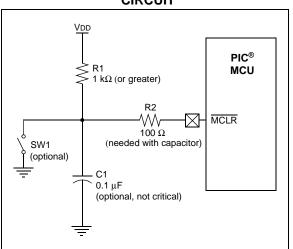
The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. To take advantage of the POR, simply connect the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See **Section 15.0** "**Electrical Specifications**" for details. If the BOR is enabled, the maximum rise time specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOD (see **Section 12.3.4** "**Brown-Out Reset (BOR)**").

Note: The POR circuit does not produce an internal Reset when VDD declines. To re-enable the POR, VDD must reach Vss for a minimum of 100 μs.

When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

For additional information, refer to the Application Note *AN607, "Power-up Trouble Shooting"* (DS00607).

12.3.2 MCLR


PIC12F683 has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

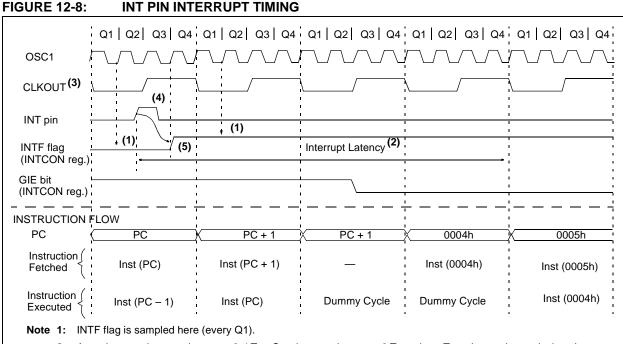
It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

Voltages applied to the MCLR pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-2, is suggested.

An internal $\overline{\text{MCLR}}$ option is enabled by clearing the $\overline{\text{MCLRE}}$ bit in the Configuration Word register. When $\overline{\text{MCLRE}} = 0$, the Reset signal to the chip is generated internally. When the $\overline{\text{MCLRE}} = 1$, the GP3/ $\overline{\text{MCLR}}$ pin becomes an external Reset input. In this mode, the GP3/ $\overline{\text{MCLR}}$ pin has a weak pull-up to VDD.

FIGURE 12-2: RECOMMENDED MCLR CIRCUIT

12.3.3 POWER-UP TIMER (PWRT)


The Power-up Timer provides a fixed 64 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates from the 31 kHz LFINTOSC oscillator. For more information, see **Section 3.5 "Internal Clock Modes"**. The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A Configuration bit, PWRTE, can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should be enabled when Brown-out Reset is enabled, although it is not required.

The Power-up Timer delay will vary from chip-to-chip due to:

- VDD variation
- Temperature variation
- · Process variation

See DC parameters for details (Section 15.0 "Electrical Specifications").

Note: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin, rather than pulling this pin directly to Vss.

- 2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in INTOSC and RC Oscillator modes.

4: For minimum width of INT pulse, refer to AC specifications in Section 15.0 "Electrical Specifications".

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 0000
IOC	_		IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	00 0000
PIR1	EEIF	ADIF	CCP1IF	_	CMIF	OSFIF	TMR2IF	TMR1IF	000- 0000	000- 0000
PIE1	EEIE	ADIE	CCP1IE		CMIE	OSFIE	TMR2IE	TMR1IE	000- 0000	000- 0000

TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by the interrupt module.

; Q1 Q2 Q3 Q4; G OSC1 ///////_	21 Q2 Q3 Q4 ¦ Q		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4;	Q1 Q2 Q3 Q4;
	/\	Tost(2)		\/	\\	
INT pin	1			I I	1 1	
INTF flag (INTCON<1>)			Interrupt Laten	_{CV} (3)		
GIE bit (INTCON<7>)	Pri	ocessor in Sleep		·		
Instruction Flow PC X PC X	PC + 1 X	PC + 2	PC + 2	X PC + 2	X <u>0004h</u>	(0005h
Instruction [Fetched] Inst(PC) = Sleep	Inst(PC + 1)		Inst(PC + 2)	1 i 1 i	Inst(0004h)	Inst(0005h)
Instruction Inst(PC – 1)	Sleep	1 	Inst(PC + 1)	Dummy Cycle	Dummy Cycle	Inst(0004h)

Note 1: XT, HS or LP Oscillator mode assumed.

- **2**: TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC and RCIO Oscillator modes.
- 3: GIE = 1 assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.
- 4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.

12.8 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out using $ICSP^{TM}$ for verification purposes.

Note: The entire data EEPROM and Flash program memory will be erased when the code protection is turned off. See the "PIC12F6XX/16F6XX Memory Programming Specification" (DS41204) for more information.

12.9 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify mode. Only the Least Significant 7 bits of the ID locations are used.

14.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

14.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC[®] and MCU devices. It debugs and programs PIC[®] and dsPIC[®] Flash microcontrollers with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high speed, noise tolerant, lowvoltage differential signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

14.9 MPLAB ICD 2 In-Circuit Debugger

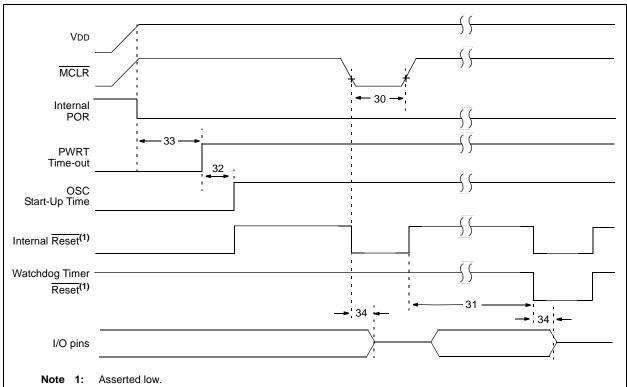
Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

14.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

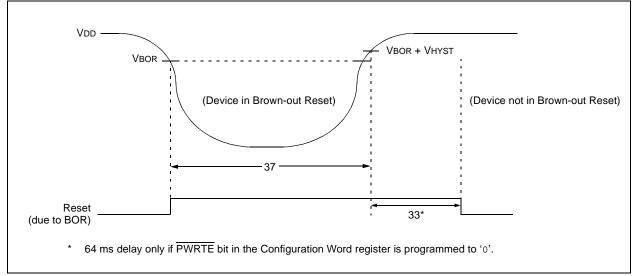
TABLE 15-2: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym	Characteristic	Freq. Tolerance	Min	Тур†	Max	Units	Conditions
OS06	Twarm	Internal Oscillator Switch when running ⁽³⁾	_	—	—	2	Tosc	Slowest clock
OS07	Tsc	Fail-Safe Sample Clock Period ⁽¹⁾	—	—	21	—	ms	LFINTOSC/64
OS08	HFosc	Internal Calibrated	±1%	7.92	8.0	8.08	MHz	VDD = 3.5V, 25°C
		HFINTOSC Frequency ⁽²⁾	±2%	7.84	8.0	8.16	MHz	$2.5V \le VDD \le 5.5V$, $0^{\circ}C \le TA \le +85^{\circ}C$
			±5%	7.60	8.0	8.40	MHz	$2.0V \le VDD \le 5.5V$, -40°C \le TA \le +85°C (Ind.), -40°C \le TA \le +125°C (Ext.)
OS09*	LFosc	Internal Uncalibrated LFINTOSC Frequency	—	15	31	45	kHz	
OS10*	Tiosc	HFINTOSC Oscillator	_	5.5	12	24	μs	VDD = 2.0V, -40°C to +85°C
	ST	Wake-up from Sleep	—	3.5	7	14	μs	VDD = 3.0V, -40°C to +85°C
		Start-up Time	—	3	6	11	μs	VDD = 5.0V, -40°C to +85°C


Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


- **Note 1:** Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - 2: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

3: By design.

FIGURE 15-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

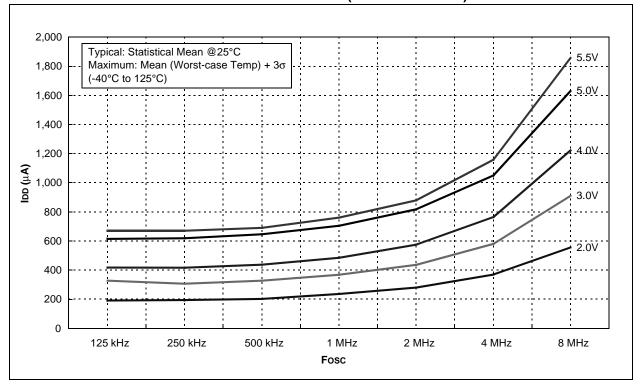
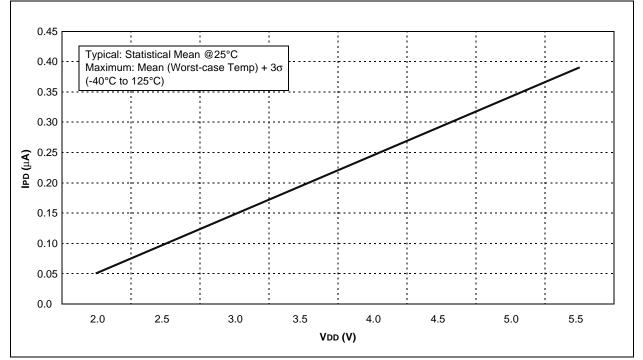



FIGURE 16-12: MAXIMUM IDD vs. Fosc OVER VDD (HFINTOSC MODE)

NOTES:

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A

This is a new data sheet.

Revision B

Rewrites of the Oscillator and Special Features of the CPU sections. General corrections to Figures and formatting.

Revision C

Revisions throughout document. Incorporated Golden Chapters.

Revision D

Replaced Package Drawings; Revised Product ID Section (SN package to 3.90 mm); Replaced PICmicro with PIC; Replaced Dev Tool Section.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other PIC devices to the PIC12F683 device.

B.1 PIC16F676 to PIC12F683

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F676	PIC12F683
Max Operating Speed	20 MHz	20 MHz
Max Program Memory (Words)	1024	2048
SRAM (bytes)	64	128
A/D Resolution	10-bit	10-bit
Data EEPROM (Bytes)	128	256
Timers (8/16-bit)	1/1	2/1
Oscillator Modes	8	8
Brown-out Reset	Y	Y
Internal Pull-ups	RA0/1/2/4/5	GP0/1/2/4/5, MCLR
Interrupt-on-change	RA0/1/2/3/4/5	GP0/1/2/3/4/5
Comparator	1	1
ECCP	N	N
Ultra Low-Power Wake-Up	N	Y
Extended WDT	N	Y
Software Control Option of WDT/BOR	N	Y
INTOSC	4 MHz	32 kHz-
Frequencies		8 MHz
Clock Switching	Ν	Y

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.

PIC12F683

SUBLW 108 SUBWF 109 SWAPF 109 XORLW 109 XORWF 109 INTCON Register 14 Internal Oscillator Block INTOSC
Specifications126, 127
Internal Sampling Switch (RSS) IMPEDANCE
Internet Address
Interrupts
ADC64
Associated Registers94
Comparator55
Context Saving95
Data EEPROM Memory Write72
GP2/INT
GPIO Interrupt-on-change
Interrupt-on-Change32
Timer0
TMR1
INTOSC Specifications
IOC Register

L

Load Conditions 1	24
-------------------	----

Μ

MCLR	. 86
Internal	. 86
Memory Organization	
Data EEPROM Memory	. 71
Microchip Internet Web Site	171
Migrating from other PIC Devices	165
MPLAB ASM30 Assembler, Linker, Librarian	112
MPLAB ICD 2 In-Circuit Debugger	113
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator	113
MPLAB ICE 4000 High-Performance Universal	
In-Circuit Emulator	113
MPLAB Integrated Development Environment Software	111
MPLAB PM3 Device Programmer	113
MPLINK Object Linker/MPLIB Object Librarian	112

0

OPCODE Field Descriptions	
OPTION Register	
OSCCON Register	
Oscillator	
Associated registers	
Oscillator Module	
EC	
HFINTOSC	
HS	
INTOSC	
INTOSCIO	
LFINTOSC	
LP	
RC	
RCIO	
XT	
Oscillator Parameters	
Oscillator Specifications	
Oscillator Start-up Timer (OST)	
Specifications	

Oscillator Switching
Fail-Safe Clock Monitor 29
Two-Speed Clock Start-up 27
OSCTUNE Register
Ρ
Packaging
Details
Marking 159
PCL and PCLATH 18
Computed GOTO 18
Stack
PCON Register 17, 88
PICSTART Plus Development Programmer 114
PIE1 Register
Pin Diagram
Pinout Descriptions
PIC12F6836
PIR1 Register 16
Power-Down Mode (Sleep)
Power-On Reset (POR)
Power-up Timer (PWRT) 86
Specifications 129
Precision Internal Oscillator Parameters 127
Prescaler
Shared WDT/Timer0 42
Switching Prescaler Assignment 42
Program Memory Organization7
Map and Stack for the PIC12F6837
Programming, Device Instructions 101
R
Reader Response
Read-Modify-Write Operations
Registers

~	intorn	
g		05
	ADCON0 (ADC Control 0)	
	ADRESH (ADC Result High) with ADFM = 0)	
	ADRESH (ADC Result High) with ADFM = 1)	
	ADRESL (ADC Result Low) with ADFM = 0)	
	ADRESL (ADC Result Low) with ADFM = 1)	
	ANSEL (Analog Select)	
	CCP1CON (CCP1 Control)	75
	CMCON0 (Comparator Control) Register	
	CMCON1 (Comparator Control) Register	
	CONFIG (Configuration Word)	
	EEADR (EEPROM Address)	
	EECON1 (EEPROM Control 1)	72
	EECON2 (EEPROM Control 2)	72
	EEDAT (EEPROM Data)	71
	GPIO	
	INTCON (Interrupt Control)	14
	IOC (Interrupt-on-Change GPIO)	34
	OPTION_REG (OPTION)	
	OSCCON (Oscillator Control)	20
	OSCTUNE (Oscillator Tuning)	24
	PCON (Power Control Register)	
	PCON (Power Control)	88
	PIE1 (Peripheral Interrupt Enable 1)	15
	PIR1 (Peripheral Interrupt Register 1)	16
	Reset Values	
	Reset Values (Special Registers)	91
	STATUS	
	T1CON	47
	T2CON	50
	TRISIO (Tri-State GPIO)	32
	VRCON (Voltage Reference Control)	
	· · · · · · · · · · · · · · · · · · ·	

WDTCON (Watchdog Timer Control)	97
WPU (Weak Pull-Up GPIO)	
Resets	85
Brown-out Reset (BOR)	85
MCLR Reset, Normal Operation	85
MCLR Reset, Sleep	85
Power-on Reset (POR)	85
WDT Reset, Normal Operation	85
WDT Reset, Sleep	85
Revision History	

S

Sleep	
Power-Down Mode	
Wake-up	
Wake-up Using Interrupts	
Software Simulator (MPLAB SIM)	
Special Event Trigger	64
Special Function Registers	8
STATUS Register	12

Т

T1CON Register	
T2CON Register	50
Thermal Considerations	
Time-out Sequence	
Timer0	41
Associated Registers	43
External Clock	
Interrupt	
Operation	
Specifications	
T0CKI	
Timer1	
Associated registers	
Asynchronous Counter Mode	
Reading and Writing	
Interrupt	
Modes of Operation	
Operation During Sleep Oscillator	
Prescaler	
Specifications	
Timer1 Gate	
Inverting Gate	
Selecting Source	
Synchronizing COUT w/Timer1	
TMR1H Register	
TMR1L Register	
Timer2	
Associated registers	50
Timers	
Timer1	
T1CON	
Timer2	
T2CON	50
Timing Diagrams	
A/D Conversion	
A/D Conversion (Sleep Mode)	
Brown-out Reset (BOR)	
Brown-out Reset Situations	
CLKOUT and I/O	
Clock Timing	
Comparator Output	
Enhanced Capture/Compare/PWM (ECCP)	
Fail-Safe Clock Monitor (FSCM)	

INT Pin Interrupt94
Internal Oscillator Switch Timing
Reset, WDT, OST and Power-up Timer 128
Time-out Sequence on Power-up (Delayed MCLR) 89
Time-out Sequence on Power-up (MCLR with VDD) 89
Timer0 and Timer1 External Clock 130
Timer1 Incrementing Edge 46
Two Speed Start-up
Wake-up from Sleep Through Interrupt
Timing Parameter Symbology 124
TRISIO Register
Two-Speed Clock Start-up Mode

U

Ultra Low-Power Wake-up 32, 35
V
Voltage Reference. See Comparator Voltage
Reference (CVREF)
Voltage References
Associated registers 59
VREF. SEE ADC Reference Voltage

W

Wake-up Using Interrupts	
Watchdog Timer (WDT)	
Associated Registers	97
Clock Source	
Modes	
Period	
Specifications	129
WDTCON Register	97
WPU Register	34
WWW Address	171
WWW, On-Line Support	3