

Welcome to **E-XFL.COM**

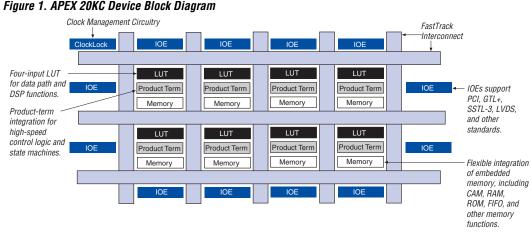
Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	3840
Number of Logic Elements/Cells	38400
Total RAM Bits	327680
Number of I/O	708
Number of Gates	1772000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1020-BBGA
Supplier Device Package	1020-FBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k1000cf33c7n


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

APEX 20KC devices include additional features such as enhanced I/O standard support, CAM, additional global clocks, and enhanced ClockLock clock circuitry. Table 7 shows the features included in APEX 20KC devices.

Table 7. APEX 20KC Device Features (Part 1 of 2)				
Feature	APEX 20KC Devices			
MultiCore system integration	Full support			
Hot-socketing support	Full support			
SignalTap logic analysis	Full support			
32-/64-bit, 33-MHz PCI	Full compliance			
32-/64-bit, 66-MHz PCI	Full compliance in -7 and -8 speed grades in selected devices			
MultiVolt I/O	1.8-V, 2.5-V, or 3.3-V V _{CCIO} V _{CCIO} selected bank by bank 5.0-V tolerant with use of external resistor			
ClockLock support	Clock delay reduction m/(n × v) clock multiplication Drive ClockLock output off-chip External clock feedback ClockShift circuitry LVDS support Up to four PLLs ClockShift clock phase adjustment			
Dedicated clock and input pins	Eight			

The ESB can implement a variety of memory functions, including CAM, RAM, dual-port RAM, ROM, and FIFO functions. Embedding the memory directly into the die improves performance and reduces die area compared to distributed-RAM implementations. Moreover, the abundance of cascadable ESBs allows APEX 20KC devices to implement multiple wide memory blocks for high-density designs. The ESB's high speed ensures it can implement small memory blocks without any speed penalty. Additionally, designers can use the ESBs to create as many different-sized memory blocks as the system requires. Figure 1 shows an overview of the APEX 20KC device.

APEX 20KC devices provide four dedicated clock pins and four dedicated input pins that drive register control inputs. These signals ensure efficient distribution of high-speed, low-skew control signals, which use dedicated routing channels to provide short delays and low skews. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally generated asynchronous clear signals with high fan-out. The dedicated clock pins featured on the APEX 20KC devices can also feed logic. The devices also feature ClockLock and ClockBoost clock

8 Altera Corporation

management circuitry.

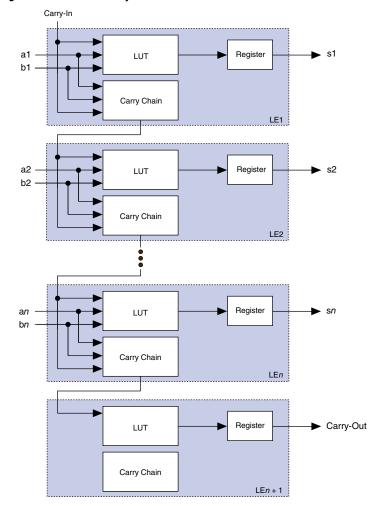
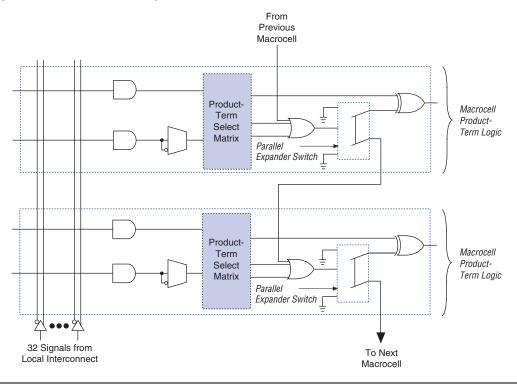


Figure 6. APEX 20KC Carry Chain

The counter mode uses two 3-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

Clear & Preset Logic Control

Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset or to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.


In addition to the two clear and preset modes, APEX 20KC devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

FastTrack Interconnect

In the APEX 20KC architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack interconnect. The FastTrack interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

Figure 16. APEX 20KC Parallel Expanders

Embedded System Block

The ESB can implement various types of memory blocks, including dual-port RAM, ROM, FIFO, and CAM blocks. The ESB includes input and output registers; the input registers synchronize writes, and the output registers can pipeline designs to improve system performance. The ESB offers a dual-port mode, which supports simultaneous reads and writes at two different clock frequencies. Figure 17 shows the ESB block diagram.

Figure 17. ESB Block Diagram

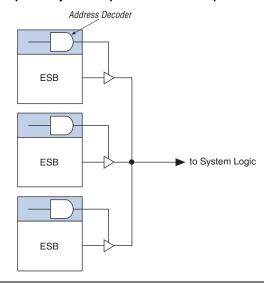


Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two ESBs are used to support two simultaneous reads or writes.

The ESB can also use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 19.

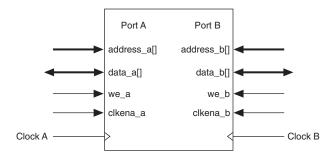


Figure 19. APEX 20KC ESB Implementing Dual-Port RAM

Single-Port Mode

The APEX 20KC ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.

Dedicated Inputs & Global Signals **Dedicated Clocks** RAM/ROM 128 × 16 256 × 8 512 × 4 data[] 1,024 × 2 D To MegaLAB, 2,048 × 1 FNA FastTrack & Data Out Local Interconnect ENA address[] Address FNA wren Write Enable outclken inclken ŀь Q Write ENA Pulse inclock Generator outclock

Figure 22. ESB in Single-Port Mode Note (1)

Note to Figure 22:

(1) All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset.

Content-Addressable Memory

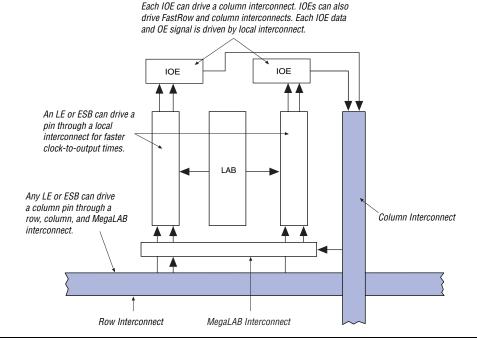
In APEX 20KC devices, the ESB can implement CAM. CAM can be thought of as the inverse of RAM. When read, RAM outputs the data for a given address. Conversely, CAM outputs an address for a given data word. For example, if the data FA12 is stored in address 14, the CAM outputs 14 when FA12 is driven into it.

Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate.

Programmable Speed/Power Control

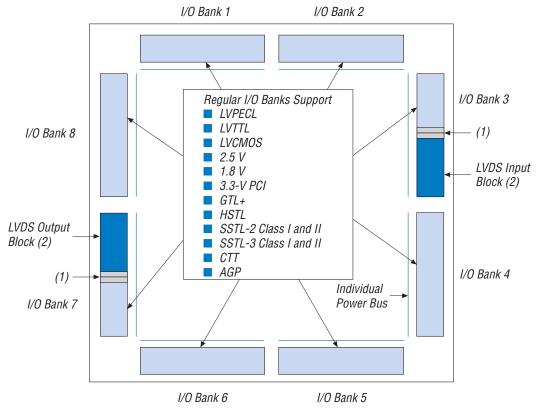
APEX 20KC ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo BitTM option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current.


Designers can program each ESB in the APEX 20KC device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power.

I/O Structure

The APEX 20KC IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins.

Figure 27 shows how a column IOE connects to the interconnect.


Figure 27. Column IOE Connection to the Interconnect

Dedicated Fast I/O Pins

APEX 20KC devices incorporate an enhancement to support bidirectional pins with high internal fan-out such as PCI control signals. These pins are called dedicated fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and replace dedicated inputs. These pins can be used for fast clock, clear, or high fan-out logic signal distribution. They also can drive out. The dedicated fast I/O pin data output and tri-state control are driven by local interconnect from the adjacent MegaLAB for high speed.

Figure 28. APEX 20KC I/O Banks

Notes to Figure 28:

- (1) For more information on placing I/O pins in LVDS blocks, refer to the "Guidelines for Using LVDS Blocks" section in Application Note 120 (Using LVDS in APEX 20KE Devices).
- (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with V_{CCIO} set to 3.3 V, 2.5 V, or 1.8 V.

Power Sequencing & Hot Socketing

Because APEX 20KC devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the V_{CCIO} and V_{CCINT} power supplies may be powered in any order.

Signals can be driven into APEX 20KC devices before and during power-up without damaging the device. In addition, APEX 20KC devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20KC devices operate as specified by the user.

MultiVolt I/O Interface

The APEX architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

APEX 20KC devices support the MultiVolt I/O interface feature. The APEX 20KC VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KC device is 5.0-V tolerant with the addition of a resistor and the PCI clamp diode enabled.

For more information on 5.0-V tolerance, refer to the "5.0-V Tolerance in APEX 20KE Devices White Paper," as the information found therein also applies to APEX 20KC devices.

Table 10 summarizes APEX 20KC MultiVolt I/O support.

Table 10. APEX 20KC MultiVolt I/O Support								
V _{CCIO} (V)		Input Si	gnals (V)			Output Si	gnals (V)	
	1.8	2.5	3.3	5.0	1.8	2.5	3.3	5.0
1.8	✓	√ (1)	√ (1)		✓			
2.5		✓	√ (1)			✓		
3.3		✓	✓	√ (2)		√ (3)	✓	✓

Notes to Table 10:

- The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case.
- (2) An APEX 20KC device can be made 5.0-V tolerant with the addition of an external resistor and the PCI clamp diode enabled.
- (3) When $V_{CCIO} = 3.3 \text{ V}$, an APEX 20KC device can drive a 2.5-V device with 3.3-V tolerant inputs.

Clock Multiplication

The APEX 20KC ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$, where m and k range from 2 to 160 and n ranges from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements.

Clock Phase & Delay Adjustment

The APEX 20KC ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period.

LVDS Support

All APEX 20KC devices support differential LVDS buffers on the input and output clock signals that interface with external devices. This is controlled in the Quartus II software by assigning the clock pins with an LVDS I/O standard assignment.

Two high-speed PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 Mbps LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400C and larger devices for high-speed LVDS interfacing.

Lock Signals

The APEX 20KC ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins.

Table 12. APEX 20KC Clock Input & Output Parameters (Part 2 of 2) Note (1)							
Symbol	Parameter	I/O Standard	-7 Spee	d Grade	-8 Spee	d Grade	Units
			Min	Max	Min	Max	
f _{CLOCK1_EXT}	Output clock frequency for	3.3-V LVTTL	(5)	(5)	(5)	(5)	MHz
	external clock1 output	2.5-V LVTTL	(5)	(5)	(5)	(5)	MHz
		1.8-V LVTTL	(5)	(5)	(5)	(5)	MHz
		GTL+	(5)	(5)	(5)	(5)	MHz
		SSTL-2 Class I	(5)	(5)	(5)	(5)	MHz
		SSTL-2 Class II	(5)	(5)	(5)	(5)	MHz
		SSTL-3 Class I	(5)	(5)	(5)	(5)	MHz
		SSTL-3 Class II	(5)	(5)	(5)	(5)	MHz
		LVDS	(5)	(5)	(5)	(5)	MHz
f_{IN}	Input clock frequency	3.3-V LVTTL	(5)	(5)	(5)	(5)	MHz
		2.5-V LVTTL	(5)	(5)	(5)	(5)	MHz
		1.8-V LVTTL	(5)	(5)	(5)	(5)	MHz
		GTL+	(5)	(5)	(5)	(5)	MHz
		SSTL-2 Class I	(5)	(5)	(5)	(5)	MHz
		SSTL-2 Class II	(5)	(5)	(5)	(5)	MHz
		SSTL-3 Class I	(5)	(5)	(5)	(5)	MHz
		SSTL-3 Class II	(5)	(5)	(5)	(5)	MHz
		LVDS	(5)	(5)	(5)	(5)	MHz

Notes to Tables 11 and 12:

- All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications
 are not met, creating an erroneous clock within the device.
- (2) The maximum lock time is 40 µs or 2,000 input clock cycles, whichever occurs first.
- (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs remain disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK ENA pin goes high in user mode.
- (4) The PLL VCO operating range is 200 MHz $\leq f_{VCO} \leq$ 840 MHz for LVDS mode.
- (5) Contact Altera Applications for information on these parameters.

SignalTap Embedded Logic Analyzer

APEX 20KC devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20KC device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured.

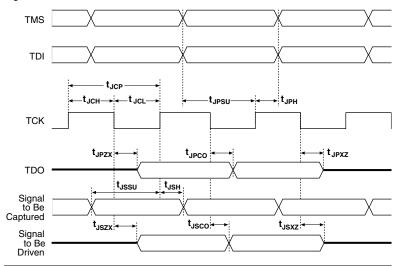


Figure 30. APEX 20KC JTAG Waveforms

Table 16 shows the JTAG timing parameters and values for APEX 20KC devices.

Table 16. APEX 20KC JTAG Timing Parameters & Values						
Symbol	Parameter	Min	Max	Unit		
t _{JCP}	TCK clock period	100		ns		
t _{JCH}	TCK clock high time	50		ns		
t _{JCL}	TCK clock low time	50		ns		
t _{JPSU}	JTAG port setup time	20		ns		
t _{JPH}	JTAG port hold time	45		ns		
t _{JPCO}	JTAG port clock to output		25	ns		
t _{JPZX}	JTAG port high impedance to valid output		25	ns		
t _{JPXZ}	JTAG port valid output to high impedance		25	ns		
t _{JSSU}	Capture register setup time	20		ns		
t _{JSH}	Capture register hold time	45		ns		
t _{JSCO}	Update register clock to output		35	ns		
t _{JSZX}	Update register high impedance to valid output		35	ns		
t _{JSXZ}	Update register valid output to high impedance		35	ns		

For more information, see the following documents:

 Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)

Table 39. APEX 20KC Minimum Pulse Width Timing Parameters					
Symbol	Parameter				
t _{CH}	Minimum clock high time from clock pin				
t_{CL}	Minimum clock low time from clock pin				
t _{CLRP}	LE clear pulse width				
t _{PREP}	LE preset pulse width				
t _{ESBCH}	Clock high time				
t _{ESBCL}	Clock low time				
t _{ESBWP}	Write pulse width				
t _{ESBRP}	Read pulse width				

Tables 40 and 41 describe APEX 20KC external timing parameters. The timing values for these pin-to-pin delays are reported for all pins using the 3.3-V LVTTL I/O standard.

Table 40. APEX 20KC External Timing Parameters Note (1)					
Symbol	Clock Parameter Condition				
t _{INSU}	Setup time with global clock at IOE register				
t _{INH}	Hold time with global clock at IOE register				
t _{оитсо}	Clock-to-output delay with global clock at IOE output register	(2)			
t _{INSUPLL}	Setup time with PLL clock at IOE input register				
t _{INHPLL}	Hold time with PLL clock at IOE input register				
tOUTCOPLL	Clock-to-output delay with PLL clock at IOE output register (2)				

Figure 36. AC Test Conditions for LVTTL, 2.5 V, 1.8 V, PCI & GTL+ I/O Standards

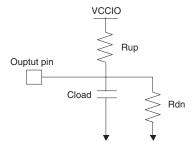


Figure 37. AC Test Conditions for SSTL-3 Class I & II I/O Standards

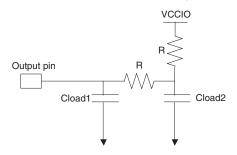
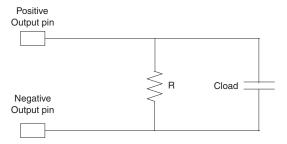



Figure 38. AC Test Conditions for the LVDS I/O Standard

Table 51. EP20K400C f _{MAX} ESB Timing Parameters							
Symbol	-7 Spee	d Grade	-8 Speed Grade		-9 Spee	-9 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.30		1.51		1.69	ns
t _{ESBSRC}		2.35		2.49		2.72	ns
t _{ESBAWC}		2.92		3.46		3.86	ns
t _{ESBSWC}		3.05		3.44		3.85	ns
t _{ESBWASU}	0.45		0.50		0.54		ns
t _{ESBWAH}	0.44		0.50		0.55		ns
t _{ESBWDSU}	0.57		0.63		0.68		ns
t _{ESBWDH}	0.44		0.50		0.55		ns
t _{ESBRASU}	1.25		1.43		1.56		ns
t _{ESBRAH}	0.00		0.03		0.11		ns
t _{ESBWESU}	0.00		0.00		0.00		ns
t _{ESBDATASU}	2.01		2.27		2.45		ns
t _{ESBWADDRSU}	-0.20		-0.24		-0.28		ns
t _{ESBRADDRSU}	0.02		0.00		-0.02		ns
t _{ESBDATACO1}		1.09		1.28		1.43	ns
t _{ESBDATACO2}		2.10		2.52		2.82	ns
t _{ESBDD}		2.50		2.97		3.32	ns
t_{PD}		1.48		1.78		2.00	ns
t _{PTERMSU}	0.58		0.72		0.81		ns
t _{PTERMCO}		1.10		1.29		1.45	ns

Table 52. EP20K400C f _{MAX} Routing Delays							
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.15		0.17		0.19	ns
t _{F5-20}		0.94		1.06		1.25	ns
t _{F20+}		1.73		1.96		2.30	ns

Symbol	-7 Spee	d Grade	-8 Speed Grade		-9 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.33		1.66		2.00		ns
t _{CL}	1.33		1.66		2.00		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	1.33		1.66		2.00		ns
t _{ESBCL}	1.33		1.66		2.00		ns
t _{ESBWP}	1.05		1.28		1.44		ns
t _{ESBRP}	0.87		1.06		1.19		ns

Table 60. EP20K600C External Timing Parameters							
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSU}	1.28		1.40		1.45		ns
t _{INH}	0.00		0.00		0.00		ns
tоитсо	2.00	4.29	2.00	4.77	2.00	5.11	ns
t _{INSUPLL}	0.80		0.91		-		ns
t _{INHPLL}	0.00		0.00		-		ns
t _{OUTCOPLL}	0.50	2.37	0.50	2.63	-	-	ns

SRAM configuration elements allow APEX 20KC devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming user-mode operation. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for an APEX 20KC device can be loaded with one of five configuration schemes (see Table 70), chosen on the basis of the target application. An EPC16, EPC2, or EPC1 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20KC device. When a configuration device is used, the system can configure automatically at system power-up.

Multiple APEX 20KC devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 70. Data Sources for Configuration				
Configuration Scheme	Data Source			
Configuration device	EPC16, EPC8, EPC4, EPC2, or EPC1 configuration device			
Passive serial (PS)	MasterBlaster or ByteBlasterMV download cable or serial data source			
Passive parallel asynchronous (PPA)	Parallel data source			
Passive parallel synchronous (PPS)	Parallel data source			
JTAG	MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam Standard Test and Programming Language (STAPL) or JBC File			

For more information on configuration, see *Application Note 116* (*Configuring SRAM-Based LUT Devices*).

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Ordering Information

Figure 39 describes the ordering codes for Stratix devices. For more information on a specific package, refer to the *Altera Device Package Information Data Sheet*.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com

Copyright © 2002 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products

to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

