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support advanced driver-assistance systems (ADAS) and
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without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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APEX 20KC Programmable Logic Device Data Sheet
The LAB-wide control signals can be generated from the LAB local 
interconnect, global signals, and dedicated clock pins. The inherent low 
skew of the FastTrack interconnect enables it to be used for clock 
distribution. Figure 4 shows the LAB control signal generation circuit.

Figure 4. LAB Control Signal Generation

Notes to Figure 4:
(1) The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the 

LAB.
(2) The SYNCCLR signal can be generated by the local interconnect or global signals.

Logic Element

The LE, the smallest unit of logic in the APEX 20KC architecture, is 
compact and provides efficient logic usage. Each LE contains a four-input 
LUT, which is a function generator that can quickly implement any 
function of four variables. In addition, each LE contains a programmable 
register and carry and cascade chains. Each LE drives the local 
interconnect, MegaLAB interconnect, and FastTrack interconnect routing 
structures. See Figure 5.
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The APEX 20KC architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. A carry chain supports high-speed 
arithmetic functions such as counters and adders, while a cascade chain 
implements wide-input functions such as equality comparators with 
minimum delay. Carry and cascade chains connect LEs 1 through 10 in an 
LAB and all LABs in the same MegaLAB structure.

Carry Chain

The carry chain provides a very fast carry-forward function between LEs. 
The carry-in signal from a lower-order bit drives forward into the higher-
order bit via the carry chain, and feeds into both the LUT and the next 
portion of the carry chain. This feature allows the APEX 20KC architecture 
to implement high-speed counters, adders, and comparators of arbitrary 
width. Carry chain logic can be created automatically by the Quartus II 
Compiler during design processing, or manually by the designer during 
design entry. Parameterized functions such as DesignWare functions 
from Synopsys and library of parameterized modules (LPM) functions 
automatically take advantage of carry chains for the appropriate 
functions.

The Quartus II Compiler creates carry chains longer than ten LEs by 
automatically linking LABs together. For enhanced fitting, a long carry 
chain skips alternate LABs in a MegaLAB structure. A carry chain longer 
than one LAB skips either from an even-numbered LAB to the next even-
numbered LAB, or from an odd-numbered LAB to the next odd-
numbered LAB. For example, the last LE of the first LAB in the upper-left 
MegaLAB structure carries to the first LE of the third LAB in the 
MegaLAB structure.

Figure 6 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for accumulator functions. Another portion of the LUT and the carry chain 
logic generates the carry-out signal, which is routed directly to the carry-
in signal of the next-higher-order bit. The final carry-out signal is routed 
to an LE, where it is driven onto the local, MegaLAB, or FastTrack 
interconnect routing structures.
Altera Corporation  13
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The counter mode uses two 3-input LUTs: one generates the counter data, 
and the other generates the fast carry bit. A 2-to-1 multiplexer provides 
synchronous loading, and another AND gate provides synchronous 
clearing. If the cascade function is used by an LE in counter mode, the 
synchronous clear or load overrides any signal carried on the cascade 
chain. The synchronous clear overrides the synchronous load. LEs in 
arithmetic mode can drive out registered and unregistered versions of the 
LUT output.

Clear & Preset Logic Control

Logic for the register’s clear and preset signals is controlled by LAB-wide 
signals. The LE directly supports an asynchronous clear function. The 
Quartus II Compiler can use a NOT-gate push-back technique to emulate 
an asynchronous preset or to emulate simultaneous preset and clear or 
asynchronous load. However, this technique uses three additional LEs per 
register. All emulation is performed automatically when the design is 
compiled. Registers that emulate simultaneous preset and load will enter 
an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20KC devices 
provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the 
device. Use of this pin is controlled through an option in the Quartus II 
software that is set before compilation. The chip-wide reset overrides all 
other control signals. Registers using an asynchronous preset are preset 
when the chip-wide reset is asserted; this effect results from the inversion 
technique used to implement the asynchronous preset.

FastTrack Interconnect

In the APEX 20KC architecture, connections between LEs, ESBs, and I/O 
pins are provided by the FastTrack interconnect. The FastTrack 
interconnect is a series of continuous horizontal and vertical routing 
channels that traverse the device. This global routing structure provides 
predictable performance, even in complex designs. In contrast, the 
segmented routing in FPGAs requires switch matrices to connect a 
variable number of routing paths, increasing the delays between logic 
resources and reducing performance.

The FastTrack interconnect consists of row and column interconnect 
channels that span the entire device. The row interconnect routes signals 
throughout a row of MegaLAB structures; the column interconnect routes 
signals throughout a column of MegaLAB structures. When using the row 
and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, 
or ESB in a device. See Figure 9.
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Figure 9. APEX 20KC Interconnect Structure

A row line can be driven directly by LEs, IOEs, or ESBs in that row. 
Further, a column line can drive a row line, allowing an LE, IOE, or ESB to 
drive elements in a different row via the column and row interconnect. 
The row interconnect drives the MegaLAB interconnect to drive LEs, 
IOEs, or ESBs in a particular MegaLAB structure. 

A column line can be directly driven by LEs, IOEs, or ESBs in that column. 
A column line on a device’s left or right edge can also be driven by row 
IOEs. The column line is used to route signals from one row to another. A 
column line can drive a row line; it can also drive the MegaLAB 
interconnect directly, allowing faster connections between rows.

Figure 10 shows how the FastTrack interconnect uses the local 
interconnect to drive LEs within MegaLAB structures.
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Product-Term Logic

The product-term portion of the MultiCore architecture is implemented 
with the ESB. The ESB can be configured to act as a block of macrocells on 
an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local 
interconnect; therefore, it can be driven by the MegaLAB interconnect or 
the adjacent LAB. Also, nine ESB macrocells feed back into the ESB 
through the local interconnect for higher performance. Dedicated clock 
pins, global signals, and additional inputs from the local interconnect 
drive the ESB control signals.

In product-term mode, each ESB contains 16 macrocells. Each macrocell 
consists of two product terms and a programmable register. Figure 13 
shows the ESB in product-term mode.

Table 8. APEX 20KC Routing Scheme

Source Destination

Row 
I/O Pin

Column 
I/O Pin

LE ESB Local 
Interconnect

MegaLAB 
Interconnect

Row 
FastTrack 

Interconnect

Column 
FastTrack 

Interconnect

FastRow 
Interconnect

Row I/O pin v v v v

Column I/O 
pin

v v

LE v v v v

ESB v v v v

Local 
interconnect

v v v v

MegaLAB 
interconnect

v

Row 
FastTrack 
interconnect

v v

Column 
FastTrack 
interconnect

v v

FastRow 
interconnect

v
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ESBs can implement synchronous RAM, which is easier to use than 
asynchronous RAM. A circuit using asynchronous RAM must generate 
the RAM write enable (WE) signal, while ensuring that its data and address 
signals meet setup and hold time specifications relative to the WE signal. 
In contrast, the ESB’s synchronous RAM generates its own WE signal and 
is self-timed with respect to the global clock. Circuits using the ESB’s self-
timed RAM must only meet the setup and hold time specifications of the 
global clock.

ESB inputs are driven by the adjacent local interconnect, which in turn can 
be driven by the FastTrack or MegaLAB interconnect. Because the ESB can 
be driven by the local interconnect, an adjacent LE can drive it directly for 
fast memory access. ESB outputs drive the FastTrack and MegaLAB 
interconnects. In addition, ten ESB outputs, nine of which are unique 
output lines, drive the local interconnect for fast connection to adjacent 
LEs or for fast feedback product-term logic.

When implementing memory, each ESB can be configured in any of the 
following sizes: 128 × 16, 256 × 8, 512 × 4, 1,024 × 2, or 2,048 × 1. By 
combining multiple ESBs, the Quartus II software implements larger 
memory blocks automatically. For example, two 128 × 16 RAM blocks can 
be combined to form a 128 × 32 RAM block, and two 512 × 4 RAM blocks 
can be combined to form a 512 × 8 RAM block. Memory performance does 
not degrade for memory blocks up to 2,048 words deep. Each ESB can 
implement a 2,048-word-deep memory; the ESBs are used in parallel, 
eliminating the need for any external control logic and its associated 
delays.

To create a high-speed memory block that is more than 2,048 words deep, 
ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column 
of MegaLAB structures, and drives the MegaLAB interconnect and row 
and column FastTrack interconnect throughout the column. Each ESB 
incorporates a programmable decoder to activate the tri-state driver 
appropriately. For instance, to implement 8,192-word-deep memory, four 
ESBs are used. Eleven address lines drive the ESB memory, and two more 
drive the tri-state decoder. Depending on which 2,048-word memory 
page is selected, the appropriate ESB driver is turned on, driving the 
output to the tri-state line. The Quartus II software automatically 
combines ESBs with tri-state lines to form deeper memory blocks. The 
internal tri-state control logic is designed to avoid internal contention and 
floating lines. See Figure 18.
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Figure 23. APEX 20KC CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such 
as networking, communications, data compression, and cache 
management. 

The APEX 20KC on-chip CAM provides faster system performance than 
traditional discrete CAM. Integrating CAM and logic into the APEX 20KC 
device eliminates off-chip and on-chip delays, improving system 
performance.

When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or 
deeper CAM can be implemented by combining multiple CAMs with 
some ancillary logic implemented in LEs. The Quartus II software 
combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing “don’t care” bits into words of the memory. The 
“don’t care” bit can be used as a mask for CAM comparisons; any bit set 
to “don’t care” has no effect on matches.

The output of the CAM can be encoded or unencoded. When encoded, the 
ESB outputs an encoded address of the data’s location. For instance, if the 
data is located in address 12, the ESB output is 12. When unencoded, the 
ESB uses its 16 outputs to show the location of the data over two clock 
cycles. In this case, if the data is located in address 12, the 12th output line 
goes high. When using unencoded outputs, two clock cycles are required 
to read the output because a 16-bit output bus is used to show the status 
of 32 words. 

The encoded output is better suited for designs that ensure duplicate data 
is not written into the CAM. If duplicate data is written into two locations, 
the CAM’s output will be incorrect. If the CAM may contain duplicate 
data, the unencoded output is a better solution; CAM with unencoded 
outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be 
written during system operation. In most cases, two clock cycles are 
required to write each word into CAM. When “don’t care” bits are used, 
a third clock cycle is required.

wraddress[]
data[]
wren
inclock
inclocken
inaclr

data_address[]
match

outclock
outclocken

outaclr
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f For more information on APEX 20KC devices and CAM, see Application 
Note 119 (Implementing High-Speed Search Applications with APEX CAM).

Driving Signals to the ESB

ESBs provide flexible options for driving control signals. Different clocks 
can be used for the ESB inputs and outputs. Registers can be inserted 
independently on the data input, data output, read address, write 
address, WE, and RE signals. The global signals and the local interconnect 
can drive the WE and RE signals. The global signals, dedicated clock pins, 
and local interconnect can drive the ESB clock signals. Because the LEs 
drive the local interconnect, the LEs can control the WE and RE signals and 
the ESB clock, clock enable, and asynchronous clear signals. Figure 24 
shows the ESB control signal generation logic.

Figure 24. ESB Control Signal Generation

An ESB is fed by the local interconnect, which is driven by adjacent LEs 
(for high-speed connection to the ESB) or the MegaLAB interconnect. The 
ESB can drive the local, MegaLAB, or FastTrack interconnect routing 
structure to drive LEs and IOEs in the same MegaLAB structure or 
anywhere in the device.
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Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can 
implement logic functions when it is programmed with a read-only 
pattern during configuration, creating a large LUT. With LUTs, 
combinatorial functions are implemented by looking up the results, rather 
than by computing them. This implementation of combinatorial functions 
can be faster than using algorithms implemented in general logic, a 
performance advantage that is further enhanced by the fast access times 
of ESBs. The large capacity of ESBs enables designers to implement 
complex functions in one logic level without the routing delays associated 
with linked LEs or distributed RAM blocks. Parameterized functions such 
as LPM functions can take advantage of the ESB automatically. Further, 
the Quartus II software can implement portions of a design with ESBs 
where appropriate.

Programmable Speed/Power Control

APEX 20KC ESBs offer a high-speed mode that supports very fast 
operation on an ESB-by-ESB basis. When high speed is not required, this 
feature can be turned off to reduce the ESB’s power dissipation by up to 
50%. ESBs that run at low power incur a nominal timing delay adder. This 
Turbo BitTM option is available for ESBs that implement product-term 
logic or memory functions. An ESB that is not used will be powered down 
so that it does not consume DC current.

Designers can program each ESB in the APEX 20KC device for either 
high-speed or low-power operation. As a result, speed-critical paths in the 
design can run at high speed, while the remaining paths operate at 
reduced power.

I/O Structure The APEX 20KC IOE contains a bidirectional I/O buffer and a register 
that can be used either as an input register for external data requiring fast 
setup times or as an output register for data requiring fast clock-to-output 
performance. IOEs can be used as input, output, or bidirectional pins. 
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The register in the APEX 20KC IOE can be programmed to power-up high 
or low after configuration is complete. If it is programmed to power-up 
low, an asynchronous clear can control the register. If it is programmed to 
power-up high, an asynchronous preset can control the register. This 
feature is useful for cases where the APEX 20KC device controls an active-
low input or another device; it prevents inadvertent activation of the input 
upon power-up. 

Figure 25 shows how fast bidirectional I/O pins are implemented in 
APEX 20KC devices. This feature is useful for cases where the APEX 20KC 
device controls an active-low input or another device; it prevents 
inadvertent activation of the input upon power-up. 
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Clock Multiplication

The APEX 20KC ClockBoost circuit can multiply or divide clocks by a 
programmable number. The clock can be multiplied by m/(n × k), where 
m and k range from 2 to 160 and n ranges from 1 to 16. Clock multiplication 
and division can be used for time-domain multiplexing and other 
functions, which can reduce design LE requirements.

Clock Phase & Delay Adjustment

The APEX 20KC ClockShift feature allows the clock phase and delay to be 
adjusted. The clock phase can be adjusted by 90° steps. The clock delay 
can be adjusted to increase or decrease the clock delay by an arbitrary 
amount, up to one clock period.

LVDS Support

All APEX 20KC devices support differential LVDS buffers on the input 
and output clock signals that interface with external devices. This is 
controlled in the Quartus II software by assigning the clock pins with an 
LVDS I/O standard assignment.

Two high-speed PLLs are designed to support the LVDS interface. When 
using LVDS, the I/O clock runs at a slower rate than the data transfer rate. 
Thus, PLLs are used to multiply the I/O clock internally to capture the 
LVDS data. For example, an I/O clock may run at 105 MHz to support 
840 Mbps LVDS data transfer. In this example, the PLL multiplies the 
incoming clock by eight to support the high-speed data transfer. You can 
use PLLs in EP20K400C and larger devices for high-speed LVDS 
interfacing.

Lock Signals

The APEX 20KC ClockLock circuitry supports individual LOCK signals. 
The LOCK signal drives high when the ClockLock circuit has locked onto 
the input clock. The LOCK signals are optional for each ClockLock circuit; 
when not used, they are I/O pins.
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Notes to Tables 11 and 12:
(1) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications 

are not met, creating an erroneous clock within the device.
(2) The maximum lock time is 40 µs or 2,000 input clock cycles, whichever occurs first.
(3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs remain 

disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins 
once the CLKLK_ENA pin goes high in user mode.

(4) The PLL VCO operating range is 200 MHz ≤ fVCO ≤ 840 MHz for LVDS mode.
(5) Contact Altera Applications for information on these parameters.

SignalTap 
Embedded 
Logic Analyzer

APEX 20KC devices include device enhancements to support the 
SignalTap embedded logic analyzer. By including this circuitry, the 
APEX 20KC device provides the ability to monitor design operation over 
a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer 
can analyze internal logic at speed without bringing internal signals to the 
I/O pins. This feature is particularly important for advanced packages 
such as FineLine BGA packages because adding a connection to a pin 
during the debugging process can be difficult after a board is designed 
and manufactured.

fCLOCK1_EXT Output clock frequency for 
external clock1 output

3.3-V LVTTL (5) (5) (5) (5) MHz

2.5-V LVTTL (5) (5) (5) (5) MHz

1.8-V LVTTL (5) (5) (5) (5) MHz

GTL+ (5) (5) (5) (5) MHz

SSTL-2 Class I (5) (5) (5) (5) MHz

SSTL-2 Class II (5) (5) (5) (5) MHz

SSTL-3 Class I (5) (5) (5) (5) MHz

SSTL-3 Class II (5) (5) (5) (5) MHz

LVDS (5) (5) (5) (5) MHz

fIN Input clock frequency 3.3-V LVTTL (5) (5) (5) (5) MHz

2.5-V LVTTL (5) (5) (5) (5) MHz

1.8-V LVTTL (5) (5) (5) (5) MHz

GTL+ (5) (5) (5) (5) MHz

SSTL-2 Class I (5) (5) (5) (5) MHz

SSTL-2 Class II (5) (5) (5) (5) MHz

SSTL-3 Class I (5) (5) (5) (5) MHz

SSTL-3 Class II (5) (5) (5) (5) MHz

LVDS (5) (5) (5) (5) MHz

Table 12. APEX 20KC Clock Input & Output Parameters  (Part 2 of 2) Note (1)

Symbol Parameter I/O Standard -7 Speed Grade -8 Speed Grade Units

Min Max Min Max
50 Altera Corporation



APEX 20KC Programmable Logic Device Data Sheet
Table 22. LVCMOS I/O Specifications

Symbol Parameter Conditions Minimum Maximum Units

VCCIO Power supply 
voltage range

3.0 3.6 V

VIH High-level input 
voltage

2.0 VCCIO + 0.3 V

VIL Low-level input 
voltage

–0.3 0.8 V

II Input pin leakage 
current

VIN = 0 V or 3.3 V –10 10 µA

VOH High-level output 
voltage

VCCIO = 3.0 V 
IOH = –0.1 mA (1)

VCCIO – 0.2 V

VOL Low-level output 
voltage

VCCIO = 3.0 V
IOL = 0.1 mA (2)

0.2 V

Table 23. 2.5-V I/O Specifications   

Symbol Parameter Conditions Minimum Maximum Units

VCCIO Output supply 
voltage

2.375 2.625 V

VIH High-level input 
voltage

1.7 VCCIO + 0.3 V

VIL Low-level input 
voltage

–0.3 0.8 V

II Input pin leakage 
current

VIN = 0 V or 3.3 V –10 10 µA

VOH High-level output 
voltage

IOH = –0.1 mA (1) 2.1 V

IOH = –1 mA (1) 2.0 V

IOH = –2 mA (1) 1.7 V

VOL Low-level output 
voltage

IOL = 0.1 mA (2) 0.2 V

IOL = 1 mA (2) 0.4 V

IOL = 2 mA (2) 0.7 V
Altera Corporation  57



APEX 20KC Programmable Logic Device Data Sheet
Table 30. SSTL-2 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 2.375 2.5 2.625 V

VTT Termination voltage VREF – 0.04 VREF VREF + 0.04 V

VREF Reference voltage 1.15 1.25 1.35 V

VIH High-level input 
voltage

VREF + 0.18 VCCIO + 0.3 V

VIL Low-level input 
voltage

–0.3 VREF – 0.18 V

VOH High-level output 
voltage

IOH = –15.2 mA (1) VTT + 0.76 V

VOL Low-level output 
voltage

IOL = 15.2 mA (2) VTT – 0.76 V

Table 31. SSTL-3 Class I Specifications

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 3.0 3.3 3.6 V

VTT Termination voltage VREF – 0.05 VREF VREF + 0.05 V

VREF Reference voltage 1.3 1.5 1.7 V

VIH High-level input 
voltage

VREF + 0.2 VCCIO + 0.3 V

VIL Low-level input 
voltage

–0.3 VREF – 0.2 V

VOH High-level output 
voltage

IOH = –8 mA (1) VTT + 0.6 V

VOL Low-level output 
voltage

IOL = 8 mA (2) VTT – 0.6 V
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Table 32. SSTL-3 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 3.0 3.3 3.6 V

VTT Termination voltage VREF – 0.05 VREF VREF + 0.05 V

VREF Reference voltage 1.3 1.5 1.7 V

VIH High-level input 
voltage

VREF + 0.2 VCCIO + 0.3 V

VIL Low-level input 
voltage

–0.3 VREF – 0.2 V

VOH High-level output 
voltage

IOH = –16 mA (1) VTT + 0.8 V

VOL Low-level output 
voltage

IOL = 16 mA (2) VTT – 0.8 V

Table 33. HSTL Class I I/O Specifications

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 1.71 1.8 1.89 V

VTT Termination voltage VREF – 0.05 VREF VREF + 0.05 V

VREF Reference voltage 0.68 0.75 0.90 V

VIH High-level input 
voltage

VREF + 0.1 VCCIO + 0.3 V

VIL Low-level input 
voltage

–0.3 VREF – 0.1 V

VOH High-level output 
voltage

IOH = –8 mA (1) VCCIO – 0.4 V

VOL Low-level output 
voltage

IOL = 8 mA (2) 0.4 V
62 Altera Corporation



APEX 20KC Programmable Logic Device Data Sheet
Table 37. APEX 20KC fMAX ESB Timing Parameters

Symbol Parameter

tESBARC ESB asynchronous read cycle time

tESBSRC ESB synchronous read cycle time

tESBAWC ESB asynchronous write cycle time

tESBSWC ESB synchronous write cycle time

tESBWASU ESB write address setup time with respect to WE

tESBWAH ESB write address hold time with respect to WE

tESBWDSU ESB data setup time with respect to WE

tESBWDH ESB data hold time with respect to WE

tESBRASU ESB read address setup time with respect to RE

tESBRAH ESB read address hold time with respect to RE

tESBWESU ESB WE setup time before clock when using input register

tESBDATASU ESB data setup time before clock when using input register

tESBWADDRSU ESB write address setup time before clock when using input registers

tESBRADDRSU ESB read address setup time before clock when using input registers

tESBDATACO1 ESB clock-to-output delay when using output registers

tESBDATACO2 ESB clock-to-output delay without output registers

tESBDD ESB data-in to data-out delay for RAM mode

tPD ESB macrocell input to non-registered output

tPTERMSU ESB macrocell register setup time before clock

tPTERMCO ESB macrocell register clock-to-output delay 

Table 38. APEX 20KC fMAX Routing Delays

Symbol Parameter

tF1-4 Fan-out delay estimate using local interconnect

tF5-20 Fan-out delay estimate using MegaLab interconnect

tF20+ Fan-out delay estimate using FastTrack interconnect
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Figure 36. AC Test Conditions for LVTTL, 2.5 V, 1.8 V, PCI & GTL+ I/O Standards

Figure 37. AC Test Conditions for SSTL-3 Class I & II I/O Standards

Figure 38. AC Test Conditions for the LVDS I/O Standard
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Table 46. EP20K200C fMAX Routing Delays

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tF1-4 0.15 0.17 0.20 ns

tF5-20 0.81 0.94 1.12 ns

tF20+ 0.98 1.13 1.35 ns

Table 47. EP20K200C Minimum Pulse Width Timing Parameters

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tCH 1.33 1.66 2.00 ns

tCL 1.33 1.66 2.00 ns

tCLRP 0.20 0.20 0.20 ns

tPREP 0.20 0.20 0.20 ns

tESBCH 1.33 1.66 2.00 ns

tESBCL 1.33 1.66 2.00 ns

tESBWP 1.05 1.28 1.44 ns

tESBRP 0.87 1.06 1.19 ns

Table 48. EP20K200C External Timing Parameters

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tINSU 1.23 1.26 1.33 ns

tINH 0.00 0.00 0.00 ns

tOUTCO 2.00 3.79 2.00 4.31 2.00 4.70 ns

tINSUPLL 0.81 0.92 - ns

tINHPLL 0.00 0.00 - ns

tOUTCOPLL 0.50 2.36 0.50 2.62 - - ns
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Table 53. EP20K400C Minimum Pulse Width Timing Parameters

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tCH 1.33 1.66 2.00 ns

tCL 1.33 1.66 2.00 ns

tCLRP 0.20 0.20 0.20 ns

tPREP 0.20 0.20 0.20 ns

tESBCH 1.33 1.66 2.00 ns

tESBCL 1.33 1.66 2.00 ns

tESBWP 1.05 1.28 1.44 ns

tESBRP 0.87 1.06 1.19 ns

Table 54. EP20K400C External Timing Parameters

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tINSU 1.37 1.52 1.64 ns

tINH 0.00 0.00 0.00 ns

tOUTCO 2.00 4.25 2.00 4.61 2.00 5.03 ns

tINSUPLL 0.80 0.91 - ns

tINHPLL 0.00 0.00 - ns

tOUTCOPLL 0.50 2.27 0.50 2.55 - - ns
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Table 55. EP20K400C External Bidirectional Timing Parameters 

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 1.29 1.67 1.92 ns

tINHBIDIR 0.00 0.00 0.00 ns

tOUTCOBIDIR 2.00 4.25 2.00 4.61 2.00 5.03 ns

tXZBIDIR 6.55 6.97 7.35 ns

tZXBIDIR 6.55 6.97 7.36 ns

tINSUBIDIRPLL 3.22 3.80 - ns

tINHBIDIRPLL 0.00 0.00 - ns

tOUTCOBIDIRPLL 0.50 2.27 0.50 2.55 - - ns

tXZBIDIRPLL 4.62 4.84 - ns

tZXBIDIRPLL 4.62 4.84 - ns

Table 56. EP20K600C fMAX LE Timing Parameters

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tSU 0.01 0.01 0.01 ns

tH 0.10 0.10 0.10 ns

tCO 0.27 0.30 0.32 ns

tLUT 0.65 0.78 0.92 ns
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