
Intel - EP20K1000CF672C9 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	3840
Number of Logic Elements/Cells	38400
Total RAM Bits	327680
Number of I/O	508
Number of Gates	1772000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k1000cf672c9

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Advanced interconnect structure
 - Copper interconnect for high performance
 - Four-level hierarchical FastTrack[®] interconnect structure providing fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
 - Interleaved local interconnect allows one LE to drive 29 other LEs through the fast local interconnect
- Advanced software support
 - Software design support and automatic place-and-route provided by the Altera[®] Quartus[™] II development system for Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations
 - Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions optimized for APEX 20KC architecture available
 - NativeLink[™] integration with popular synthesis, simulation, and timing analysis tools
 - Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation
 - Supports popular revision-control software packages including PVCS, RCS, and SCCS

Table 3. APE	Table 3. APEX 20KC QFP & BGA Package Options & I/O Cou								
Device	Device 208-Pin PQFP 240-Pin PQFP 356-Pin BGA								
EP20K200C	136	168	271						
EP20K400C				488					
EP20K600C				488					
EP20K1000C				488					

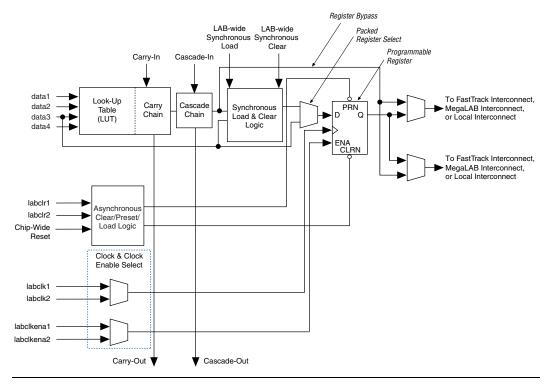
After an APEX 20KC device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications.


APEX 20KC devices are supported by the Altera Quartus II development system, a single, integrated package that offers HDL and schematic design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, SignalTap logic analysis, and device configuration. The Quartus II software runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations.

The Quartus II software provides NativeLink interfaces to other industrystandard PC- and UNIX workstation-based EDA tools. For example, designers can invoke the Quartus II software from within third-party design tools. Further, the Quartus II software contains built-in optimized synthesis libraries; synthesis tools can use these libraries to optimize designs for APEX 20KC devices. For example, the Synopsys Design Compiler library, supplied with the Quartus II development system, includes DesignWare functions optimized for the APEX 20KC architecture.

Functional Description

APEX 20KC devices incorporate LUT-based logic, product-term-based logic, and memory into one device on an all-copper technology process. Signal interconnections within APEX 20KC devices (as well as to and from device pins) are provided by the FastTrack interconnect—a series of fast, continuous row and column channels that run the entire length and width of the device.


Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack interconnect. Each IOE contains a bidirectional I/O buffer and a register that can be used as either an input or output register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. IOEs provide a variety of features, such as 3.3-V, 64-bit, 66-MHz PCI compliance; JTAG BST support; slew-rate control; and tri-state buffers. APEX 20KC devices offer enhanced I/O support, including support for 1.8-V I/O, 2.5-V I/O, LVCMOS, LVTTL, LVPECL, 3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, HSTL, CTT, and 3.3-V AGP I/O standards. The ESB can implement a variety of memory functions, including CAM, RAM, dual-port RAM, ROM, and FIFO functions. Embedding the memory directly into the die improves performance and reduces die area compared to distributed-RAM implementations. Moreover, the abundance of cascadable ESBs allows APEX 20KC devices to implement multiple wide memory blocks for high-density designs. The ESB's high speed ensures it can implement small memory blocks without any speed penalty. Additionally, designers can use the ESBs to create as many different-sized memory blocks as the system requires. Figure 1 shows an overview of the APEX 20KC device.

APEX 20KC devices provide four dedicated clock pins and four dedicated input pins that drive register control inputs. These signals ensure efficient distribution of high-speed, low-skew control signals, which use dedicated routing channels to provide short delays and low skews. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally generated asynchronous clear signals with high fan-out. The dedicated clock pins featured on the APEX 20KC devices can also feed logic. The devices also feature ClockLock and ClockBoost clock management circuitry.

Altera Corporation

Figure 5. APEX 20KC Logic Element

Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives the outputs of the LE.

Each LE has two outputs that drive the local, MegaLAB, or FastTrack interconnect routing structure. Each output can be driven independently by the LUT's or register's output. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, improves device utilization because the register and the LUT can be used for unrelated functions. The LE can also drive out registered and unregistered versions of the LUT output.

Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other.

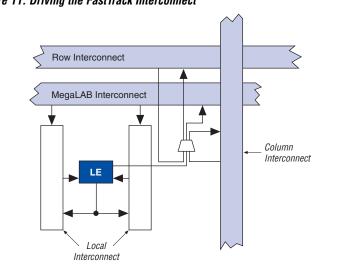
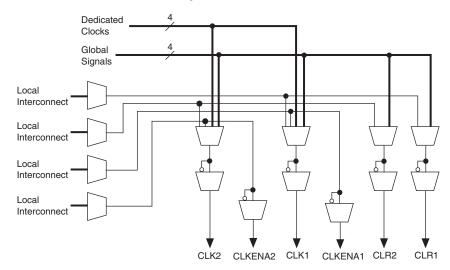



Figure 11. Driving the FastTrack Interconnect

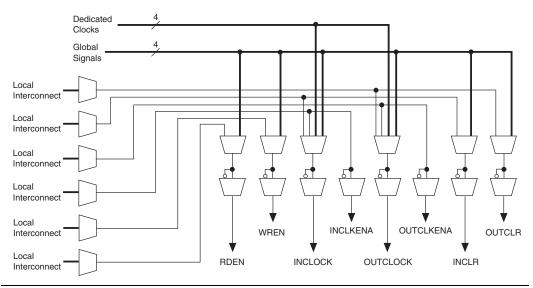
APEX 20KC devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRowTM interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. The FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K400C and larger devices, the FastRow interconnect drives the two MegaLAB structures in the top left corner, the two MegaLAB structures in the two right corner, the two MegaLAB structures in the bottom left corner, and the two MegaLAB structures in the bottom right corner. On EP20K200C and smaller devices, FastRow interconnect drives the two MegaLAB structures on the top and the two MegaLAB structures on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLAB structures except the end local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect.

The programmable register also supports an asynchronous clear function. Within the ESB, two asynchronous clears are generated from global signals and the local interconnect. Each macrocell can either choose between the two asynchronous clear signals or choose to not be cleared. Either of the two clear signals can be inverted within the ESB. Figure 15 shows the ESB control logic when implementing product-terms.

Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 32 product terms to feed the macrocell OR logic directly, with two product terms provided by the macrocell and 30 parallel expanders provided by the neighboring macrocells in the ESB.

The Quartus II Compiler can allocate up to 15 sets of up to two parallel expanders per set to the macrocells automatically. Each set of two parallel expanders incurs a small, incremental timing delay. Figure 16 shows the APEX 20KC parallel expanders.



For more information on APEX 20KC devices and CAM, see *Application* Note 119 (Implementing High-Speed Search Applications with APEX CAM).

Driving Signals to the ESB

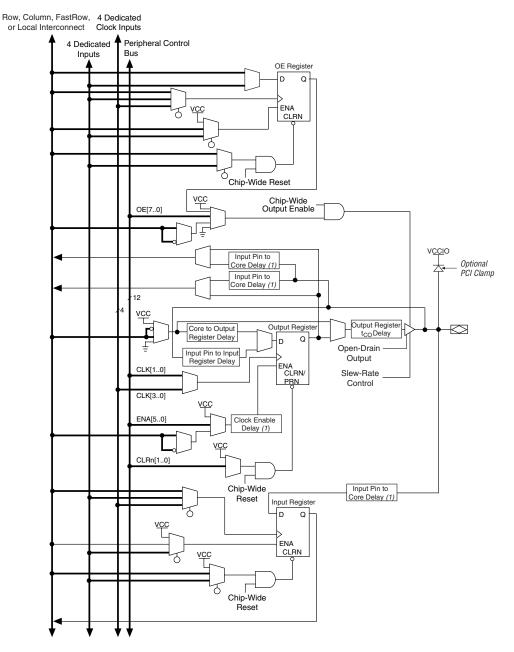

ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic.

Figure 24. ESB Control Signal Generation

An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device.

Figure 25. APEX 20KC Bidirectional I/O Registers Notes (1), (2)

Notes to Figure 25:

- (1) This programmable delay has four settings: off and three levels of delay.
- (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 26 shows how a row IOE connects to the interconnect.

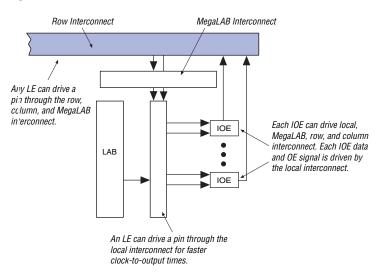
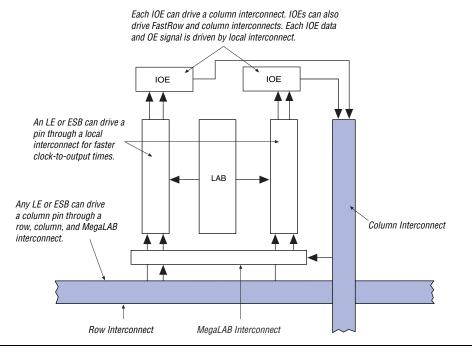
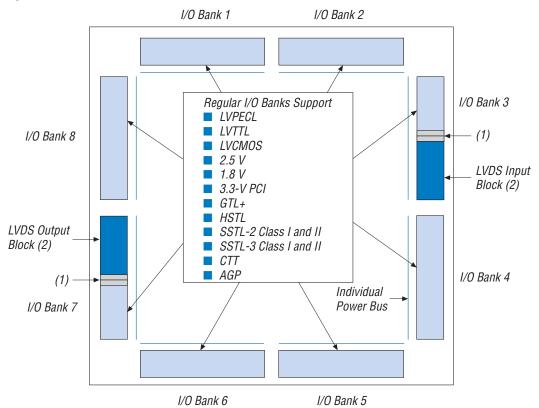



Figure 26. Row IOE Connection to the Interconnect

Figure 27 shows how a column IOE connects to the interconnect.


Figure 27. Column IOE Connection to the Interconnect

Dedicated Fast I/O Pins

APEX 20KC devices incorporate an enhancement to support bidirectional pins with high internal fan-out such as PCI control signals. These pins are called dedicated fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and replace dedicated inputs. These pins can be used for fast clock, clear, or high fan-out logic signal distribution. They also can drive out. The dedicated fast I/O pin data output and tri-state control are driven by local interconnect from the adjacent MegaLAB for high speed.

Figure 28. APEX 20KC I/O Banks

Notes to Figure 28:

- For more information on placing I/O pins in LVDS blocks, refer to the "Guidelines for Using LVDS Blocks" section in Application Note 120 (Using LVDS in APEX 20KE Devices).
- (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with V_{CCIO} set to 3.3 V, 2.5 V, or 1.8 V.

Power Sequencing & Hot Socketing

Because APEX 20KC devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the V_{CCIO} and V_{CCINT} power supplies may be powered in any order.

Signals can be driven into APEX 20KC devices before and during powerup without damaging the device. In addition, APEX 20KC devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20KC devices operate as specified by the user.

MultiVolt I/O Interface

The APEX architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

APEX 20KC devices support the MultiVolt I/O interface feature. The APEX 20KC VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KC device is 5.0-V tolerant with the addition of a resistor and the PCI clamp diode enabled.

For more information on 5.0-V tolerance, refer to the "5.0-V Tolerance in APEX 20KE Devices White Paper," as the information found therein also applies to APEX 20KC devices.

Table 10. Al	Table 10. APEX 20KC MultiVolt I/O Support										
V _{ccio} (V)		Input Si	gnals (V)			gnals (V)					
	1.8	2.5	3.3	5.0	1.8	2.5	3.3	5.0			
1.8	~	✓ (1)	🗸 (1)		\checkmark						
2.5		~	(1)			 					
3.3		\checkmark	\checkmark	 (2) 		✓ (3)	\checkmark	\checkmark			

Table 10 summarizes APEX 20KC MultiVolt I/O support.

Notes to Table 10:

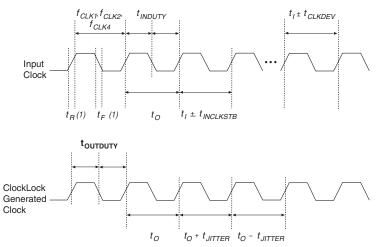
 The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case.

(2) An APEX 20KC device can be made 5.0-V tolerant with the addition of an external resistor and the PCI clamp diode enabled.

(3) When V_{CCIO} = 3.3 V, an APEX 20KC device can drive a 2.5-V device with 3.3-V tolerant inputs.

Altera Corporation

ClockLock & ClockBoost Timing Parameters


For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20KC ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KC devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 29 shows the incoming and generated clock specifications.

For more information on ClockLock and ClockBoost circuitry, see *Application Note* 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices.

Figure 29. Specifications for the Incoming & Generated Clocks

The t_l parameter refers to the nominal input clock period; the t_0 parameter refers to the nominal output clock period.

Note to Figure 29:

(1) Rise and fall times are measured from 10% to 90%.

Tables 11 and 12 summarize the ClockLock and ClockBoost parameters for APEX 20KC devices.

Symbol	Parameter	Condition	Min	Tun	Max	Unit
Symbol	Falameter	Contraction	IVIIII	Тур	IVIAX	Unit
t _R	Input rise time				5	ns
t _F	Input fall time				5	ns
t _{INDUTY}	Input duty cycle		40		60	%
t _{INJITTER}	Input jitter peak-to-peak				2% of input period	%
t _{OUTJITTER}	RMS jitter on ClockLock or ClockBoost-generated clock				0.35% of output period	%
^t ουτ <i>DUTY</i>	Duty cycle for ClockLock or ClockBoost-generated clock		45		55	%
$t_{LOCK}(2)_{,}(3)$	Time required for ClockLock or ClockBoost to acquire lock				40	μS

Table 12. APEX 20KC Clock Input & Output Parameters (Part 1 of 2) Note (1)									
Symbol	Parameter	I/O Standard	-7 Speed Grade		-8 Speed Grade		Units		
			Min	Max	Min	Max			
f _{VCO} (4)	Voltage controlled oscillator operating range		200	500	200	500	MHz		
f _{CLOCK0}	Clock0 PLL output frequency for internal use		1.5	335	1.5	200	MHz		
f _{CLOCK1}	Clock1 PLL output frequency for internal use		20	335	20	200	MHz		
f _{CLOCK0_EXT}	Output clock frequency for	3.3-V LVTTL	(5)	(5)	(5)	(5)	MHz		
	external clock0 output	2.5-V LVTTL	(5)	(5)	(5)	(5)	MHz		
		1.8-V LVTTL	(5)	(5)	(5)	(5)	MHz		
		GTL+	(5)	(5)	(5)	(5)	MHz		
		SSTL-2 Class I	(5)	(5)	(5)	(5)	MHz		
		SSTL-2 Class II	(5)	(5)	(5)	(5)	MHz		
		SSTL-3 Class I	(5)	(5)	(5)	(5)	MHz		
		SSTL-3 Class II	(5)	(5)	(5)	(5)	MHz		
		LVDS	(5)	(5)	(5)	(5)	MHz		

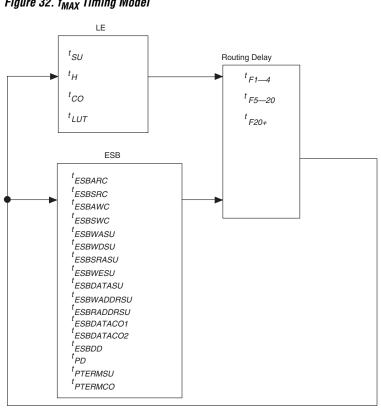

Table 24. 1.8-V I/O Specifications									
Symbol	Parameter	Conditions	Minimum	Maximum	Units				
V _{CCIO}	Output supply voltage		1.7	1.9	V				
V _{IH}	High-level input voltage		$0.65 imes V_{CCIO}$	V _{CCIO} + 0.3	V				
V _{IL}	Low-level input voltage			$0.35 imes V_{CCIO}$	V				
I _I	Input pin leakage current	V _{IN} = 0 V or 3.3 V	-10	10	μA				
V _{OH}	High-level output voltage	I _{OH} = -2 mA (1)	V _{CCIO} – 0.45		V				
V _{OL}	Low-level output voltage	I _{OL} = 2 mA <i>(2)</i>		0.45	V				

Table 25. 3.3-V PCI Specifications									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units			
V _{CCIO}	I/O supply voltage		3.0	3.3	3.6	V			
V _{IH}	High-level input voltage		$0.5\times V_{CCIO}$		V _{CCIO} + 0.5	V			
V _{IL}	Low-level input voltage		-0.5		$0.3 \times V_{CCIO}$	V			
lı	Input pin leakage current	$0 < V_{IN} < V_{CCIO}$	-10		10	μA			
V _{OH}	High-level output voltage	I _{OUT} = -500 μA	$0.9 \times V_{CCIO}$			V			
V _{OL}	Low-level output voltage	I _{OUT} = 1,500 μA			$0.1 \times V_{CCIO}$	V			

Timing Model

The high-performance FastTrack and MegaLAB interconnect routing resources ensure predictable performance, accurate simulation, and accurate timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Figure 32 shows the f_{MAX} timing model for APEX 20KC devices.

Figures 33 and 34 show the asynchronous and synchronous timingwaveforms, respectively, for the ESB macroparameters in Table 37. Tables 44 through 67 show the f_{MAX} and external timing parameters for EPC20K200C, EP20K400C, EP20K600C, and EP20K1000C devices.

Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Мах	Min	Max	Min	Мах	1
t _{SU}	0.01		0.01		0.01		ns
t _H	0.10		0.10		0.10		ns
t _{CO}		0.27		0.30		0.32	ns
t _{LUT}		0.65		0.78		0.92	ns

Symbol	-7 Speed Grade		-8 Speed Grade		-9 Spee	Unit	
	Min	Max	Min	Max	Min	Max	-
t _{ESBARC}		1.30		1.51		1.69	ns
t _{ESBSRC}		2.35		2.49		2.72	ns
t _{ESBAWC}		2.92		3.46		3.86	ns
t _{ESBSWC}		3.05		3.44		3.85	ns
t _{ESBWASU}	0.45		0.50		0.54		ns
t _{ESBWAH}	0.44		0.50		0.55		ns
t _{ESBWDSU}	0.57		0.63		0.68		ns
t _{ESBWDH}	0.44		0.50		0.55		ns
t _{ESBRASU}	1.25		1.43		1.56		ns
t _{ESBRAH}	0.00		0.03		0.11		ns
t _{ESBWESU}	0.00		0.00		0.00		ns
t _{ESBDATASU}	2.01		2.27		2.45		ns
t _{ESBWADDRSU}	-0.20		-0.24		-0.28		ns
t _{ESBRADDRSU}	0.02		0.00		-0.02		ns
t _{ESBDATACO1}		1.09		1.28		1.43	ns
t _{ESBDATACO2}		2.10		2.52		2.82	ns
t _{ESBDD}		2.50		2.97		3.32	ns
t _{PD}		1.48		1.78		2.00	ns
t _{PTERMSU}	0.58		0.72		0.81		ns
t _{PTERMCO}		1.10		1.29		1.45	ns

٦

Г

Symbol	-7 Speed Grade		-8 Speed Grade		-9 Spee	d Grade	Unit
	Min	Мах	Min	Max	Min	Max	1
t _{CH}	1.33		1.66		2.00		ns
t _{CL}	1.33		1.66		2.00		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	1.33		1.66		2.00		ns
t _{ESBCL}	1.33		1.66		2.00		ns
t _{ESBWP}	1.04		1.26		1.41		ns
t _{ESBRP}	0.87		1.05		1.18		ns

Table 66. EP20K1000C External Timing Parameters									
Symbol	-7 Spee	ed Grade	-8 Spee	-8 Speed Grade -9 Speed Grad			Unit		
	Min	Max	Min	Max	Min	Max	1		
t _{INSU}	1.14		1.14		1.11		ns		
t _{INH}	0.00		0.00		0.00		ns		
t _{оитсо}	2.00	4.63	2.00	5.26	2.00	5.69	ns		
t _{INSUPLL}	0.81		0.92		-		ns		
t _{INHPLL}	0.00		0.00		-		ns		
t _{OUTCOPLL}	0.50	2.32	0.50	2.55	-	-	ns		

Table 69. Selectable I/O Standard Output Delays									
Symbol	-7 Spee	-7 Speed Grade		-8 Speed Grad		-9 Speed Grade			
	Min	Max	Min	Max	Min	Max	Min		
LVCMOS		0.00		0.00		0.00	ns		
LVTTL		0.00		0.00		0.00	ns		
2.5 V		0.00		0.00		0.00	ns		
1.8 V		1.18		1.41		1.57	ns		
PCI		-0.52		-0.53		-0.56	ns		
GTL+		-0.18		-0.29		-0.39	ns		
SSTL-3 Class I		-0.67		-0.71		-0.75	ns		
SSTL-3 Class II		-0.67		-0.71		-0.75	ns		
SSTL-2 Class I		-0.67		-0.71		-0.75	ns		
SSTL-2 Class II		-0.67		-0.71		-0.75	ns		
LVDS		-0.69		-0.70		-0.73	ns		
CTT		0.00		0.00		0.00	ns		
AGP		0.00		0.00		0.00	ns		

Power Consumption

To estimate device power consumption, use the interactive power estimator on the Altera web site at http://www.altera.com.

Configuration & Operation

The APEX 20KC architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The APEX architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

Before and during device configuration, all I/O pins are pulled to V_{CCIO} by a built-in weak pull-up resistor.