
E·XFL

Altera - EP20K200CF484I8 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

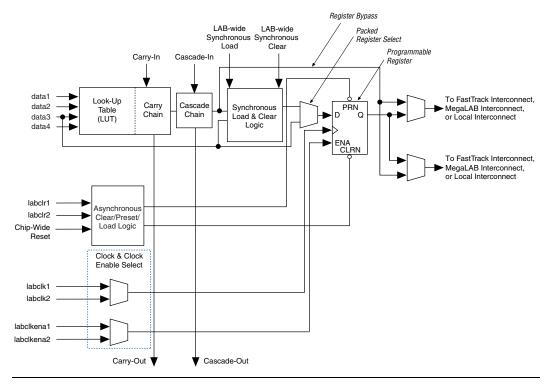
Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	832
Number of Logic Elements/Cells	8320
Total RAM Bits	106496
Number of I/O	376
Number of Gates	526000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep20k200cf484i8


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Advanced interconnect structure
 - Copper interconnect for high performance
 - Four-level hierarchical FastTrack[®] interconnect structure providing fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
 - Interleaved local interconnect allows one LE to drive 29 other LEs through the fast local interconnect
- Advanced software support
 - Software design support and automatic place-and-route provided by the Altera[®] Quartus[™] II development system for Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations
 - Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions optimized for APEX 20KC architecture available
 - NativeLink[™] integration with popular synthesis, simulation, and timing analysis tools
 - Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation
 - Supports popular revision-control software packages including PVCS, RCS, and SCCS

Table 3. APE	Notes (1), (2)			
Device	Device 208-Pin PQFP 240-Pin PQFP 356-Pin BGA			
EP20K200C	136	168	271	
EP20K400C				488
EP20K600C				488
EP20K1000C				488

Figure 5. APEX 20KC Logic Element

Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives the outputs of the LE.

Each LE has two outputs that drive the local, MegaLAB, or FastTrack interconnect routing structure. Each output can be driven independently by the LUT's or register's output. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, improves device utilization because the register and the LUT can be used for unrelated functions. The LE can also drive out registered and unregistered versions of the LUT output.

Normal Mode

The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Quartus II Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. LEs in normal mode support packed registers.

Arithmetic Mode

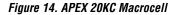
The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 8, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

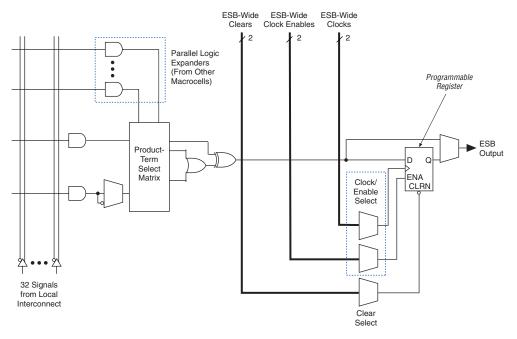
The Quartus II software implements parameterized functions that use the arithmetic mode automatically where appropriate; the designer does not need to specify how the carry chain will be used.

Counter Mode

The counter mode offers clock enable, counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in an LAB use the counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. The Quartus II software automatically places any registers that are not used by the counter into other LABs. The counter mode uses two 3-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

Clear & Preset Logic Control


Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset or to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.

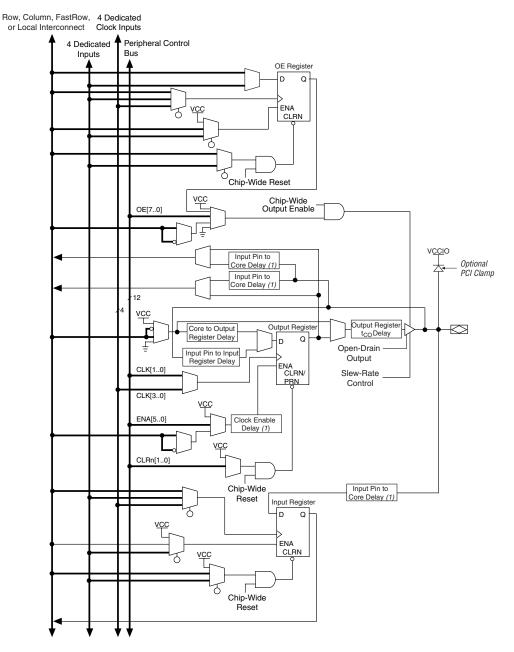

In addition to the two clear and preset modes, APEX 20KC devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

FastTrack Interconnect

In the APEX 20KC architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack interconnect. The FastTrack interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

For registered functions, each macrocell register can be programmed individually to implement D, T, JK, or SR operation with programmable clock control. The register can be bypassed for combinatorial operation. During design entry, the designer specifies the desired register type; the Quartus II software then selects the most efficient register operation for each registered function to optimize resource utilization. The Quartus II software or other synthesis tools can also select the most efficient register operation automatically when synthesizing HDL designs.


Each programmable register can be clocked by one of two ESB-wide clocks. The ESB-wide clocks can be generated from device dedicated clock pins, global signals, or local interconnect. Each clock also has an associated clock enable, generated from the local interconnect. The clock and clock enable signals are related for a particular ESB; any macrocell using a clock also uses the associated clock enable.

If both the rising and falling edges of a clock are used in an ESB, both ESB-wide clock signals are used.

The register in the APEX 20KC IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. This feature is useful for cases where the APEX 20KC device controls an activelow input or another device; it prevents inadvertent activation of the input upon power-up.

Figure 25 shows how fast bidirectional I/O pins are implemented in APEX 20KC devices. This feature is useful for cases where the APEX 20KC device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

Figure 25. APEX 20KC Bidirectional I/O Registers Notes (1), (2)

Notes to Figure 25:

- (1) This programmable delay has four settings: off and three levels of delay.
- (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 26 shows how a row IOE connects to the interconnect.

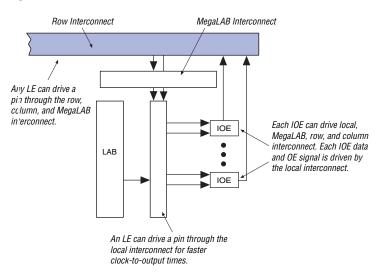


Figure 26. Row IOE Connection to the Interconnect

Signals can be driven into APEX 20KC devices before and during powerup without damaging the device. In addition, APEX 20KC devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20KC devices operate as specified by the user.

MultiVolt I/O Interface

The APEX architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

APEX 20KC devices support the MultiVolt I/O interface feature. The APEX 20KC VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output levels is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KC device is 5.0-V tolerant with the addition of a resistor and the PCI clamp diode enabled.

For more information on 5.0-V tolerance, refer to the "5.0-V Tolerance in APEX 20KE Devices White Paper," as the information found therein also applies to APEX 20KC devices.

Table 10. APEX 20KC MultiVolt I/O Support									
V _{CCIO} (V)		Input Si	gnals (V)		Output Signals (V)				
	1.8	2.5	3.3	5.0	1.8	2.5	3.3	5.0	
1.8	~	🗸 (1)	🗸 (1)		\checkmark				
2.5		~	 (1) 			 ✓ 			
3.3		\checkmark	\checkmark	 (2) 		✓ (3)	\checkmark	\checkmark	

Table 10 summarizes APEX 20KC MultiVolt I/O support.

Notes to Table 10:

 The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case.

(2) An APEX 20KC device can be made 5.0-V tolerant with the addition of an external resistor and the PCI clamp diode enabled.

(3) When V_{CCIO} = 3.3 V, an APEX 20KC device can drive a 2.5-V device with 3.3-V tolerant inputs.

Altera Corporation

The APEX 20KC device instruction register length is 10 bits. The APEX 20KC device USERCODE register length is 32 bits. Tables 14 and 15 show the boundary-scan register length and device IDCODE information for APEX 20KC devices.

Table 14. APEX 20KC Boundary-Scan Register Length						
Device Boundary-Scan Register Length						
EP20K200C	1,164					
EP20K400C	1,506					
EP20K600C	1,806					
EP20K1000C	2,190					

Table 15. 32-Bit APEX 20KC Device IDCODE									
Device		IDCODE (32 Bits) (1)							
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer Identity (11 Bits)	1 (1 Bit) (2)					
EP20K200C	0000	1000 0010 0000 0000	000 0110 1110	1					
EP20K400C	0000	1000 0100 0000 0000	000 0110 1110	1					
EP20K600C	0000	1000 0110 0000 0000	000 0110 1110	1					
EP20K1000C	0000	1001 0000 0000 0000	000 0110 1110	1					

Notes to Table 15:

(1) The most significant bit (MSB) is on the left.

(2) The IDCODE's least significant bit (LSB) is always 1.

Figure 30 shows the timing requirements for the JTAG signals.

APEX 20KC Programmable Logic Device Data Sheet

Table 20. APEX 20KC Device Capacitance Note (10)							
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF		
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF		
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF		

Notes to Tables 17 through 20:

(1) See the Operating Requirements for Altera Devices Data Sheet.

- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 4.6 V for input currents less than 100 mA and time periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^\circ \text{ C}$, $V_{\text{CCINT}} = 1.8 \text{ V}$, and $V_{\text{CCIO}} = 1.8 \text{ V}$, 2.5 V or 3.3 V.
- (7) These values are specified under the APEX 20KC device recommended operating conditions, shown in Table 18 on page 55.
- (8) This value is specified for normal device operation. The value may vary during power-up.
- (9) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}.
- (10) Capacitance is sample-tested only.

Tables 21 through 35 list the DC operating specifications for the supported I/O standards. These tables list minimal specifications only; APEX 20KC devices may exceed these specifications.

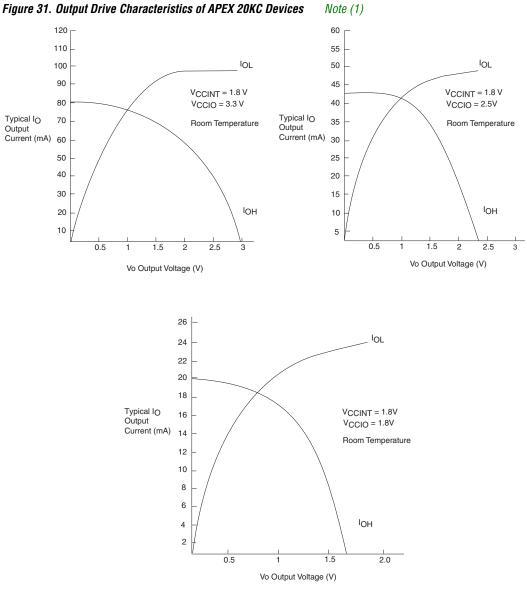
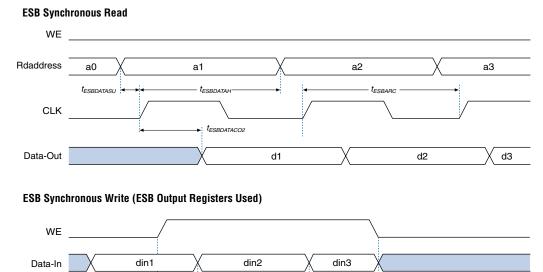

Table 21. LVTTL I/O Specifications								
Symbol	Parameter	Conditions	Minimum	Maximum	Units			
V _{CCIO}	Output supply voltage		3.0	3.6	V			
V _{IH}	High-level input voltage		2.0	V _{CCIO} + 0.3	V			
V _{IL}	Low-level input voltage		-0.3	0.8	V			
li	Input pin leakage current	V _{IN} = 0 V or 3.3 V	-10	10	μΑ			
V _{OH}	High-level output voltage	$I_{OH} = -12 \text{ mA},$ $V_{CCIO} = 3.0 \text{ V} (1)$	2.4		V			
V _{OL}	Low-level output voltage	I _{OL} = 12 mA, V _{CCIO} = 3.0 V <i>(2)</i>		0.4	V			

Table 32. SSTL-3 Class II Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units		
V _{CCIO}	I/O supply voltage		3.0	3.3	3.6	V		
V _{TT}	Termination voltage		V _{REF} - 0.05	V _{REF}	V _{REF} + 0.05	V		
V _{REF}	Reference voltage		1.3	1.5	1.7	V		
V _{IH}	High-level input voltage		V _{REF} + 0.2		V _{CCIO} + 0.3	V		
V _{IL}	Low-level input voltage		-0.3		V _{REF} – 0.2	V		
V _{OH}	High-level output voltage	I _{OH} = -16 mA <i>(1)</i>	V _{TT} + 0.8			V		
V _{OL}	Low-level output voltage	I _{OL} = 16 mA <i>(2)</i>			V _{TT} – 0.8	V		

Table 33. HSTL Class 1/0 Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units		
V _{CCIO}	I/O supply voltage		1.71	1.8	1.89	V		
V _{TT}	Termination voltage		V _{REF} – 0.05	V _{REF}	V _{REF} + 0.05	V		
V _{REF}	Reference voltage		0.68	0.75	0.90	V		
V _{IH}	High-level input voltage		V _{REF} + 0.1		$V_{CCIO} + 0.3$	V		
V _{IL}	Low-level input voltage		-0.3		V _{REF} – 0.1	V		
V _{OH}	High-level output voltage	I _{OH} = -8 mA (1)	V _{CCIO} - 0.4			V		
V _{OL}	Low-level output voltage	I _{OL} = 8 mA <i>(2)</i>			0.4	V		


Altera Corporation

Note to Figure 31:

(1) These are transient (AC) currents.

a2

dout1

t_{ESBDATASU}

t_{ESBDATAH}

t_{ESBSWC}

Figure 34. ESB Synchronous Timing Waveforms

Figure 35 shows the timing model for bidirectional I/O pin timing.

din1

a3

 $t_{ESBWEH} \longrightarrow$

t_{ESBDATACO1}

din2

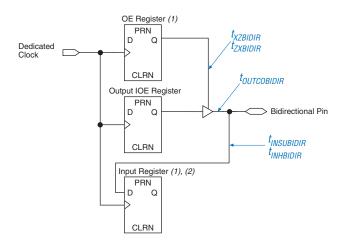
a2

din3

din2

Wraddress

CLK


Data-Out

a0

a1

dout0

t_{ESBWESU}

Figure 35. Synchronous Bidirectional Pin External Timing

Notes to Figure 35:

- The output enable and input registers are LE registers in the LAB adjacent to the (1)bidirectional pin. Use the "Output Enable Routing = Single-Pin" option in the Quartus II software to set the output enable register.
- Use the "Decrease Input Delay to Internal Cells = OFF" option in the Quartus II (2) software to set the LAB-adjacent input register. This maintains a zero hold time for LAB-adjacent registers while giving a fast, position-independent setup time. Set "Decrease Input Delay to Internal Cells = ON" and move the input register farther away from the bidirectional pin for a faster setup time with zero hold time. The exact position where zero hold occurs with the minimum setup time varies with device density and speed grade.

Tables 36 to 38 describes the f_{MAX} timing parameters shown in Figure 32. Table 39 describes the functional timing parameters.

Table 36. APEX 20KC f _{MAX} LE Timing Parameters					
Symbol	Parameter				
t _{SU}	LE register setup time before clock				
t _H	LE register hold time before clock				
t _{CO}	LE register clock-to-output delay				
t _{LUT}	LUT delay for data-in to data-out				

Symbol	-7 Spee	d Grade	-8 Speed Grade		-9 Speed Grade		Unit
	Min	Мах	Min	Max	Min	Max	1
t _{CH}	1.33		1.66		2.00		ns
t _{CL}	1.33		1.66		2.00		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	1.33		1.66		2.00		ns
t _{ESBCL}	1.33		1.66		2.00		ns
t _{ESBWP}	1.05		1.28		1.44		ns
t _{ESBRP}	0.87		1.06		1.19		ns

Table 54. EP20K400C External Timing Parameters								
Symbol	-7 Speed Grade		-8 Spec	-8 Speed Grade		-9 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{INSU}	1.37		1.52		1.64		ns	
t _{INH}	0.00		0.00		0.00		ns	
t _{оитсо}	2.00	4.25	2.00	4.61	2.00	5.03	ns	
t _{INSUPLL}	0.80		0.91		-		ns	
t _{INHPLL}	0.00		0.00		-		ns	
t _{OUTCOPLL}	0.50	2.27	0.50	2.55	-	-	ns	

Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	1	
t _{ESBARC}		1.48		1.57		1.65	ns	
t _{ESBSRC}		2.36		2.50		2.73	ns	
t _{ESBAWC}		2.93		3.46		3.86	ns	
t _{ESBSWC}		3.08		3.43		3.83	ns	
t _{ESBWASU}	0.51		0.50		0.52		ns	
t _{ESBWAH}	0.38		0.51		0.57		ns	
t _{ESBWDSU}	0.62		0.62		0.66		ns	
t _{ESBWDH}	0.38		0.51		0.57		ns	
t _{ESBRASU}	1.40		1.47		1.53		ns	
t _{ESBRAH}	0.00		0.07		0.18		ns	
t _{ESBWESU}	0.00		0.00		0.00		ns	
t _{ESBDATASU}	1.92		2.19		2.35		ns	
t _{ESBWADDRSU}	-0.20		-0.28		-0.32		ns	
t _{ESBRADDRSU}	0.00		-0.03		-0.05		ns	
t _{ESBDATACO1}		1.12		1.30		1.46	ns	
t _{ESBDATACO2}		2.11		2.53		2.84	ns	
t _{ESBDD}		2.56		2.96		3.30	ns	
t _{PD}		1.49		1.79		2.02	ns	
t _{PTERMSU}	0.61		0.69		0.77		ns	
t _{PTERMCO}		1.13		1.32		1.48	ns	

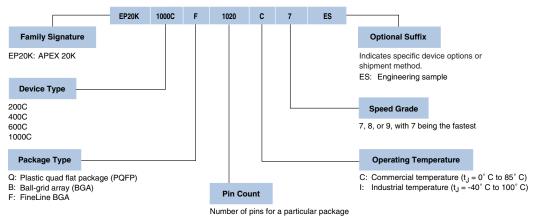
Table 64. EP20K1000C f _{MAX} Routing Delays								
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{F1-4}		0.15		0.17		0.19	ns	
t _{F5-20}		1.13		1.31		1.50	ns	
t _{F20+}		2.30		2.71		3.19	ns	

Table 69. Selectable I/O Standard Output Delays								
Symbol	-7 Speed Grade		-8 Speed Grad		-9 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	Min	
LVCMOS		0.00		0.00		0.00	ns	
LVTTL		0.00		0.00		0.00	ns	
2.5 V		0.00		0.00		0.00	ns	
1.8 V		1.18		1.41		1.57	ns	
PCI		-0.52		-0.53		-0.56	ns	
GTL+		-0.18		-0.29		-0.39	ns	
SSTL-3 Class I		-0.67		-0.71		-0.75	ns	
SSTL-3 Class II		-0.67		-0.71		-0.75	ns	
SSTL-2 Class I		-0.67		-0.71		-0.75	ns	
SSTL-2 Class II		-0.67		-0.71		-0.75	ns	
LVDS		-0.69		-0.70		-0.73	ns	
CTT		0.00		0.00		0.00	ns	
AGP		0.00		0.00		0.00	ns	

Power Consumption

To estimate device power consumption, use the interactive power estimator on the Altera web site at http://www.altera.com.

Configuration & Operation


The APEX 20KC architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The APEX architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

Before and during device configuration, all I/O pins are pulled to V_{CCIO} by a built-in weak pull-up resistor.

Figure 39. APEX 20KC Device Packaging Ordering Information

Revision History

The information contained in the *APEX 20KC Programmable Logic Device Data Sheet* version 2.2 supersedes information published in previous versions.

Version 2.2

The following changes were made to the *APEX 20KC Programmable Logic Device Data Sheet* version 2.2:

- Updated Tables 1.
- Updated notes in Tables 20.

Version 2.1

The following changes were made to the *APEX 20KC Programmable Logic Device Data Sheet* version 2.1:

- Removed figure on AC Test Conditions.
- Updated conditions in Tables 40 and 41.
- Added Tables 42 and 43.
- Updated V_{OD} in Table 27.
- Added Figures 36 through 38.
- Updated Tables 44 through 49.
- Updated Tables 62 through 67.
- Removed notes in Tables 44 through 67.
- Various textual changes throughout the document.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com **Applications Hotline:** (800) 800-EPLD **Customer Marketing:** (408) 544-7104 Literature Services: lit_req@altera.com

Copyright © 2002 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products

to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation