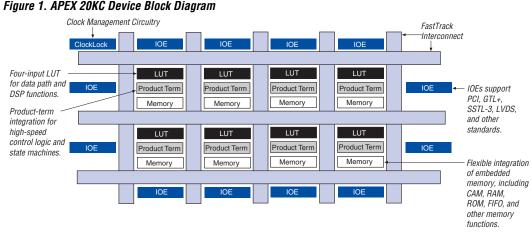


Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs


The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

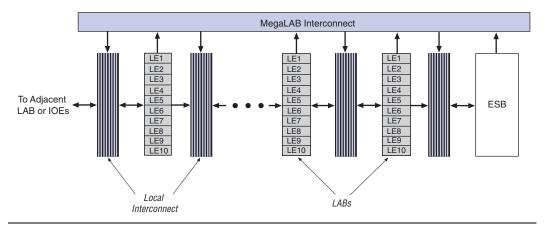
Details	
Product Status	Obsolete
Number of LABs/CLBs	3840
Number of Logic Elements/Cells	38400
Total RAM Bits	327680
Number of I/O	488
Number of Gates	1772000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	652-BGA
Supplier Device Package	652-BGA (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k1000cb652c9es

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The ESB can implement a variety of memory functions, including CAM, RAM, dual-port RAM, ROM, and FIFO functions. Embedding the memory directly into the die improves performance and reduces die area compared to distributed-RAM implementations. Moreover, the abundance of cascadable ESBs allows APEX 20KC devices to implement multiple wide memory blocks for high-density designs. The ESB's high speed ensures it can implement small memory blocks without any speed penalty. Additionally, designers can use the ESBs to create as many different-sized memory blocks as the system requires. Figure 1 shows an overview of the APEX 20KC device.

APEX 20KC devices provide four dedicated clock pins and four dedicated input pins that drive register control inputs. These signals ensure efficient distribution of high-speed, low-skew control signals, which use dedicated routing channels to provide short delays and low skews. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally generated asynchronous clear signals with high fan-out. The dedicated clock pins featured on the APEX 20KC devices can also feed logic. The devices also feature ClockLock and ClockBoost clock


8 Altera Corporation

management circuitry.

MegaLAB Structure

APEX 20KC devices are constructed from a series of MegaLABTM structures. Each MegaLAB structure contains 16 logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. In EP20K1000C devices, MegaLAB structures contain 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure.

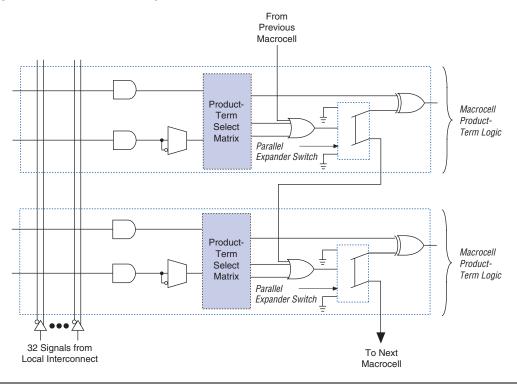
Figure 2. MegaLAB Structure

Logic Array Block

Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20KC LAB.

APEX 20KC devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas, minimizing the use of the MegaLAB and FastTrack interconnect and providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect.

Dedicated Clocks Global Signals MegaLAB Interconnect 65 🕹 32 Macrocell Inputs (1 to 16) From To Row 16, Adjacent CLK[1..0] and Column LAB Interconnect 2 ENA[1..0] CLRN[1..0] Local Interconnect


Figure 13. Product-Term Logic in ESB

Macrocells

APEX 20KC macrocells can be configured individually for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register.

Combinatorial logic is implemented in the product terms. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as parallel expanders to be used to increase the logic available to another macrocell. One product term can be inverted; the Quartus II software uses this feature to perform De Morgan's inversion for more efficient implementation of wide OR functions. The Quartus II Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Figure 14 shows the APEX 20KC macrocell.

Figure 16. APEX 20KC Parallel Expanders

Embedded System Block

The ESB can implement various types of memory blocks, including dual-port RAM, ROM, FIFO, and CAM blocks. The ESB includes input and output registers; the input registers synchronize writes, and the output registers can pipeline designs to improve system performance. The ESB offers a dual-port mode, which supports simultaneous reads and writes at two different clock frequencies. Figure 17 shows the ESB block diagram.

Figure 17. ESB Block Diagram

Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.

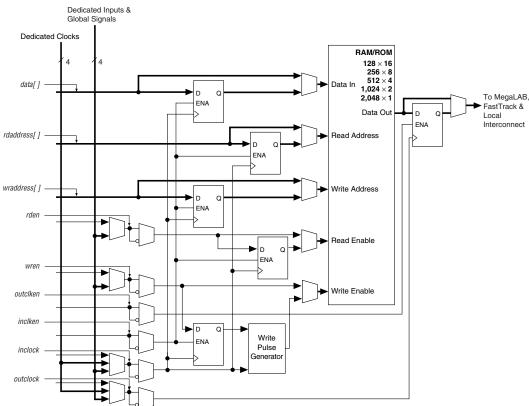


Figure 21. ESB in Input/Output Clock Mode Note (1)

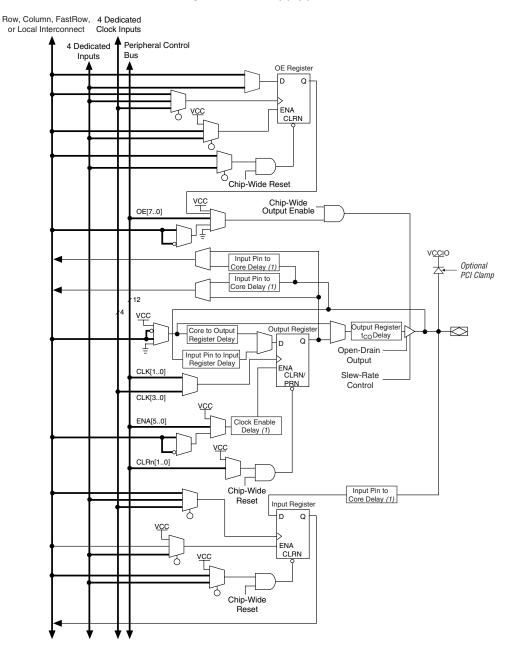
Note to Figure 21:

(1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset.

Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate.

Programmable Speed/Power Control


APEX 20KC ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo BitTM option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current.

Designers can program each ESB in the APEX 20KC device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power.

I/O Structure

The APEX 20KC IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins.

Figure 25. APEX 20KC Bidirectional I/O Registers Notes (1), (2)

Notes to Figure 25:

- (1) This programmable delay has four settings: off and three levels of delay.
- (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 26 shows how a row IOE connects to the interconnect.

Row Interconnect MegaLAB Interconnect Any LE can drive a pin through the row. cclumn, and MegaLAB in erconnect. Each IOE can drive local, IOE MegaLAB, row, and column interconnect. Each IOE data LAB and OE signal is driven by the local interconnect. IOE An LE can drive a pin through the local interconnect for faster clock-to-output times.

Figure 26. Row IOE Connection to the Interconnect

Advanced I/O Standard Support

APEX 20KC IOEs support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS, LVPECL, GTL+, CTT, HSTL Class I, SSTL-3 Class I and II, and SSTL-2 Class I and II.

For more information on I/O standards supported by APEX 20KC devices, see *Application Note 117 (Using Selectable I/O Standards in Altera Devices)*.

The APEX 20KC device contains eight I/O banks. In QFP packages, the banks are linked to form four I/O banks. The I/O banks directly support all standards except LVDS and LVPECL. All I/O banks can support LVDS and LVPECL at up to 156 Mbps per channel with the addition of external resistors. In addition, one block within a bank contains circuitry to support high-speed True-LVDS and LVPECL inputs, and another block within a bank supports high-speed True-LVDS and LVPECL outputs. The LVDS blocks support all of the I/O standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Each bank can also use a separate V_{REF} level so that each bank can support any of the terminated standards (such as SSTL-3) independently. Within a bank, any one of the terminated standards can be supported. EP20K400C and larger APEX 20KC devices support the LVDS interface for data pins (EP20K200C devices support LVDS clock pins, but not data pins). EP20K400C and EP20K600C devices support LVDS for data pins at up to 840 Mbps per channel. EP20K1000C devices support LVDS on 16 channels at up to 750 Mbps.

Each bank can support multiple standards with the same VCCIO for output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same VCCIO voltage level. For example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

When the LVDS banks are not used for the LVDS I/O standard, they support all of the other I/O standards. Figure 28 shows the arrangement of the APEX 20KC I/O banks.

Clock Multiplication

The APEX 20KC ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$, where m and k range from 2 to 160 and n ranges from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements.

Clock Phase & Delay Adjustment

The APEX 20KC ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period.

LVDS Support

All APEX 20KC devices support differential LVDS buffers on the input and output clock signals that interface with external devices. This is controlled in the Quartus II software by assigning the clock pins with an LVDS I/O standard assignment.

Two high-speed PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 Mbps LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400C and larger devices for high-speed LVDS interfacing.

Lock Signals

The APEX 20KC ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins.

Table 12. APEX 20KC Clock Input & Output Parameters (Part 2 of 2) Note (1)								
Symbol	Parameter	I/O Standard	-7 Spee	-7 Speed Grade		d Grade	Units	
			Min	Max	Min	Max		
f _{CLOCK1_EXT}	Output clock frequency for	3.3-V LVTTL	(5)	(5)	(5)	(5)	MHz	
	external clock1 output	2.5-V LVTTL	(5)	(5)	(5)	(5)	MHz	
		1.8-V LVTTL	(5)	(5)	(5)	(5)	MHz	
		GTL+	(5)	(5)	(5)	(5)	MHz	
		SSTL-2 Class I	(5)	(5)	(5)	(5)	MHz	
		SSTL-2 Class II	(5)	(5)	(5)	(5)	MHz	
		SSTL-3 Class I	(5)	(5)	(5)	(5)	MHz	
		SSTL-3 Class II	(5)	(5)	(5)	(5)	MHz	
		LVDS	(5)	(5)	(5)	(5)	MHz	
f_{IN}	Input clock frequency	3.3-V LVTTL	(5)	(5)	(5)	(5)	MHz	
		2.5-V LVTTL	(5)	(5)	(5)	(5)	MHz	
		1.8-V LVTTL	(5)	(5)	(5)	(5)	MHz	
		GTL+	(5)	(5)	(5)	(5)	MHz	
		SSTL-2 Class I	(5)	(5)	(5)	(5)	MHz	
		SSTL-2 Class II	(5)	(5)	(5)	(5)	MHz	
		SSTL-3 Class I	(5)	(5)	(5)	(5)	MHz	
		SSTL-3 Class II	(5)	(5)	(5)	(5)	MHz	
		LVDS	(5)	(5)	(5)	(5)	MHz	

Notes to Tables 11 and 12:

- All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications
 are not met, creating an erroneous clock within the device.
- (2) The maximum lock time is 40 µs or 2,000 input clock cycles, whichever occurs first.
- (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs remain disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK ENA pin goes high in user mode.
- (4) The PLL VCO operating range is 200 MHz $\leq f_{VCO} \leq$ 840 MHz for LVDS mode.
- (5) Contact Altera Applications for information on these parameters.

SignalTap Embedded Logic Analyzer

APEX 20KC devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20KC device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured.

The APEX 20KC device instruction register length is 10 bits. The APEX 20KC device USERCODE register length is 32 bits. Tables 14 and 15 show the boundary-scan register length and device IDCODE information for APEX 20KC devices.

Table 14. APEX 20KC Boundary-Scan Register Length						
Device Boundary-Scan Register Length						
EP20K200C	1,164					
EP20K400C	1,506					
EP20K600C	1,806					
EP20K1000C	2,190					

Table 15. 32-Bit APEX 20KC Device IDCODE								
Device IDCODE (32 Bits) (1)								
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer Identity (11 Bits)	1 (1 Bit)				
EP20K200C	0000	1000 0010 0000 0000	000 0110 1110	1				
EP20K400C	0000	1000 0100 0000 0000	000 0110 1110	1				
EP20K600C	0000	1000 0110 0000 0000	000 0110 1110	1				
EP20K1000C	0000	1001 0000 0000 0000	000 0110 1110	1				

Notes to Table 15:

- (1) The most significant bit (MSB) is on the left.
- (2) The IDCODE's least significant bit (LSB) is always 1.

Figure 30 shows the timing requirements for the JTAG signals.

Table 1	8. APEX 20KC Device Recommend	ed Operating Conditions			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	1.71 (1.71)	1.89 (1.89)	V
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V
	Supply voltage for output buffers, 1.8-V operation	(3), (4)	1.71 (1.71)	1.89 (1.89)	V
V _I	Input voltage	(2), (5)	-0.5	4.1	V
v _o	Output voltage		0	V _{CCIO}	٧
TJ	Operating junction temperature	For commercial use	0	85	° C
		For industrial use	-40	100	°C
t _R	Input rise time (10% to 90%)			40	ns
t _F	Input fall time (90% to 10%)			40	ns

Table 19. APEX 20KC Device DC Operating Conditions Notes (6), (7)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
I _I	Input pin leakage current (8)	V _I = 3.6 to 0.0 V	-10		10	μА		
I _{OZ}	Tri-stated I/O pin leakage current (8)	$V_O = 4.1 \text{ to } -0.5 \text{ V}$	-10		10	μА		
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V _I = ground, no load, no toggling inputs, -7 speed grade		10		mA		
		V _I = ground, no load, no toggling inputs, -8, -9 speed grades		5		mA		
R _{CONF}	Value of I/O pin pull-up	V _{CCIO} = 3.0 V (9)	20		50	kΩ		
	resistor before and during	V _{CCIO} = 2.375 V (9)	30		80	kΩ		
	configuration	V _{CCIO} = 1.71 V (9)	60		150	kΩ		

DC operating specifications on APEX 20KC I/O standards are listed in Tables 21 to 35.

Table 20. APEX 20KC Device Capacitance Note (10)								
Symbol	Parameter	Conditions	Min	Max	Unit			
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF			
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF			
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF			

Notes to Tables 17 through 20:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 4.6 V for input currents less than 100 mA and time periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V.
- (7) These values are specified under the APEX 20KC device recommended operating conditions, shown in Table 18 on page 55.
- (8) This value is specified for normal device operation. The value may vary during power-up.
- (9) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}.
- (10) Capacitance is sample-tested only.

Tables 21 through 35 list the DC operating specifications for the supported I/O standards. These tables list minimal specifications only; APEX 20KC devices may exceed these specifications.

Table 21. LVTTL I/O Specifications								
Symbol	Parameter	Conditions	Minimum	Maximum	Units			
V _{CCIO}	Output supply voltage		3.0	3.6	V			
V _{IH}	High-level input voltage		2.0	V _{CCIO} + 0.3	V			
V _{IL}	Low-level input voltage		-0.3	0.8	V			
I _I	Input pin leakage current	V _{IN} = 0 V or 3.3 V	-10	10	μΑ			
V _{OH}	High-level output voltage	$I_{OH} = -12 \text{ mA},$ $V_{CCIO} = 3.0 \text{ V } (1)$	2.4		V			
V _{OL}	Low-level output voltage	I _{OL} = 12 mA, V _{CCIO} = 3.0 V (2)		0.4	V			

Table 24. 1.	Table 24. 1.8-V I/O Specifications								
Symbol	Parameter	Conditions	Minimum	Maximum	Units				
V _{CCIO}	Output supply voltage		1.7	1.9	V				
V _{IH}	High-level input voltage		0.65 × V _{CCIO}	V _{CCIO} + 0.3	V				
V _{IL}	Low-level input voltage			0.35 × V _{CCIO}	V				
I _I	Input pin leakage current	V _{IN} = 0 V or 3.3 V	-10	10	μА				
V _{OH}	High-level output voltage	$I_{OH} = -2 \text{ mA } (1)$	V _{CCIO} - 0.45		V				
V _{OL}	Low-level output voltage	I _{OL} = 2 mA (2)		0.45	V				

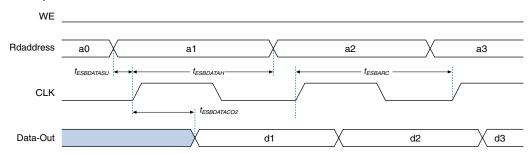

Table 25. 3.3-V PCI Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units		
V _{CCIO}	I/O supply voltage		3.0	3.3	3.6	V		
V _{IH}	High-level input voltage		0.5 × V _{CCIO}		V _{CCIO} + 0.5	V		
V _{IL}	Low-level input voltage		-0.5		0.3 × V _{CCIO}	V		
l _l	Input pin leakage current	0 < V _{IN} < V _{CCIO}	-10		10	μА		
V _{OH}	High-level output voltage	I _{OUT} = -500 μA	0.9 × V _{CCIO}			٧		
V _{OL}	Low-level output voltage	I _{OUT} = 1,500 μA			0.1 × V _{CCIO}	٧		

Table 26. 3.3-V PCI-X Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units		
V _{CCIO}	Output supply voltage		3.0	3.3	3.6	V		
V _{IH}	High-level input voltage		0.5 × V _{CCIO}		V _{CCIO} + 0.5	V		
V _{IL}	Low-level input voltage		-0.5		$0.35 \times V_{CCIO}$	V		
V_{IPU}	Input pull-up voltage		$0.7 \times V_{CCIO}$			V		
I _{IL}	Input pin leakage current	0 < V _{IN} < V _{CCIO}	-10.0		10.0	μΑ		
V _{OH}	High-level output voltage	I _{OUT} = -500 μA	0.9 × V _{CCIO}			V		
V _{OL}	Low-level output voltage	I _{OUT} = 1,500 μA			0.1 × V _{CCIO}	V		
L _{pin}	Pin Inductance				15.0	nH		

Table 27. 3.	Table 27. 3.3-V LVDS I/O Specifications							
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units		
V _{CCIO}	I/O supply voltage		3.135	3.3	3.465	V		
V _{OD}	Differential output voltage	R _L = 100 Ω	250		650	mV		
ΔV _{OD}	Change in V _{OD} between high and low	R _L = 100 Ω			50	mV		
V _{OS}	Output offset voltage	$R_L = 100 \Omega$	1.125	1.25	1.375	V		
ΔV _{OS}	Change in V _{OS} between high and low	R _L = 100 Ω			50	mV		
V _{TH}	Differential input threshold	V _{CM} = 1.2 V	-100		100	mV		
V _{IN}	Receiver input voltage range		0.0		2.4	V		
R _L	Receiver differential input resistor (external to APEX devices)		90	100	110	Ω		

Figure 34. ESB Synchronous Timing Waveforms

ESB Synchronous Read

ESB Synchronous Write (ESB Output Registers Used)

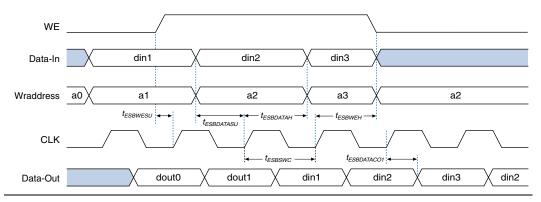


Figure 35 shows the timing model for bidirectional I/O pin timing.

Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	1.29		1.67		1.92		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
toutcobidir	2.00	4.25	2.00	4.61	2.00	5.03	ns
t _{XZBIDIR}		6.55		6.97		7.35	ns
t _{ZXBIDIR}		6.55		6.97		7.36	ns
t _{INSUBIDIRPLL}	3.22		3.80		-		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
toutcobidirpll	0.50	2.27	0.50	2.55	-	-	ns
t _{XZBIDIRPLL}		4.62		4.84		-	ns
t _{ZXBIDIRPLL}		4.62		4.84		-	ns

Table 56. EP20K600C f _{MAX} LE Timing Parameters								
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{SU}	0.01		0.01		0.01		ns	
t _H	0.10		0.10		0.10		ns	
t_{CO}		0.27		0.30		0.32	ns	
t _{LUT}		0.65		0.78		0.92	ns	

Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	1
t _{CH}	1.33		1.66		2.00		ns
t_{CL}	1.33		1.66		2.00		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	1.33		1.66		2.00		ns
t _{ESBCL}	1.33		1.66		2.00		ns
t _{ESBWP}	1.04		1.26		1.41		ns
t _{ESBRP}	0.87		1.05		1.18		ns

Table 66. EP20K1000C External Timing Parameters									
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{INSU}	1.14		1.14		1.11		ns		
t _{INH}	0.00		0.00		0.00		ns		
t _{outco}	2.00	4.63	2.00	5.26	2.00	5.69	ns		
t _{INSUPLL}	0.81		0.92		-		ns		
t _{INHPLL}	0.00		0.00		-		ns		
toutcopll	0.50	2.32	0.50	2.55	-	-	ns		

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com

Copyright © 2002 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products

to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

