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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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MegaLAB Structure

APEX 20KC devices are constructed from a series of MegaLABTM 
structures. Each MegaLAB structure contains 16 logic array blocks (LABs), 
one ESB, and a MegaLAB interconnect, which routes signals within the 
MegaLAB structure. In EP20K1000C devices, MegaLAB structures 
contain 24 LABs. Signals are routed between MegaLAB structures and 
I/O pins via the FastTrack interconnect. In addition, edge LABs can be 
driven by I/O pins through the local interconnect. Figure 2 shows the 
MegaLAB structure.

Figure 2. MegaLAB Structure

Logic Array Block

Each LAB consists of 10 LEs, the LEs’ associated carry and cascade chains, 
LAB control signals, and the local interconnect. The local interconnect 
transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. 
The Quartus II Compiler places associated logic within an LAB or adjacent 
LABs, allowing the use of a fast local interconnect for high performance. 
Figure 3 shows the APEX 20KC LAB.

APEX 20KC devices use an interleaved LAB structure. This structure 
allows each LE to drive two local interconnect areas, minimizing the use 
of the MegaLAB and FastTrack interconnect and providing higher 
performance and flexibility. Each LE can drive 29 other LEs through the 
fast local interconnect.
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Figure 3. LAB Structure

Each LAB contains dedicated logic for driving control signals to its LEs 
and ESBs. The control signals include clock, clock enable, asynchronous 
clear, asynchronous preset, asynchronous load, synchronous clear, and 
synchronous load signals. A maximum of six control signals can be used 
at a time. Although synchronous load and clear signals are generally used 
when implementing counters, they can also be used with other functions. 

Each LAB can use two clocks and two clock enable signals. Each LAB’s 
clock and clock enable signals are linked (e.g., any LE in a particular LAB 
using CLK1 will also use CLKENA1). LEs with the same clock but different 
clock enable signals either use both clock signals in one LAB or are placed 
into separate LABs. 

If both the rising and falling edges of a clock are used in a LAB, both LAB-
wide clock signals are used.
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Figure 8. APEX 20KC LE Operating Modes

Notes to Figure 8:
(1) LEs in normal mode support register packing.
(2) There are two LAB-wide clock enables per LAB.
(3) When using the carry-in in normal mode, the packed register feature is unavailable.
(4) A register feedback multiplexer is available on LE1 of each LAB.
(5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for 

LEs other than the second LE in an LAB.
(6) The LAB-wide synchronous clear and LAB wide synchronous load affect all registers in an LAB.
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Normal Mode

The normal mode is suitable for general logic applications, combinatorial 
functions, or wide decoding functions that can take advantage of a 
cascade chain. In normal mode, four data inputs from the LAB local 
interconnect and the carry-in are inputs to a four-input LUT. The 
Quartus II Compiler automatically selects the carry-in or the DATA3 signal 
as one of the inputs to the LUT. The LUT output can be combined with the 
cascade-in signal to form a cascade chain through the cascade-out signal. 
LEs in normal mode support packed registers.

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, accumulators, and 
comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT 
computes a three-input function; the other generates a carry output. As 
shown in Figure 8, the first LUT uses the carry-in signal and two data 
inputs from the LAB local interconnect to generate a combinatorial or 
registered output. For example, when implementing an adder, this output 
is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT 
uses the same three signals to generate a carry-out signal, thereby creating 
a carry chain. The arithmetic mode also supports simultaneous use of the 
cascade chain. LEs in arithmetic mode can drive out registered and 
unregistered versions of the LUT output.

The Quartus II software implements parameterized functions that use the 
arithmetic mode automatically where appropriate; the designer does not 
need to specify how the carry chain will be used.

Counter Mode

The counter mode offers clock enable, counter enable, synchronous 
up/down control, synchronous clear, and synchronous load options. The 
counter enable and synchronous up/down control signals are generated 
from the data inputs of the LAB local interconnect. The synchronous clear 
and synchronous load options are LAB-wide signals that affect all 
registers in the LAB. Consequently, if any of the LEs in an LAB use the 
counter mode, other LEs in that LAB must be used as part of the same 
counter or be used for a combinatorial function. The Quartus II software 
automatically places any registers that are not used by the counter into 
other LABs.
18 Altera Corporation
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Figure 11 shows the intersection of a row and column interconnect, and 
how these forms of interconnects and LEs drive each other.

Figure 11. Driving the FastTrack Interconnect

APEX 20KC devices include an enhanced interconnect structure for faster 
routing of input signals with high fan-out. Column I/O pins can drive the 
FastRowTM interconnect, which routes signals directly into the local 
interconnect without having to drive through the MegaLAB interconnect. 
The FastRow lines traverse two MegaLAB structures. Also, these pins can 
drive the local interconnect directly for fast setup times. On EP20K400C 
and larger devices, the FastRow interconnect drives the two MegaLAB 
structures in the top left corner, the two MegaLAB structures in the two 
right corner, the two MegaLAB structures in the bottom left corner, and 
the two MegaLAB structures in the bottom right corner. On EP20K200C 
and smaller devices, FastRow interconnect drives the two MegaLAB 
structures on the top and the two MegaLAB structures on the bottom of 
the device. On all devices, the FastRow interconnect drives all local 
interconnect in the appropriate MegaLAB structures except the end local 
interconnect on the side of the MegaLAB opposite the ESB. Pins using the 
FastRow interconnect achieve a faster set-up time, as the signal does not 
need to use a MegaLAB interconnect line to reach the destination LE. 
Figure 12 shows the FastRow interconnect.
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ESBs can implement synchronous RAM, which is easier to use than 
asynchronous RAM. A circuit using asynchronous RAM must generate 
the RAM write enable (WE) signal, while ensuring that its data and address 
signals meet setup and hold time specifications relative to the WE signal. 
In contrast, the ESB’s synchronous RAM generates its own WE signal and 
is self-timed with respect to the global clock. Circuits using the ESB’s self-
timed RAM must only meet the setup and hold time specifications of the 
global clock.

ESB inputs are driven by the adjacent local interconnect, which in turn can 
be driven by the FastTrack or MegaLAB interconnect. Because the ESB can 
be driven by the local interconnect, an adjacent LE can drive it directly for 
fast memory access. ESB outputs drive the FastTrack and MegaLAB 
interconnects. In addition, ten ESB outputs, nine of which are unique 
output lines, drive the local interconnect for fast connection to adjacent 
LEs or for fast feedback product-term logic.

When implementing memory, each ESB can be configured in any of the 
following sizes: 128 × 16, 256 × 8, 512 × 4, 1,024 × 2, or 2,048 × 1. By 
combining multiple ESBs, the Quartus II software implements larger 
memory blocks automatically. For example, two 128 × 16 RAM blocks can 
be combined to form a 128 × 32 RAM block, and two 512 × 4 RAM blocks 
can be combined to form a 512 × 8 RAM block. Memory performance does 
not degrade for memory blocks up to 2,048 words deep. Each ESB can 
implement a 2,048-word-deep memory; the ESBs are used in parallel, 
eliminating the need for any external control logic and its associated 
delays.

To create a high-speed memory block that is more than 2,048 words deep, 
ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column 
of MegaLAB structures, and drives the MegaLAB interconnect and row 
and column FastTrack interconnect throughout the column. Each ESB 
incorporates a programmable decoder to activate the tri-state driver 
appropriately. For instance, to implement 8,192-word-deep memory, four 
ESBs are used. Eleven address lines drive the ESB memory, and two more 
drive the tri-state decoder. Depending on which 2,048-word memory 
page is selected, the appropriate ESB driver is turned on, driving the 
output to the tri-state line. The Quartus II software automatically 
combines ESBs with tri-state lines to form deeper memory blocks. The 
internal tri-state control logic is designed to avoid internal contention and 
floating lines. See Figure 18.
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f For more information on APEX 20KC devices and CAM, see Application 
Note 119 (Implementing High-Speed Search Applications with APEX CAM).

Driving Signals to the ESB

ESBs provide flexible options for driving control signals. Different clocks 
can be used for the ESB inputs and outputs. Registers can be inserted 
independently on the data input, data output, read address, write 
address, WE, and RE signals. The global signals and the local interconnect 
can drive the WE and RE signals. The global signals, dedicated clock pins, 
and local interconnect can drive the ESB clock signals. Because the LEs 
drive the local interconnect, the LEs can control the WE and RE signals and 
the ESB clock, clock enable, and asynchronous clear signals. Figure 24 
shows the ESB control signal generation logic.

Figure 24. ESB Control Signal Generation

An ESB is fed by the local interconnect, which is driven by adjacent LEs 
(for high-speed connection to the ESB) or the MegaLAB interconnect. The 
ESB can drive the local, MegaLAB, or FastTrack interconnect routing 
structure to drive LEs and IOEs in the same MegaLAB structure or 
anywhere in the device.
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Notes to Figure 25:
(1) This programmable delay has four settings: off and three levels of delay. 
(2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Each IOE drives a row, column, MegaLAB, or local interconnect when 
used as an input or bidirectional pin. A row IOE can drive a local, 
MegaLAB, row, and column interconnect; a column IOE can drive the 
column interconnect. Figure 26 shows how a row IOE connects to the 
interconnect. 

Figure 26. Row IOE Connection to the Interconnect
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Figure 27 shows how a column IOE connects to the interconnect.

Figure 27. Column IOE Connection to the Interconnect

Dedicated Fast I/O Pins

APEX 20KC devices incorporate an enhancement to support bidirectional 
pins with high internal fan-out such as PCI control signals. These pins are 
called dedicated fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and 
replace dedicated inputs. These pins can be used for fast clock, clear, or 
high fan-out logic signal distribution. They also can drive out. The 
dedicated fast I/O pin data output and tri-state control are driven by local 
interconnect from the adjacent MegaLAB for high speed. 
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IEEE Std. 
1149.1 (JTAG) 
Boundary-Scan 
Support

All APEX 20KC devices provide JTAG BST circuitry that complies with 
the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can 
be performed before or after configuration, but not during configuration. 
APEX 20KC devices can also use the JTAG port for configuration with the 
Quartus II software or with hardware using either Jam Files (.jam) or Jam 
Byte-Code Files (.jbc). Finally, APEX 20KC devices use the JTAG port to 
monitor the logic operation of the device with the SignalTap embedded 
logic analyzer. APEX 20KC devices support the JTAG instructions shown 
in Table 13.

Table 13. APEX 20KC JTAG Instructions 

JTAG Instruction Description

SAMPLE/PRELOAD Allows a snapshot of signals at the device pins to be captured and examined during 
normal device operation, and permits an initial data pattern to be output at the device pins. 
Also used by the SignalTap embedded logic analyzer.

EXTEST Allows the external circuitry and board-level interconnections to be tested by forcing a test 
pattern at the output pins and capturing test results at the input pins.

BYPASS Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data 
to pass synchronously through selected devices to adjacent devices during normal device 
operation.

USERCODE Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, 
allowing the USERCODE to be serially shifted out of TDO.

IDCODE Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE 
to be serially shifted out of TDO.

ICR Instructions Used when configuring an APEX 20KC device via the JTAG port with a MasterBlasterTM 
or ByteBlasterMVTM download cable, or when using a Jam File or Jam Byte-Code File via 
an embedded processor.

SignalTap 
Instructions

Monitors internal device operation with the SignalTap embedded logic analyzer.
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Figure 30. APEX 20KC JTAG Waveforms

Table 16 shows the JTAG timing parameters and values for APEX 20KC 
devices.

f For more information, see the following documents:

■ Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in 
Altera Devices) 

Table 16. APEX 20KC JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time  50 ns

tJCL TCK clock low time  50 ns

tJPSU JTAG port setup time  20 ns

tJPH JTAG port hold time  45 ns

tJPCO JTAG port clock to output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock to output 35 ns

tJSZX Update register high impedance to valid output 35 ns

tJSXZ Update register valid output to high impedance 35 ns
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■ Jam Programming & Test Language Specification

Generic Testing Each APEX 20KC device is functionally tested. Complete testing of each 
configurable SRAM bit and all logic functionality ensures 100% yield. 
AC test measurements for APEX 20KC devices are made under conditions 
equivalent to those defined in the “Timing Model” section  on page 65. 
Multiple test patterns can be used to configure devices during all stages of 
the production flow. AC test criteria include:

■ Power supply transients can affect AC measurements.
■ Simultaneous transitions of multiple outputs should be avoided for 

accurate measurement.
■ Threshold tests must not be performed under AC conditions.
■ Large-amplitude, fast-ground-current transients normally occur as 

the device outputs discharge the load capacitances. When these 
transients flow through the parasitic inductance between the device 
ground pin and the test system ground, significant reductions in 
observable noise immunity can result. 

Operating 
Conditions

Tables 17 through 20 provide information on absolute maximum ratings, 
recommended operating conditions, DC operating conditions, and 
capacitance for 1.8-V APEX 20KC devices.

Table 17. APEX 20KC Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage With respect to ground (2) –0.5 2.5 V

VCCIO –0.5 4.6 V

VI DC input voltage –0.5 4.6 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, RQFP, TQFP, and BGA 
packages, under bias

135 ° C

Ceramic PGA packages, under bias 150 ° C
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1 DC operating specifications on APEX 20KC I/O standards are 
listed in Tables 21 to 35.

Table 18. APEX 20KC Device Recommended Operating Conditions 

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage for internal logic 
and input buffers

(3), (4) 1.71 
(1.71)

1.89 
(1.89)

V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 
(3.00)

3.60 
(3.60)

V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.375 
(2.375)

2.625 
(2.625)

V

Supply voltage for output buffers, 
1.8-V operation

(3), (4) 1.71 
(1.71)

1.89 
(1.89)

V

VI Input voltage (2), (5) –0.5 4.1 V

VO Output voltage 0 VCCIO V

TJ Operating junction temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time (10% to 90%) 40 ns

tF Input fall time (90% to 10%) 40 ns

Table 19. APEX 20KC Device DC Operating Conditions Notes (6), (7)

Symbol Parameter Conditions Min Typ Max Unit

I I Input pin leakage current (8) VI = 3.6 to 0.0 V –10 10 µA

IOZ Tri-stated I/O pin leakage 
current (8)

VO = 4.1 to –0.5 V –10 10 µA

ICC0 VCC supply current (standby) 
(All ESBs in power-down 
mode)

VI = ground, no load, 
no toggling inputs, 
-7 speed grade

10 mA

VI = ground, no load, 
no toggling inputs,
-8, -9 speed grades

5 mA

RCONF Value of I/O pin pull-up 
resistor before and during 
configuration

VCCIO = 3.0 V (9) 20 50 kΩ

VCCIO = 2.375 V (9) 30 80 kΩ

VCCIO = 1.71 V (9) 60 150 kΩ
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Notes to Tables 17 through 20:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 4.6 V for input 

currents less than 100 mA and time periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(6) Typical values are for TA = 25° C, VCCINT = 1.8 V, and VCCIO = 1.8 V, 2.5 V or 3.3 V.
(7) These values are specified under the APEX 20KC device recommended operating conditions, shown in Table 18 on 

page 55. 
(8) This value is specified for normal device operation. The value may vary during power-up.
(9) Pin pull-up resistance values will be lower if an external source drives the pin higher than VCCIO.
(10) Capacitance is sample-tested only.

Tables 21 through 35 list the DC operating specifications for the supported 
I/O standards. These tables list minimal specifications only; APEX 20KC 
devices may exceed these specifications.

Table 20. APEX 20KC Device Capacitance Note (10)

Symbol Parameter Conditions Min Max Unit

CIN Input capacitance VIN = 0 V, f = 1.0 MHz 8 pF

CINCLK Input capacitance on 
dedicated clock pin

VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF

Table 21. LVTTL I/O Specifications 

Symbol Parameter Conditions Minimum Maximum Units

VCCIO Output supply 
voltage

3.0 3.6 V

VIH High-level input 
voltage

2.0 VCCIO + 0.3 V

VIL Low-level input 
voltage

–0.3 0.8 V

II Input pin leakage 
current

VIN = 0 V or 3.3 V –10 10 µA

VOH High-level output 
voltage

IOH = –12 mA, 
VCCIO = 3.0 V (1)

2.4 V

VOL Low-level output 
voltage

IOL = 12 mA, 
VCCIO = 3.0 V (2)

0.4 V
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Table 28.  GTL+ I/O Specifications  

Symbol Parameter Conditions Minimum Typical Maximum Units

VTT Termination voltage 1.35 1.5 1.65 V

VREF Reference voltage 0.88 1.0 1.12 V

VIH High-level input 
voltage

VREF + 0.1 V

VIL Low-level input 
voltage

VREF – 0.1 V

VOL Low-level output 
voltage

IOL = 36 mA (2) 0.65 V

Table 29. SSTL-2 Class I Specifications

Symbol Parameter Conditions Minimum Typical Maximum Units

VCCIO I/O supply voltage 2.375 2.5 2.625 V

VTT Termination voltage VREF – 0.04 VREF VREF + 0.04 V

VREF Reference voltage 1.15 1.25 1.35 V

VIH High-level input 
voltage

VREF + 0.18 VCCIO + 0.3 V

VIL Low-level input 
voltage

–0.3 VREF – 0.18 V

VOH High-level output 
voltage

IOH = –7.6 mA (1) VTT + 0.57 V

VOL Low-level output 
voltage

IOL = 7.6 mA (2) VTT – 0.57 V
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Tables 40 and 41 describe APEX 20KC external timing parameters. The 
timing values for these pin-to-pin delays are reported for all pins using the 
3.3-V LVTTL I/O standard.  

Table 39. APEX 20KC Minimum Pulse Width Timing Parameters

Symbol Parameter

tCH Minimum clock high time from clock pin

tCL Minimum clock low time from clock pin

tCLRP LE clear pulse width

tPREP LE preset pulse width

tESBCH Clock high time

tESBCL Clock low time

tESBWP Write pulse width

tESBRP Read pulse width

Table 40. APEX 20KC External Timing Parameters Note (1)

Symbol Clock Parameter Conditions

tINSU Setup time with global clock at IOE register

tINH Hold time with global clock at IOE register

tOUTCO Clock-to-output delay with global clock at IOE output register (2)

tINSUPLL Setup time with PLL clock at IOE input register

tINHPLL Hold time with PLL clock at IOE input register

tOUTCOPLL Clock-to-output delay with PLL clock at IOE output register (2)
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Figure 36. AC Test Conditions for LVTTL, 2.5 V, 1.8 V, PCI & GTL+ I/O Standards

Figure 37. AC Test Conditions for SSTL-3 Class I & II I/O Standards

Figure 38. AC Test Conditions for the LVDS I/O Standard
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Table 49. EP20K200C External Bidirectional Timing Parameters

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 1.38 1.78 1.99 ns

tINHBIDIR 0.00 0.00 0.00 ns

tOUTCOBIDIR 2.00 3.79 2.00 4.31 2.00 4.70 ns

tXZBIDIR 6.12 6.51 7.89 ns

tZXBIDIR 6.12 6.51 7.89 ns

tINSUBIDIRPLL 2.82 3.47 - ns

tINHBIDIRPLL 0.00 0.00 - ns

tOUTCOBIDIRPLL 0.50 2.36 0.50 2.62 - - ns

tXZBIDIRPLL 4.69 4.82 - ns

tZXBIDIRPLL 4.69 4.82 - ns

Table 50. EP20K400C fMAX LE Timing Parameters

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tSU 0.01 0.01 0.01 ns

tH 0.10 0.10 0.10 ns

tCO 0.27 0.30 0.32 ns

tLUT 0.65 0.78 0.92 ns
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Table 61. EP20K600C External Bidirectional Timing Parameters 

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 2.03 2.57 2.97 ns

tINHBIDIR 0.00 0.00 0.00 ns

tOUTCOBIDIR 2.00 4.29 2.00 4.77 2.00 5.11 ns

tXZBIDIR 8.31 9.14 9.76 ns

tZXBIDIR 8.31 9.14 9.76 ns

tINSUBIDIRPLL 3.99 4.77 - ns

tINHBIDIRPLL 0.00 0.00 - ns

tOUTCOBIDIRPLL 0.50 2.37 0.50 2.63 - - ns

tXZBIDIRPLL 6.35 6.94 - ns

tZXBIDIRPLL 6.35 6.94 - ns

Table 62. EP20K1000C fMAX LE Timing Microparameters

Symbol -7 Speed Grade -8 Speed Grade -9 Speed Grade Unit

Min Max Min Max Min Max

tSU 0.01 0.01 0.01 ns

tH 0.10 0.10 0.10 ns

tCO 0.27 0.30 0.32 ns

tLUT 0.66 0.79 0.92 ns
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SRAM configuration elements allow APEX 20KC devices to be 
reconfigured in-circuit by loading new configuration data into the device. 
Real-time reconfiguration is performed by forcing the device into 
command mode with a device pin, loading different configuration data, 
reinitializing the device, and resuming user-mode operation. In-field 
upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for an APEX 20KC device can be loaded with one 
of five configuration schemes (see Table 70), chosen on the basis of the 
target application. An EPC16, EPC2, or EPC1 configuration device, 
intelligent controller, or the JTAG port can be used to control the 
configuration of an APEX 20KC device. When a configuration device is 
used, the system can configure automatically at system power-up.

Multiple APEX 20KC devices can be configured in any of five 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device.

f For more information on configuration, see Application Note 116 
(Configuring SRAM-Based LUT Devices).

Device Pin-
Outs

See the Altera web site (http://www.altera.com) or the Altera Digital 
Library for pin-out information.

Ordering 
Information

Figure 39 describes the ordering codes for Stratix devices. For more 
information on a specific package, refer to the Altera Device Package 
Information Data Sheet.

Table 70. Data Sources for Configuration

Configuration Scheme Data Source

Configuration device EPC16, EPC8, EPC4, EPC2, or EPC1 configuration device

Passive serial (PS) MasterBlaster or ByteBlasterMV download cable or serial data source

Passive parallel asynchronous (PPA) Parallel data source

Passive parallel synchronous (PPS) Parallel data source

JTAG MasterBlaster or ByteBlasterMV download cable or a microprocessor 
with a Jam Standard Test and Programming Language (STAPL) or 
JBC File
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