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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Figure 6. APEX 20KC Carry Chain
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The counter mode uses two 3-input LUTs: one generates the counter data, 
and the other generates the fast carry bit. A 2-to-1 multiplexer provides 
synchronous loading, and another AND gate provides synchronous 
clearing. If the cascade function is used by an LE in counter mode, the 
synchronous clear or load overrides any signal carried on the cascade 
chain. The synchronous clear overrides the synchronous load. LEs in 
arithmetic mode can drive out registered and unregistered versions of the 
LUT output.

Clear & Preset Logic Control

Logic for the register’s clear and preset signals is controlled by LAB-wide 
signals. The LE directly supports an asynchronous clear function. The 
Quartus II Compiler can use a NOT-gate push-back technique to emulate 
an asynchronous preset or to emulate simultaneous preset and clear or 
asynchronous load. However, this technique uses three additional LEs per 
register. All emulation is performed automatically when the design is 
compiled. Registers that emulate simultaneous preset and load will enter 
an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20KC devices 
provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the 
device. Use of this pin is controlled through an option in the Quartus II 
software that is set before compilation. The chip-wide reset overrides all 
other control signals. Registers using an asynchronous preset are preset 
when the chip-wide reset is asserted; this effect results from the inversion 
technique used to implement the asynchronous preset.

FastTrack Interconnect

In the APEX 20KC architecture, connections between LEs, ESBs, and I/O 
pins are provided by the FastTrack interconnect. The FastTrack 
interconnect is a series of continuous horizontal and vertical routing 
channels that traverse the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the 
segmented routing in FPGAs requires switch matrices to connect a 
variable number of routing paths, increasing the delays between logic 
resources and reducing performance.

The FastTrack interconnect consists of row and column interconnect 
channels that span the entire device. The row interconnect routes signals 
throughout a row of MegaLAB structures; the column interconnect routes 
signals throughout a column of MegaLAB structures. When using the row 
and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, 
or ESB in a device. See Figure 9.
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Figure 12. APEX 20KC FastRow Interconnect

Table 8 summarizes how various elements of the APEX 20KC architecture 
drive each other.
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The programmable register also supports an asynchronous clear function. 
Within the ESB, two asynchronous clears are generated from global 
signals and the local interconnect. Each macrocell can either choose 
between the two asynchronous clear signals or choose to not be cleared. 
Either of the two clear signals can be inverted within the ESB. Figure 15 
shows the ESB control logic when implementing product-terms.

Figure 15. ESB Product-Term Mode Control Logic
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Parallel expanders are unused product terms that can be allocated to a 
neighboring macrocell to implement fast, complex logic functions. 
Parallel expanders allow up to 32 product terms to feed the macrocell OR 
logic directly, with two product terms provided by the macrocell and 
30 parallel expanders provided by the neighboring macrocells in the ESB.

The Quartus II Compiler can allocate up to 15 sets of up to two parallel 
expanders per set to the macrocells automatically. Each set of two parallel 
expanders incurs a small, incremental timing delay. Figure 16 shows the 
APEX 20KC parallel expanders.
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ESBs can implement synchronous RAM, which is easier to use than 
asynchronous RAM. A circuit using asynchronous RAM must generate 
the RAM write enable (WE) signal, while ensuring that its data and address 
signals meet setup and hold time specifications relative to the WE signal. 
In contrast, the ESB’s synchronous RAM generates its own WE signal and 
is self-timed with respect to the global clock. Circuits using the ESB’s self-
timed RAM must only meet the setup and hold time specifications of the 
global clock.

ESB inputs are driven by the adjacent local interconnect, which in turn can 
be driven by the FastTrack or MegaLAB interconnect. Because the ESB can 
be driven by the local interconnect, an adjacent LE can drive it directly for 
fast memory access. ESB outputs drive the FastTrack and MegaLAB 
interconnects. In addition, ten ESB outputs, nine of which are unique 
output lines, drive the local interconnect for fast connection to adjacent 
LEs or for fast feedback product-term logic.

When implementing memory, each ESB can be configured in any of the 
following sizes: 128 × 16, 256 × 8, 512 × 4, 1,024 × 2, or 2,048 × 1. By 
combining multiple ESBs, the Quartus II software implements larger 
memory blocks automatically. For example, two 128 × 16 RAM blocks can 
be combined to form a 128 × 32 RAM block, and two 512 × 4 RAM blocks 
can be combined to form a 512 × 8 RAM block. Memory performance does 
not degrade for memory blocks up to 2,048 words deep. Each ESB can 
implement a 2,048-word-deep memory; the ESBs are used in parallel, 
eliminating the need for any external control logic and its associated 
delays.

To create a high-speed memory block that is more than 2,048 words deep, 
ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column 
of MegaLAB structures, and drives the MegaLAB interconnect and row 
and column FastTrack interconnect throughout the column. Each ESB 
incorporates a programmable decoder to activate the tri-state driver 
appropriately. For instance, to implement 8,192-word-deep memory, four 
ESBs are used. Eleven address lines drive the ESB memory, and two more 
drive the tri-state decoder. Depending on which 2,048-word memory 
page is selected, the appropriate ESB driver is turned on, driving the 
output to the tri-state line. The Quartus II software automatically 
combines ESBs with tri-state lines to form deeper memory blocks. The 
internal tri-state control logic is designed to avoid internal contention and 
floating lines. See Figure 18.
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Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all 
registers for inputs into the ESB: data input, WE, RE, read address, and 
write address. The other clock controls the ESB data output registers. The 
ESB also supports clock enable and asynchronous clear signals; these 
signals also control the reading and writing of registers independently. 
Input/output clock mode is commonly used for applications where the 
reads and writes occur at the same system frequency, but require different 
clock enable signals for the input and output registers. Figure 21 shows 
the ESB in input/output clock mode.

Figure 21. ESB in Input/Output Clock Mode Note (1) 

Note to Figure 21:
(1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset.

Dedicated Clocks

4 4

D

ENA

Q

D

ENA

Q

D

ENA

Q

D

ENA

Q

D

ENA

Q

data[ ]

rdaddress[ ]

wraddress[ ]

 RAM/ROM
128 × 16

256 × 8
512 × 4

1,024 × 2
2,048 × 1

Data In

Read Address

Write Address

Read Enable

Write Enable

Data Out

outclken

inclken

inclock

outclock

D

ENA

Q

Write
Pulse

Generator

rden

wren

Dedicated Inputs &
Global Signals

To MegaLAB,
FastTrack &
Local
Interconnect
32 Altera Corporation



APEX 20KC Programmable Logic Device Data Sheet
APEX 20KC devices include an enhanced IOE, which drives the FastRow 
interconnect. The FastRow interconnect connects a column I/O pin 
directly to the LAB local interconnect within two MegaLAB structures. 
This feature provides fast setup times for pins that drive high fan-outs 
with complex logic, such as PCI designs. For fast bidirectional I/O timing, 
LE registers using local routing can improve setup times and OE timing. 
The APEX 20KC IOE also includes direct support for open-drain 
operation, giving faster clock-to-output for open-drain signals. Some 
programmable delays in the APEX 20KC IOE offer multiple levels of 
delay to fine-tune setup and hold time requirements. The Quartus II 
Compiler sets these delays by default to minimize setup time while 
providing a zero hold time.

The Quartus II Compiler uses the programmable inversion option to 
invert signals from the row and column interconnect automatically where 
appropriate. Because the APEX 20KC IOE offers one output enable per 
pin, the Quartus II Compiler can emulate open-drain operation efficiently.

The APEX 20KC IOE includes programmable delays that can be activated 
to ensure zero hold times, minimum clock-to-output times, input IOE 
register-to-core register transfers, or core-to-output IOE register transfers. 
A path in which a pin directly drives a register may require the delay to 
ensure zero hold time, whereas a path in which a pin drives a register 
through combinatorial logic may not require the delay.

Table 9 describes the APEX 20KC programmable delays and their logic 
options in the Quartus II software.

The Quartus II Compiler can program these delays automatically to 
minimize setup time while providing a zero hold time.

Table 9. APEX 20KC Programmable Delay Chains

Programmable Delay Quartus II Logic Option

Input pin to core delay Decrease input delay to internal cells

Input pin to input register delay Decrease input delay to input registers

Core to output register delay Decrease input delay to output register

Output register tCO delay Increase delay to output pin

Clock enable delay Increase clock enable delay
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Figure 27 shows how a column IOE connects to the interconnect.

Figure 27. Column IOE Connection to the Interconnect

Dedicated Fast I/O Pins

APEX 20KC devices incorporate an enhancement to support bidirectional 
pins with high internal fan-out such as PCI control signals. These pins are 
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ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the 
incoming clock must meet certain requirements. If these specifications are 
not met, the circuitry may not lock onto the incoming clock, which 
generates an erroneous clock within the device. The clock generated by 
the ClockLock and ClockBoost circuitry must also meet certain 
specifications. If the incoming clock meets these requirements during 
configuration, the APEX 20KC ClockLock and ClockBoost circuitry will 
lock onto the clock during configuration. The circuit will be ready for use 
immediately after configuration. In APEX 20KC devices, the clock input 
standard is programmable, so the PLL cannot respond to the clock until 
the device is configured. The PLL locks onto the input clock as soon as 
configuration is complete. Figure 29 shows the incoming and generated 
clock specifications.

1 For more information on ClockLock and ClockBoost circuitry, 
see Application Note 115: Using the ClockLock and ClockBoost PLL 
Features in APEX Devices.

Figure 29. Specifications for the Incoming & Generated Clocks
The tI parameter refers to the nominal input clock period; the tO parameter refers to the 
nominal output clock period.

Note to Figure 29:
(1) Rise and fall times are measured from 10% to 90%.
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IEEE Std. 
1149.1 (JTAG) 
Boundary-Scan 
Support

All APEX 20KC devices provide JTAG BST circuitry that complies with 
the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can 
be performed before or after configuration, but not during configuration. 
APEX 20KC devices can also use the JTAG port for configuration with the 
Quartus II software or with hardware using either Jam Files (.jam) or Jam 
Byte-Code Files (.jbc). Finally, APEX 20KC devices use the JTAG port to 
monitor the logic operation of the device with the SignalTap embedded 
logic analyzer. APEX 20KC devices support the JTAG instructions shown 
in Table 13.

Table 13. APEX 20KC JTAG Instructions 

JTAG Instruction Description

SAMPLE/PRELOAD Allows a snapshot of signals at the device pins to be captured and examined during 
normal device operation, and permits an initial data pattern to be output at the device pins. 
Also used by the SignalTap embedded logic analyzer.

EXTEST Allows the external circuitry and board-level interconnections to be tested by forcing a test 
pattern at the output pins and capturing test results at the input pins.

BYPASS Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data 
to pass synchronously through selected devices to adjacent devices during normal device 
operation.

USERCODE Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, 
allowing the USERCODE to be serially shifted out of TDO.

IDCODE Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE 
to be serially shifted out of TDO.

ICR Instructions Used when configuring an APEX 20KC device via the JTAG port with a MasterBlasterTM 
or ByteBlasterMVTM download cable, or when using a Jam File or Jam Byte-Code File via 
an embedded processor.

SignalTap 
Instructions

Monitors internal device operation with the SignalTap embedded logic analyzer.
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Figure 30. APEX 20KC JTAG Waveforms

Table 16 shows the JTAG timing parameters and values for APEX 20KC 
devices.

f For more information, see the following documents:

■ Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in 
Altera Devices) 

Table 16. APEX 20KC JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time  50 ns

tJCL TCK clock low time  50 ns

tJPSU JTAG port setup time  20 ns

tJPH JTAG port hold time  45 ns

tJPCO JTAG port clock to output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock to output 35 ns

tJSZX Update register high impedance to valid output 35 ns

tJSXZ Update register valid output to high impedance 35 ns
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■ Jam Programming & Test Language Specification

Generic Testing Each APEX 20KC device is functionally tested. Complete testing of each 
configurable SRAM bit and all logic functionality ensures 100% yield. 
AC test measurements for APEX 20KC devices are made under conditions 
equivalent to those defined in the “Timing Model” section  on page 65. 
Multiple test patterns can be used to configure devices during all stages of 
the production flow. AC test criteria include:

■ Power supply transients can affect AC measurements.
■ Simultaneous transitions of multiple outputs should be avoided for 

accurate measurement.
■ Threshold tests must not be performed under AC conditions.
■ Large-amplitude, fast-ground-current transients normally occur as 

the device outputs discharge the load capacitances. When these 
transients flow through the parasitic inductance between the device 
ground pin and the test system ground, significant reductions in 
observable noise immunity can result. 

Operating 
Conditions

Tables 17 through 20 provide information on absolute maximum ratings, 
recommended operating conditions, DC operating conditions, and 
capacitance for 1.8-V APEX 20KC devices.

Table 17. APEX 20KC Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage With respect to ground (2) –0.5 2.5 V

VCCIO –0.5 4.6 V

VI DC input voltage –0.5 4.6 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, RQFP, TQFP, and BGA 
packages, under bias

135 ° C

Ceramic PGA packages, under bias 150 ° C
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Table 24. 1.8-V I/O Specifications  

Symbol Parameter Conditions Minimum Maximum Units

VCCIO Output supply 
voltage

1.7 1.9 V

VIH High-level input 
voltage

0.65 × VCCIO VCCIO + 0.3 V

VIL Low-level input 
voltage

0.35 × VCCIO V

II Input pin leakage 
current

VIN = 0 V or 3.3 V –10 10 µA

VOH High-level output 
voltage

IOH = –2 mA (1) VCCIO – 0.45 V

VOL Low-level output 
voltage

IOL = 2 mA (2) 0.45 V

Table 25. 3.3-V PCI Specifications

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 3.0 3.3 3.6 V

VIH High-level input 
voltage

0.5 × VCCIO VCCIO + 0.5 V

VIL Low-level input 
voltage

–0.5 0.3 × VCCIO V

II Input pin leakage 
current

0 < VIN < VCCIO –10 10 µA

VOH High-level output 
voltage

IOUT = –500 µA 0.9 × VCCIO V

VOL Low-level output 
voltage

IOUT = 1,500 µA 0.1 × VCCIO V
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Table 26. 3.3-V PCI-X Specifications  

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO Output supply 
voltage

3.0 3.3 3.6 V

VIH High-level input 
voltage

0.5 × VCCIO VCCIO + 0.5 V

VIL Low-level input 
voltage

–0.5 0.35 × VCCIO V

VIPU Input pull-up voltage 0.7 × VCCIO V

IIL Input pin leakage 
current

0 < VIN < VCCIO –10.0 10.0 µA

VOH High-level output 
voltage

IOUT = –500 µA 0.9 × VCCIO V

VOL Low-level output 
voltage

IOUT = 1,500 µA 0.1 × VCCIO V

Lpin Pin Inductance 15.0 nH

Table 27. 3.3-V LVDS I/O Specifications   

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 3.135 3.3 3.465 V

VOD Differential output 
voltage

RL = 100 Ω 250 650 mV

∆ VOD Change in VOD 
between high and 
low

RL = 100 Ω 50 mV

VOS Output offset voltage RL = 100 Ω 1.125 1.25 1.375 V

∆ VOS Change in VOS 
between high and 
low

RL = 100 Ω 50 mV

VTH Differential input 
threshold

VCM = 1.2 V –100 100 mV

VIN Receiver input 
voltage range

0.0 2.4 V

RL Receiver differential 
input resistor 
(external to APEX 
devices)

90 100 110 Ω
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Notes to Tables 21 through 35:
(1) The IOH parameter refers to high-level output current.
(2) The IOL parameter refers to low-level output current. This parameter applies to open-drain pins as well as output 

pins.
(3) VREF specifies center point of switching range.

Figure 31 shows the output drive characteristics of APEX 20KC devices.

Table 34. 3.3-V AGP I/O Specifications

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 3.15 3.3 3.45 V

VREF Reference voltage 0.39 × VCCIO 0.41 × VCCIO V

VIH High-level input 
voltage 

0.5 × VCCIO VCCIO + 0.5 V

VIL Low-level input 
voltage

0.3 × VCCIO V

VOH High-level output 
voltage

IOUT = –500 µA 0.9 × VCCIO 3.6 V

VOL Low-level output 
voltage

IOUT = 1,500 µA 0.1 × VCCIO V

II Input pin leakage 
current

0 < VIN < VCCIO –10 10 µA

Table 35. CTT I/O Specifications

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 3.0 3.3 3.6 V

VTT/VREF (3) Termination and 
reference voltage

1.35 1.5 1.65 V

VIH High-level input 
voltage

VREF + 0.2 V

VIL Low-level input 
voltage

VREF – 0.2 V

II Input pin leakage 
current

0 < VIN < VCCIO –10 10 µA

VOH High-level output 
voltage

IOH = –8 mA (1) VREF + 0.4 V

VOL Low-level output 
voltage

IOL = 8 mA (2) VREF – 0.4 V

IO Output leakage 
current (when output 
is high Z)

GND ≤ VOUT ≤ VCCIO –10 10 µA
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Timing Model The high-performance FastTrack and MegaLAB interconnect routing 
resources ensure predictable performance, accurate simulation, and 
accurate timing analysis. This predictable performance contrasts with that 
of FPGAs, which use a segmented connection scheme and therefore have 
unpredictable performance. 

Figure 32 shows the fMAX timing model for APEX 20KC devices.

Figure 32. fMAX Timing Model

Figures 33 and 34 show the asynchronous and synchronous 
timingwaveforms, respectively, for the ESB macroparameters in Table 37.

SU

H

CO

LUT

t

t

t

t

F1—4

F5—20

F20+

LE

ESB

Routing Delay

t

t

t

t
ESBARC

t
ESBSRC

t
ESBAWC

t
ESBSWC

t
ESBWASU

t
ESBWDSU

t
ESBSRASU

t
ESBWESU

t
ESBDATASU

t
ESBWADDRSU

t
ESBRADDRSU

t
ESBDATACO1

t
ESBDATACO2

t
ESBDD

t
PD

t
PTERMSU

t
PTERMCO
Altera Corporation  65



APEX 20KC Programmable Logic Device Data Sheet
Table 37. APEX 20KC fMAX ESB Timing Parameters

Symbol Parameter

tESBARC ESB asynchronous read cycle time

tESBSRC ESB synchronous read cycle time

tESBAWC ESB asynchronous write cycle time

tESBSWC ESB synchronous write cycle time

tESBWASU ESB write address setup time with respect to WE

tESBWAH ESB write address hold time with respect to WE

tESBWDSU ESB data setup time with respect to WE

tESBWDH ESB data hold time with respect to WE

tESBRASU ESB read address setup time with respect to RE

tESBRAH ESB read address hold time with respect to RE

tESBWESU ESB WE setup time before clock when using input register

tESBDATASU ESB data setup time before clock when using input register

tESBWADDRSU ESB write address setup time before clock when using input registers

tESBRADDRSU ESB read address setup time before clock when using input registers

tESBDATACO1 ESB clock-to-output delay when using output registers

tESBDATACO2 ESB clock-to-output delay without output registers

tESBDD ESB data-in to data-out delay for RAM mode

tPD ESB macrocell input to non-registered output

tPTERMSU ESB macrocell register setup time before clock

tPTERMCO ESB macrocell register clock-to-output delay 

Table 38. APEX 20KC fMAX Routing Delays

Symbol Parameter

tF1-4 Fan-out delay estimate using local interconnect

tF5-20 Fan-out delay estimate using MegaLab interconnect

tF20+ Fan-out delay estimate using FastTrack interconnect
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Table 61. EP20K600C External Bidirectional Timing Parameters 

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 2.03 2.57 2.97 ns

tINHBIDIR 0.00 0.00 0.00 ns

tOUTCOBIDIR 2.00 4.29 2.00 4.77 2.00 5.11 ns

tXZBIDIR 8.31 9.14 9.76 ns

tZXBIDIR 8.31 9.14 9.76 ns

tINSUBIDIRPLL 3.99 4.77 - ns

tINHBIDIRPLL 0.00 0.00 - ns

tOUTCOBIDIRPLL 0.50 2.37 0.50 2.63 - - ns

tXZBIDIRPLL 6.35 6.94 - ns

tZXBIDIRPLL 6.35 6.94 - ns

Table 62. EP20K1000C fMAX LE Timing Microparameters

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tSU 0.01 0.01 0.01 ns

tH 0.10 0.10 0.10 ns

tCO 0.27 0.30 0.32 ns

tLUT 0.66 0.79 0.92 ns
82 Altera Corporation



APEX 20KC Programmable Logic Device Data Sheet
Table 65. EP20K1000C Minimum Pulse Width Timing Parameters

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tCH 1.33 1.66 2.00 ns

tCL 1.33 1.66 2.00 ns

tCLRP 0.20 0.20 0.20 ns

tPREP 0.20 0.20 0.20 ns

tESBCH 1.33 1.66 2.00 ns

tESBCL 1.33 1.66 2.00 ns

tESBWP 1.04 1.26 1.41 ns

tESBRP 0.87 1.05 1.18 ns

Table 66. EP20K1000C External Timing Parameters

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tINSU 1.14 1.14 1.11 ns

tINH 0.00 0.00 0.00 ns

tOUTCO 2.00 4.63 2.00 5.26 2.00 5.69 ns

tINSUPLL 0.81 0.92 - ns

tINHPLL 0.00 0.00 - ns

tOUTCOPLL 0.50 2.32 0.50 2.55 - - ns
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