
Intel - EP20K1000CF672C7 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	3840
Number of Logic Elements/Cells	38400
Total RAM Bits	327680
Number of I/O	508
Number of Gates	1772000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k1000cf672c7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Advanced interconnect structure
 - Copper interconnect for high performance
 - Four-level hierarchical FastTrack[®] interconnect structure providing fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
 - Interleaved local interconnect allows one LE to drive 29 other LEs through the fast local interconnect
- Advanced software support
 - Software design support and automatic place-and-route provided by the Altera[®] Quartus[™] II development system for Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations
 - Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions optimized for APEX 20KC architecture available
 - NativeLink[™] integration with popular synthesis, simulation, and timing analysis tools
 - Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation
 - Supports popular revision-control software packages including PVCS, RCS, and SCCS

Table 3. APE	ons & I/O Count	Notes (1), (2)		
Device	652-Pin BGA			
EP20K200C	136	168	271	
EP20K400C				488
EP20K600C				488
EP20K1000C				488

Feature	APEX 20KC Devices			
I/O standard support	1.8-V, 2.5-V, 3.3-V, 5.0-V I/O			
	3.3-V PCI and PCI-X			
	3.3-V AGP			
	CTT			
	GTL+			
	LVCMOS			
	LVTTL			
	True-LVDS TM and LVPECL data pins (in			
	EP20K400C and larger devices)			
	LVDS and LVPECL clock pins (in all devices			
	LVDS and LVPECL data pins up to 156 Mbp			
	(in EP20K200C devices)			
	HSTL Class I			
	PCI-X			
	SSTL-2 Class I and II			
	SSTL-3 Class I and II			
Memory support	CAM			
	Dual-port RAM			
	FIFO			
	RAM			
	ROM			

All APEX 20KC devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault-coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20KC devices can be configured on the board for the specific functionality required.

APEX 20KC devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC16, EPC8, EPC4, EPC2, and EPC1 configuration devices and one-time programmable (OTP) EPC1 configuration devices, which configure APEX 20KC devices via a serial data stream. Moreover, APEX 20KC devices contain an optimized interface that permits microprocessors to configure APEX 20KC devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20KC devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy.

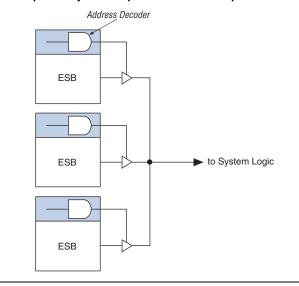
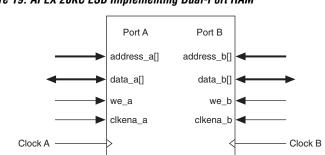



Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two ESBs are used to support two simultaneous reads or writes.

The ESB can also use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 19.

Read/Write Clock Mode

The read/write clock mode contains two clocks. One clock controls all registers associated with writing: data input, WE, and write address. The other clock controls all registers associated with reading: read enable (RE), read address, and data output. The ESB also supports clock enable and asynchronous clear signals; these signals also control the read and write registers independently. Read/write clock mode is commonly used for applications where reads and writes occur at different system frequencies. Figure 20 shows the ESB in read/write clock mode.

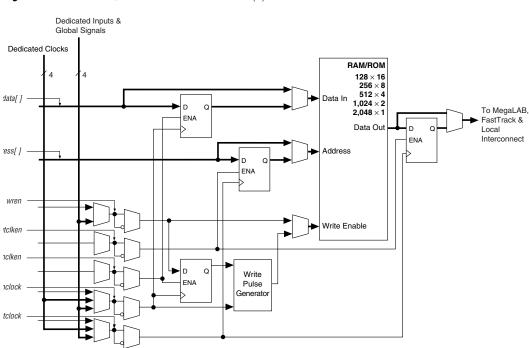


Figure 20. ESB in Read/Write Clock Mode Note (1)

(1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset.

APEX 20KC devices include an enhanced IOE, which drives the FastRow interconnect. The FastRow interconnect connects a column I/O pin directly to the LAB local interconnect within two MegaLAB structures. This feature provides fast setup times for pins that drive high fan-outs with complex logic, such as PCI designs. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The APEX 20KC IOE also includes direct support for open-drain operation, giving faster clock-to-output for open-drain signals. Some programmable delays in the APEX 20KC IOE offer multiple levels of delay to fine-tune setup and hold time requirements. The Quartus II Compiler sets these delays by default to minimize setup time while providing a zero hold time.

The Quartus II Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20KC IOE offers one output enable per pin, the Quartus II Compiler can emulate open-drain operation efficiently.

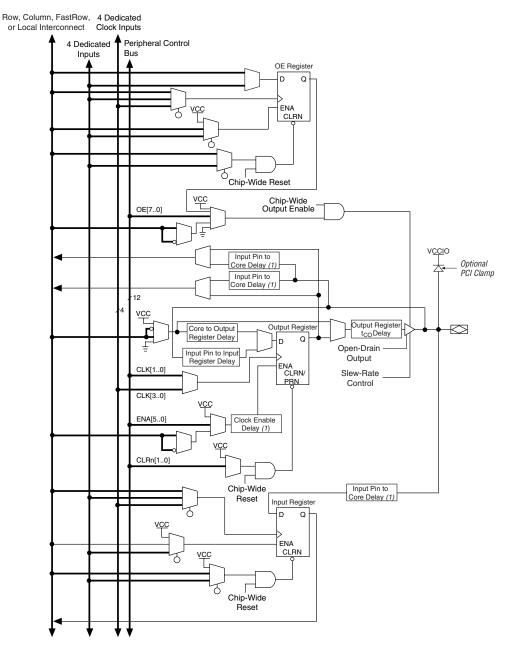

The APEX 20KC IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay.

Table 9 describes the APEX 20KC programmable delays and their logic options in the Quartus II software.

Table 9. APEX 20KC Programmable Delay Chains				
Programmable Delay Quartus II Logic Option				
Input pin to core delay	Decrease input delay to internal cells			
Input pin to input register delay	Decrease input delay to input registers			
Core to output register delay	Decrease input delay to output register			
Output register t _{CO} delay	Increase delay to output pin			
Clock enable delay	Increase clock enable delay			

The Quartus II Compiler can program these delays automatically to minimize setup time while providing a zero hold time.

Figure 25. APEX 20KC Bidirectional I/O Registers Notes (1), (2)

Signals can be driven into APEX 20KC devices before and during powerup without damaging the device. In addition, APEX 20KC devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20KC devices operate as specified by the user.

MultiVolt I/O Interface

The APEX architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

APEX 20KC devices support the MultiVolt I/O interface feature. The APEX 20KC VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output levels is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KC device is 5.0-V tolerant with the addition of a resistor and the PCI clamp diode enabled.

For more information on 5.0-V tolerance, refer to the "5.0-V Tolerance in APEX 20KE Devices White Paper," as the information found therein also applies to APEX 20KC devices.

Table 10. APEX 20KC MultiVolt I/O Support								
V _{CCIO} (V)	V _{CCIO} (V) Input Signals (V) Output Signals (V)							
	1.8	2.5	3.3	5.0	1.8	2.5	3.3	5.0
1.8	~	🗸 (1)	🗸 (1)		\checkmark			
2.5		~	 (1) 			 ✓ 		
3.3		\checkmark	\checkmark	 (2) 		✓ (3)	\checkmark	\checkmark

Table 10 summarizes APEX 20KC MultiVolt I/O support.

Notes to Table 10:

 The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case.

(2) An APEX 20KC device can be made 5.0-V tolerant with the addition of an external resistor and the PCI clamp diode enabled.

(3) When V_{CCIO} = 3.3 V, an APEX 20KC device can drive a 2.5-V device with 3.3-V tolerant inputs.

Altera Corporation

Clock Multiplication

The APEX 20KC ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$, where m and k range from 2 to 160 and n ranges from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements.

Clock Phase & Delay Adjustment

The APEX 20KC ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period.

LVDS Support

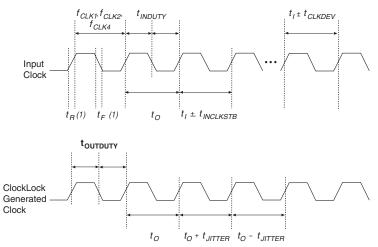
All APEX 20KC devices support differential LVDS buffers on the input and output clock signals that interface with external devices. This is controlled in the Quartus II software by assigning the clock pins with an LVDS I/O standard assignment.

Two high-speed PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 Mbps LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400C and larger devices for high-speed LVDS interfacing.

Lock Signals

The APEX 20KC ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins.

ClockLock & ClockBoost Timing Parameters


For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20KC ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KC devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 29 shows the incoming and generated clock specifications.

For more information on ClockLock and ClockBoost circuitry, see *Application Note* 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices.

Figure 29. Specifications for the Incoming & Generated Clocks

The t_l parameter refers to the nominal input clock period; the t_0 parameter refers to the nominal output clock period.

Note to Figure 29:

(1) Rise and fall times are measured from 10% to 90%.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All APEX 20KC devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. APEX 20KC devices can also use the JTAG port for configuration with the Quartus II software or with hardware using either Jam Files (**.jam**) or Jam Byte-Code Files (**.jbc**). Finally, APEX 20KC devices use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. APEX 20KC devices support the JTAG instructions shown in Table 13.

Table 13. APEX 20KC JTAG Instructions				
JTAG Instruction	Description			
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap embedded logic analyzer.			
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.			
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.			
USERCODE	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.			
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.			
ICR Instructions	Used when configuring an APEX 20KC device via the JTAG port with a MasterBlaster TM or ByteBlasterMV TM download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor.			
SignalTap Instructions	Monitors internal device operation with the SignalTap embedded logic analyzer.			

Jam Programming & Test Language Specification

Generic Testing

Each APEX 20KC device is functionally tested. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% yield. AC test measurements for APEX 20KC devices are made under conditions equivalent to those defined in the "Timing Model" section on page 65. Multiple test patterns can be used to configure devices during all stages of the production flow. AC test criteria include:

- Power supply transients can affect AC measurements.
- Simultaneous transitions of multiple outputs should be avoided for accurate measurement.
- Threshold tests must not be performed under AC conditions.
- Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result.

Operating Conditions

Tables 17 through 20 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 1.8-V APEX 20KC devices.

Table 17. APEX 20KC Device Absolute Maximum Ratings Note (1)						
Symbol	Parameter	Conditions	Min	Max	Unit	
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	2.5	V	
V _{CCIO}			-0.5	4.6	V	
VI	DC input voltage		-0.5	4.6	V	
I _{OUT}	DC output current, per pin		-25	25	mA	
T _{STG}	Storage temperature	No bias	-65	150	°C	
T _{AMB}	Ambient temperature	Under bias	-65	135	°C	
ΤJ	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	°C	
		Ceramic PGA packages, under bias		150	°C	

capacitance for 1.8-V APEX 20KC devices.	

Table 18. APEX 20KC Device Recommended Operating Conditions						
Symbol	Parameter	Conditions	Min	Max	Unit	
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	1.71 (1.71)	1.89 (1.89)	V	
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V	
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V	
	Supply voltage for output buffers, 1.8-V operation	(3), (4)	1.71 (1.71)	1.89 (1.89)	V	
VI	Input voltage	(2), (5)	-0.5	4.1	V	
Vo	Output voltage		0	V _{CCIO}	V	
TJ	Operating junction temperature	For commercial use	0	85	°C	
-		For industrial use	-40	100	°C	
t _R	Input rise time (10% to 90%)			40	ns	
t _F	Input fall time (90% to 10%)			40	ns	

Table 19. APEX 20KC Device DC Operating Conditions Notes (6), (7)							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
I _I	Input pin leakage current (8)	V ₁ = 3.6 to 0.0 V	-10		10	μA	
I _{OZ}	Tri-stated I/O pin leakage current (8)	V _O = 4.1 to -0.5 V	-10		10	μA	
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V _I = ground, no load, no toggling inputs, -7 speed grade		10		mA	
		V _I = ground, no load, no toggling inputs, -8, -9 speed grades		5		mA	
R _{CONF}	Value of I/O pin pull-up	V _{CCIO} = 3.0 V (9)	20		50	kΩ	
	resistor before and during	V _{CCIO} = 2.375 V <i>(9)</i>	30		80	kΩ	
	configuration	V _{CCIO} = 1.71 V <i>(9)</i>	60		150	kΩ	

P

DC operating specifications on APEX 20KC I/O standards are listed in Tables 21 to 35.

APEX 20KC Programmable Logic Device Data Sheet

Table 2	Table 20. APEX 20KC Device Capacitance Note (10)						
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF		
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF		
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF		

Notes to Tables 17 through 20:

(1) See the Operating Requirements for Altera Devices Data Sheet.

- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 4.6 V for input currents less than 100 mA and time periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^\circ$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V.
- (7) These values are specified under the APEX 20KC device recommended operating conditions, shown in Table 18 on page 55.
- (8) This value is specified for normal device operation. The value may vary during power-up.
- (9) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}.
- (10) Capacitance is sample-tested only.

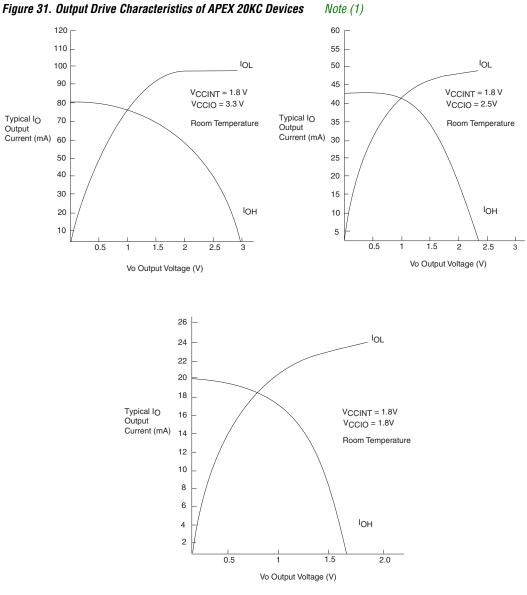
Tables 21 through 35 list the DC operating specifications for the supported I/O standards. These tables list minimal specifications only; APEX 20KC devices may exceed these specifications.

Table 21. LVTTL I/O Specifications							
Symbol	Parameter	Conditions	Minimum	Maximum	Units		
V _{CCIO}	Output supply voltage		3.0	3.6	V		
V _{IH}	High-level input voltage		2.0	V _{CCIO} + 0.3	V		
V _{IL}	Low-level input voltage		-0.3	0.8	V		
I _I	Input pin leakage current	V _{IN} = 0 V or 3.3 V	-10	10	μA		
V _{OH}	High-level output voltage	$I_{OH} = -12 \text{ mA},$ $V_{CCIO} = 3.0 \text{ V} (1)$	2.4		V		
V _{OL}	Low-level output voltage	I _{OL} = 12 mA, V _{CCIO} = 3.0 V <i>(2)</i>		0.4	V		

Table 34. 3.3-V AGP I/O Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units		
V _{CCIO}	I/O supply voltage		3.15	3.3	3.45	V		
V _{REF}	Reference voltage		$0.39 \times V_{CCIO}$		$0.41 \times V_{CCIO}$	V		
V _{IH}	High-level input voltage		$0.5 \times V_{CCIO}$		$V_{CCIO} + 0.5$	V		
V _{IL}	Low-level input voltage				$0.3 imes V_{CCIO}$	V		
V _{OH}	High-level output voltage	I _{OUT} = -500 μA	$0.9 imes V_{CCIO}$		3.6	V		
V _{OL}	Low-level output voltage	l _{OUT} = 1,500 μA			$0.1 \times V_{CCIO}$	V		
I _I	Input pin leakage current	$0 < V_{IN} < V_{CCIO}$	-10		10	μA		

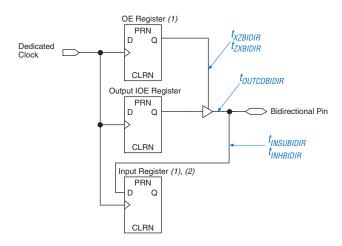
Table 35. CT	T I/O Specifications					
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	I/O supply voltage		3.0	3.3	3.6	V
V _{TT} /V _{REF} (3)	Termination and reference voltage		1.35	1.5	1.65	V
V _{IH}	High-level input voltage		V _{REF} + 0.2			V
V _{IL}	Low-level input voltage				V _{REF} – 0.2	V
I	Input pin leakage current	$0 < V_{IN} < V_{CCIO}$	-10		10	μA
V _{OH}	High-level output voltage	I _{OH} = -8 mA (1)	V _{REF} + 0.4			V
V _{OL}	Low-level output voltage	I _{OL} = 8 mA <i>(2)</i>			V _{REF} – 0.4	V
Ι _Ο	Output leakage current (when output is high Z)	$GND \leq V_{OUT} \leq V_{CCIO}$	-10		10	μA

Notes to Tables 21 through 35:


(1) The I_{OH} parameter refers to high-level output current.

(2) The I_{OL} parameter refers to low-level output current. This parameter applies to open-drain pins as well as output pins.

(3) V_{REF} specifies center point of switching range.


Figure 31 shows the output drive characteristics of APEX 20KC devices.

Note to Figure 31:

(1) These are transient (AC) currents.

Figure 35. Synchronous Bidirectional Pin External Timing

Notes to Figure 35:

- The output enable and input registers are LE registers in the LAB adjacent to the (1)bidirectional pin. Use the "Output Enable Routing = Single-Pin" option in the Quartus II software to set the output enable register.
- Use the "Decrease Input Delay to Internal Cells = OFF" option in the Quartus II (2) software to set the LAB-adjacent input register. This maintains a zero hold time for LAB-adjacent registers while giving a fast, position-independent setup time. Set "Decrease Input Delay to Internal Cells = ON" and move the input register farther away from the bidirectional pin for a faster setup time with zero hold time. The exact position where zero hold occurs with the minimum setup time varies with device density and speed grade.

Tables 36 to 38 describes the f_{MAX} timing parameters shown in Figure 32. Table 39 describes the functional timing parameters.

Table 36. APEX 20KC f _{MAX} LE Timing Parameters						
Symbol	Parameter					
t _{SU}	LE register setup time before clock					
t _H	LE register hold time before clock					
t _{CO}	LE register clock-to-output delay					
t _{LUT}	LUT delay for data-in to data-out					

Table 37. APEX 20KC f _{MAX} ESB	Timing Parameters
--	-------------------

Symbol	Parameter					
t _{ESBARC}	ESB asynchronous read cycle time					
t _{ESBSRC}	ESB synchronous read cycle time					
t _{ESBAWC}	ESB asynchronous write cycle time					
t _{ESBSWC}	ESB synchronous write cycle time					
t _{ESBWASU}	ESB write address setup time with respect to WE					
t _{ESBWAH}	ESB write address hold time with respect to WE					
t _{ESBWDSU}	ESB data setup time with respect to WE					
t _{ESBWDH}	ESB data hold time with respect to WE					
t _{ESBRASU}	ESB read address setup time with respect to RE					
t _{ESBRAH}	ESB read address hold time with respect to RE					
t _{ESBWESU}	ESB WE setup time before clock when using input register					
t _{ESBDATASU}	ESB data setup time before clock when using input register					
t _{ESBWADDRSU}	ESB write address setup time before clock when using input registers					
t _{ESBRADDRSU}	ESB read address setup time before clock when using input registers					
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers					
t _{ESBDATACO2}	ESB clock-to-output delay without output registers					
t _{ESBDD}	ESB data-in to data-out delay for RAM mode					
t _{PD}	ESB macrocell input to non-registered output					
t _{PTERMSU}	ESB macrocell register setup time before clock					
t _{PTERMCO}	ESB macrocell register clock-to-output delay					

Table 38. APEX 20KC f_{MAX} Routing Delays

Symbol	Parameter					
t _{F1-4}	an-out delay estimate using local interconnect					
t _{F5-20}	Fan-out delay estimate using MegaLab interconnect					
t _{F20+}	Fan-out delay estimate using FastTrack interconnect					

Table 46. EP20K200C f _{MAX} Routing Delays									
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{F1-4}		0.15		0.17		0.20	ns		
t _{F5-20}		0.81		0.94		1.12	ns		
t _{F20+}		0.98		1.13		1.35	ns		

Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Мах	Min	Мах	Min	Max	1
t _{CH}	1.33		1.66		2.00		ns
t _{CL}	1.33		1.66		2.00		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	1.33		1.66		2.00		ns
t _{ESBCL}	1.33		1.66		2.00		ns
t _{ESBWP}	1.05		1.28		1.44		ns
t _{ESBRP}	0.87		1.06		1.19		ns

Table 48. EP20K200C External Timing Parameters

Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSU}	1.23		1.26		1.33		ns
t _{INH}	0.00		0.00		0.00		ns
t _{оитсо}	2.00	3.79	2.00	4.31	2.00	4.70	ns
t _{INSUPLL}	0.81		0.92		-		ns
t _{INHPLL}	0.00		0.00		-		ns
t _{OUTCOPLL}	0.50	2.36	0.50	2.62	-	-	ns

Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Max	Min	Мах	Min	Мах	1
	2.03		2.57		2.97		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
t _{OUTCOBIDIR}	2.00	4.29	2.00	4.77	2.00	5.11	ns
t _{XZBIDIR}		8.31		9.14		9.76	ns
t _{ZXBIDIR}		8.31		9.14		9.76	ns
t _{INSUBIDIRPLL}	3.99		4.77		-		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
t _{OUTCOBIDIRPLL}	0.50	2.37	0.50	2.63	-	-	ns
t _{XZBIDIRPLL}		6.35		6.94		-	ns
		6.35		6.94		-	ns

Table 62. EP20K1000C f _{MAX} LE Timing Microparameters								
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit	
	Min	Max	Min	Мах	Min	Max		
t _{SU}	0.01		0.01		0.01		ns	
t _H	0.10		0.10		0.10		ns	
t _{CO}		0.27		0.30		0.32	ns	
t _{LUT}		0.66		0.79		0.92	ns	

Γ

٦

Table 69. Selectable I/O Standard Output Delays									
Symbol	-7 Spee	-7 Speed Grade		-8 Speed Grad		-9 Speed Grade			
	Min	Max	Min	Max	Min	Max	Min		
LVCMOS		0.00		0.00		0.00	ns		
LVTTL		0.00		0.00		0.00	ns		
2.5 V		0.00		0.00		0.00	ns		
1.8 V		1.18		1.41		1.57	ns		
PCI		-0.52		-0.53		-0.56	ns		
GTL+		-0.18		-0.29		-0.39	ns		
SSTL-3 Class I		-0.67		-0.71		-0.75	ns		
SSTL-3 Class II		-0.67		-0.71		-0.75	ns		
SSTL-2 Class I		-0.67		-0.71		-0.75	ns		
SSTL-2 Class II		-0.67		-0.71		-0.75	ns		
LVDS		-0.69		-0.70		-0.73	ns		
CTT		0.00		0.00		0.00	ns		
AGP		0.00		0.00		0.00	ns		

Power Consumption

To estimate device power consumption, use the interactive power estimator on the Altera web site at http://www.altera.com.

Configuration & Operation

The APEX 20KC architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The APEX architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

Before and during device configuration, all I/O pins are pulled to V_{CCIO} by a built-in weak pull-up resistor.