Intel - EP20K400CF672C7 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	1664
Number of Logic Elements/Cells	16640
Total RAM Bits	212992
Number of I/O	488
Number of Gates	1052000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k400cf672c7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Advanced interconnect structure
 - Copper interconnect for high performance
 - Four-level hierarchical FastTrack[®] interconnect structure providing fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
 - Interleaved local interconnect allows one LE to drive 29 other LEs through the fast local interconnect
- Advanced software support
 - Software design support and automatic place-and-route provided by the Altera[®] Quartus[™] II development system for Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations
 - Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions optimized for APEX 20KC architecture available
 - NativeLink[™] integration with popular synthesis, simulation, and timing analysis tools
 - Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation
 - Supports popular revision-control software packages including PVCS, RCS, and SCCS

Table 3. APE	Notes (1), (2)			
Device	208-Pin PQFP	240-Pin PQFP	356-Pin BGA	652-Pin BGA
EP20K200C	136	168	271	
EP20K400C				488
EP20K600C				488
EP20K1000C				488

Table 7. APEX 20KC Device Features (Part 2 of 2)					
Feature	APEX 20KC Devices				
I/O standard support	1.8-V, 2.5-V, 3.3-V, 5.0-V I/O				
	3.3-V PCI and PCI-X				
	3.3-V AGP				
	СТТ				
	GTL+				
	LVCMOS				
	LVTTL				
	True-LVDS [™] and LVPECL data pins (in				
	EP20K400C and larger devices)				
	LVDS and LVPECL clock pins (in all devices)				
	LVDS and LVPECL data pins up to 156 Mbps				
	(in EP20K200C devices)				
	HSTL Class I				
	PCI-X				
	SSTL-2 Class I and II				
	SSTL-3 Class I and II				
Memory support	CAM				
	Dual-port RAM				
	FIFO				
	RAM				
	ROM				

All APEX 20KC devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault-coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20KC devices can be configured on the board for the specific functionality required.

APEX 20KC devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC16, EPC8, EPC4, EPC2, and EPC1 configuration devices and one-time programmable (OTP) EPC1 configuration devices, which configure APEX 20KC devices via a serial data stream. Moreover, APEX 20KC devices contain an optimized interface that permits microprocessors to configure APEX 20KC devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20KC devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy.

MegaLAB Structure

APEX 20KC devices are constructed from a series of MegaLAB[™] structures. Each MegaLAB structure contains 16 logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. In EP20K1000C devices, MegaLAB structures contain 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure.

Figure 2. MegaLAB Structure

Logic Array Block

Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20KC LAB.

APEX 20KC devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas, minimizing the use of the MegaLAB and FastTrack interconnect and providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect. The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit.

Figure 4. LAB Control Signal Generation

Notes to Figure 4:

- The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the LAB.
- (2) The SYNCCLR signal can be generated by the local interconnect or global signals.

Logic Element

The LE, the smallest unit of logic in the APEX 20KC architecture, is compact and provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack interconnect routing structures. See Figure 5.

Figure 6. APEX 20KC Carry Chain

Cascade Chain

With the cascade chain, the APEX 20KC architecture can implement functions with a very wide fan-in. Adjacent LUTs can compute portions of a function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a short cascade delay. Cascade chain logic can be created automatically by the Quartus II Compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than ten LEs are implemented automatically by linking LABs together. For enhanced fitting, a long cascade chain skips alternate LABs in a MegaLAB structure. A cascade chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 7 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in.

The counter mode uses two 3-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

Clear & Preset Logic Control

Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset or to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20KC devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

FastTrack Interconnect

In the APEX 20KC architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack interconnect. The FastTrack interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

Table 8. APEX 20KC Routing Scheme									
Source	Destination								
	Row I/O Pin	Column I/O Pin	LE	ESB	Local Interconnect	MegaLAB Interconnect	Row FastTrack Interconnect	Column FastTrack Interconnect	FastRow Interconnect
Row I/O pin					\checkmark	\checkmark	~	\checkmark	
Column I/O pin								~	~
LE					\checkmark	~	~	\checkmark	
ESB					 Image: A start of the start of	~	~	\checkmark	
Local interconnect	~	~	~	~					
MegaLAB interconnect					~				
Row FastTrack interconnect						~		~	
Column FastTrack interconnect						~	~		
FastRow interconnect					~				

Product-Term Logic

The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals.

In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode.

ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's selftimed RAM must only meet the setup and hold time specifications of the global clock.

ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the FastTrack or MegaLAB interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the FastTrack and MegaLAB interconnects. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic.

When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays.

To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18.

Open-drain output pins on APEX 20KC devices (with a series resistor and a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a V_{IH} of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tristate; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

ClockLock & ClockBoost Features

APEX 20KC devices support the ClockLock and ClockBoost clock management features, which are implemented with PLLs. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost circuitry allows the designer to distribute a low-speed clock and multiply that clock on-device. APEX 20KC devices include a high-speed clock tree; unlike ASICs, the user does not have to design and optimize the clock tree. The ClockLock and ClockBoost features work in conjunction with the APEX 20KC device's high-speed clock to provide significant improvements in system performance and bandwidth. APEX 20KC devices in -7 and -8 speed grades have PLLs and support the ClockLock and ClockBoost features.

The ClockLock and ClockBoost features in APEX 20KC devices are enabled through the Quartus II software. External devices are not required to use these features.

APEX 20KC ClockLock Feature

APEX 20KC devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200C devices have two PLLs; the EP20K400C and larger devices have four PLLs.

The following sections describe some of the features offered by the APEX 20KC PLLs.

External PLL Feedback

The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KC device and another high-speed device, such as SDRAM.

Table 12. APEX 20KC Clock Input & Output Parameters (Part 2 of 2) Note (1)								
Symbol	Parameter	I/O Standard -7 Speed Grade		-8 Spee	ed Grade	Units		
			Min	Max	Min	Max		
f _{CLOCK1_EXT}	Output clock frequency for	3.3-V LVTTL	(5)	(5)	(5)	(5)	MHz	
	external clock1 output	2.5-V LVTTL	(5)	(5)	(5)	(5)	MHz	
		1.8-V LVTTL	(5)	(5)	(5)	(5)	MHz	
		GTL+	(5)	(5)	(5)	(5)	MHz	
		SSTL-2 Class I	(5)	(5)	(5)	(5)	MHz	
		SSTL-2 Class II	(5)	(5)	(5)	(5)	MHz	
		SSTL-3 Class I	(5)	(5)	(5)	(5)	MHz	
		SSTL-3 Class II	(5)	(5)	(5)	(5)	MHz	
		LVDS	(5)	(5)	(5)	(5)	MHz	
f _{IN}	Input clock frequency	3.3-V LVTTL	(5)	(5)	(5)	(5)	MHz	
		2.5-V LVTTL	(5)	(5)	(5)	(5)	MHz	
		1.8-V LVTTL	(5)	(5)	(5)	(5)	MHz	
		GTL+	(5)	(5)	(5)	(5)	MHz	
		SSTL-2 Class I	(5)	(5)	(5)	(5)	MHz	
		SSTL-2 Class II	(5)	(5)	(5)	(5)	MHz	
		SSTL-3 Class I	(5)	(5)	(5)	(5)	MHz	
		SSTL-3 Class II	(5)	(5)	(5)	(5)	MHz	
		LVDS	(5)	(5)	(5)	(5)	MHz	

Notes to Tables 11 and 12:

- (1) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.
- (2) The maximum lock time is 40 µs or 2,000 input clock cycles, whichever occurs first.
- (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs remain disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK_ENA pin goes high in user mode.
- (4) The PLL VCO operating range is 200 MHz $\leq f_{VCO} \leq$ 840 MHz for LVDS mode.

(5) Contact Altera Applications for information on these parameters.

SignalTap Embedded Logic Analyzer

APEX 20KC devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20KC device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured.

Jam Programming & Test Language Specification

Generic Testing

Each APEX 20KC device is functionally tested. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% yield. AC test measurements for APEX 20KC devices are made under conditions equivalent to those defined in the "Timing Model" section on page 65. Multiple test patterns can be used to configure devices during all stages of the production flow. AC test criteria include:

- Power supply transients can affect AC measurements.
- Simultaneous transitions of multiple outputs should be avoided for accurate measurement.
- Threshold tests must not be performed under AC conditions.
- Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result.

Operating Conditions

Tables 17 through 20 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 1.8-V APEX 20KC devices.

Table 1	Table 17. APEX 20KC Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	2.5	V					
V _{CCIO}			-0.5	4.6	V					
VI	DC input voltage		-0.5	4.6	V					
I _{OUT}	DC output current, per pin		-25	25	mA					
T _{STG}	Storage temperature	No bias	-65	150	°C					
T _{AMB}	Ambient temperature	Under bias	-65	135	°C					
ТJ	Junction temperature	PQFP, RQFP, TQFP, and BGA		135	°C					
		packages, under bias								
		Ceramic PGA packages, under bias		150	°C					

Table 1	Table 18. APEX 20KC Device Recommended Operating Conditions									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	1.71 (1.71)	1.89 (1.89)	V					
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V					
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V					
	Supply voltage for output buffers, 1.8-V operation	(3), (4)	1.71 (1.71)	1.89 (1.89)	V					
VI	Input voltage	(2), (5)	-0.5	4.1	V					
Vo	Output voltage		0	V _{CCIO}	V					
ТJ	Operating junction temperature	For commercial use	0	85	°C					
		For industrial use	-40	100	°C					
t _R	Input rise time (10% to 90%)			40	ns					
t _F	Input fall time (90% to 10%)			40	ns					

Table 19. APEX 20KC Device DC Operating Conditions Notes (6), (7)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
I _I	Input pin leakage current (8)	V _I = 3.6 to 0.0 V	-10		10	μA		
I _{OZ}	Tri-stated I/O pin leakage current (8)	V _O = 4.1 to -0.5 V	-10		10	μA		
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V _I = ground, no load, no toggling inputs, -7 speed grade		10		mA		
		V ₁ = ground, no load, no toggling inputs, -8, -9 speed grades		5		mA		
R _{CONF}	Value of I/O pin pull-up	V _{CCIO} = 3.0 V <i>(9)</i>	20		50	kΩ		
	resistor before and during	V _{CCIO} = 2.375 V (9)	30		80	kΩ		
	configuration	V _{CCIO} = 1.71 V (9)	60		150	kΩ		

P

DC operating specifications on APEX 20KC I/O standards are listed in Tables 21 to 35.

Table 30. SSTL-2 Class II Specifications									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units			
V _{CCIO}	I/O supply voltage		2.375	2.5	2.625	V			
V _{TT}	Termination voltage		V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04	V			
V _{REF}	Reference voltage		1.15	1.25	1.35	V			
V _{IH}	High-level input voltage		V _{REF} + 0.18		V _{CCIO} + 0.3	V			
V _{IL}	Low-level input voltage		-0.3		V _{REF} - 0.18	V			
V _{OH}	High-level output voltage	I _{OH} = -15.2 mA <i>(1)</i>	V _{TT} + 0.76			V			
V _{OL}	Low-level output voltage	I _{OL} = 15.2 mA <i>(2)</i>			V _{TT} – 0.76	V			

Table 31.	SSTL-3 (Class I	Specifications
-----------	----------	---------	----------------

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	I/O supply voltage		3.0	3.3	3.6	V
V _{TT}	Termination voltage		$V_{REF} - 0.05$	V_{REF}	V _{REF} + 0.05	V
V _{REF}	Reference voltage		1.3	1.5	1.7	V
V _{IH}	High-level input voltage		V _{REF} + 0.2		V _{CCIO} + 0.3	V
V _{IL}	Low-level input voltage		-0.3		V _{REF} - 0.2	V
V _{OH}	High-level output voltage	I _{OH} = -8 mA (1)	V _{TT} + 0.6			V
V _{OL}	Low-level output voltage	I _{OL} = 8 mA (2)			V _{TT} – 0.6	V

Table 32. SSTL-3 Class II Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units		
V _{CCIO}	I/O supply voltage		3.0	3.3	3.6	V		
V _{TT}	Termination voltage		V _{REF} - 0.05	V _{REF}	V _{REF} + 0.05	V		
V _{REF}	Reference voltage		1.3	1.5	1.7	V		
V _{IH}	High-level input voltage		V _{REF} + 0.2		V _{CCIO} + 0.3	V		
V _{IL}	Low-level input voltage		-0.3		V _{REF} - 0.2	V		
V _{OH}	High-level output voltage	I _{OH} = -16 mA (1)	V _{TT} + 0.8			V		
V _{OL}	Low-level output voltage	I _{OL} = 16 mA <i>(2)</i>			V _{TT} – 0.8	V		

Table 33. HSTL Class I I/O Specifications						
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	I/O supply voltage		1.71	1.8	1.89	V
V _{TT}	Termination voltage		$V_{REF} - 0.05$	V _{REF}	V _{REF} + 0.05	V
V _{REF}	Reference voltage		0.68	0.75	0.90	V
V _{IH}	High-level input voltage		V _{REF} + 0.1		V _{CCIO} + 0.3	V
V _{IL}	Low-level input voltage		-0.3		V _{REF} – 0.1	V
V _{OH}	High-level output voltage	I _{OH} = -8 mA (1)	V _{CCIO} – 0.4			V
V _{OL}	Low-level output voltage	I _{OL} = 8 mA (2)			0.4	V

Altera Corporation

Note to Figure 31:

(1) These are transient (AC) currents.

Figure 33. ESB Asynchronous Timing Waveforms

Table 41. APEX 20KC External Bidirectional Timing Parameters Note (1)				
Symbol	Parameter	Condition		
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at LAB-adjacent input register			
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at LAB-adjacent input register			
t _{OUTCOBIDIR}	Clock-to-output delay for bidirectional pins with global clock at IOE (2) register			
t _{XZBIDIR}	Synchronous output enable register to output buffer disable delay (2)			
tZXBIDIR	Synchronous output enable register to output buffer enable delay (2)			
^t INSUBIDIRPLL	Setup time for bidirectional pins with PLL clock at LAB-adjacent input register			
t _{INHBIDIRPLL}	Hold time for bidirectional pins with PLL clock at LAB-adjacent input register			
t _{OUTCOBIDIRPLL}	Clock-to-output delay for bidirectional pins with PLL clock at IOE register	(2)		
t _{XZBIDIRPLL}	Synchronous output enable register to output buffer disable delay with PLL	(2)		
t _{ZXBIDIRPLL}	Synchronous output enable register to output buffer enable delay with PLL	(2)		

Notes to Tables 40 and 41:

(1) These timing parameters are sample-tested only.

(2) For more information, refer to Table 43.

Tables 42 and 43 define the timing delays for each I/O standard. Some output standards require test load circuits for AC timing measurements as shown in Figures 36 through 38.

Table 42. APEX 20KC Selectable I/O Standard Input Adder Delays (Part 1 of 2) Note (1)				
Symbol	Parameter	Condition		
LVCMOS	Input adder delay for the LVCMOS I/O standard			
LVTTL	Input adder delay for the LVTTL I/O standard			
2.5 V	Input adder delay for the 2.5-V I/O standard			
1.8 V	Input adder delay for the 1.8-V I/O standard			
PCI	Input adder delay for the PCI I/O standard			
GTI+	Input adder delay for the GTL+ I/O standard			
SSTL-3 Class I	Input adder delay for the SSTL-3 Class I I/O standard			
SSTL-3 Class II	Input adder delay for the SSTL-3 Class II I/O standard			
SSTL-2 Class I	Input adder delay for the SSTL -2 Class I I/O standard			
SSTL-2 Class II	Input adder delay for the SSTL -2 Class II I/O standard			

Altera Corporation

Table 61. EP20K600C External Bidirectional Timing Parameters							
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	2.03		2.57		2.97		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
t _{OUTCOBIDIR}	2.00	4.29	2.00	4.77	2.00	5.11	ns
t _{XZBIDIR}		8.31		9.14		9.76	ns
t _{ZXBIDIR}		8.31		9.14		9.76	ns
t _{INSUBIDIRPLL}	3.99		4.77		-		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
t _{OUTCOBIDIRPLL}	0.50	2.37	0.50	2.63	-	-	ns
t _{XZBIDIRPLL}		6.35		6.94		-	ns
t _{ZXBIDIRPLL}		6.35		6.94		-	ns

Table 62. EP20K1000C f _{MAX} LE Timing Microparameters							
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.01		0.01		0.01		ns
t _H	0.10		0.10		0.10		ns
t _{CO}		0.27		0.30		0.32	ns
t _{LUT}		0.66		0.79		0.92	ns

Γ

٦

SRAM configuration elements allow APEX 20KC devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming user-mode operation. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for an APEX 20KC device can be loaded with one of five configuration schemes (see Table 70), chosen on the basis of the target application. An EPC16, EPC2, or EPC1 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20KC device. When a configuration device is used, the system can configure automatically at system power-up.

Multiple APEX 20KC devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 70. Data Sources for Configuration				
Configuration Scheme	Data Source			
Configuration device	EPC16, EPC8, EPC4, EPC2, or EPC1 configuration device			
Passive serial (PS)	MasterBlaster or ByteBlasterMV download cable or serial data source			
Passive parallel asynchronous (PPA)	Parallel data source			
Passive parallel synchronous (PPS)	Parallel data source			
JTAG	MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam Standard Test and Programming Language (STAPL) or JBC File			

For more information on configuration, see *Application Note 116* (*Configuring SRAM-Based LUT Devices*).

Device Pin- Outs	See the Altera web site (http://www.altera.com) or the <i>Altera Digital Library</i> for pin-out information.
Ordering Information	Figure 39 describes the ordering codes for Stratix devices. For more information on a specific package, refer to the <i>Altera Device Package Information Data Sheet</i> .