
E·XFL

Intel - EP20K600CB652C9 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	2432
Number of Logic Elements/Cells	24320
Total RAM Bits	311296
Number of I/O	488
Number of Gates	1537000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	652-BGA
Supplier Device Package	652-BGA (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k600cb652c9

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

and More Features	 Low-power operation design 1.8-V supply voltage (see Table Copper interconnect reduces point 							
	 MultiVolt[™] I/O support for 1.3 							
	 ESBs offering programmable p 							
	 Flexible clock management circuitry 							
	loops (PLLs)	1 1						
	 Built-in low-skew clock tree 							
	 Up to eight global clock signals 	5						
	 ClockLock[™] feature reducing of 	clock delay and skew						
	 ClockBoost[™] feature providing division 	g clock multiplication and						
		programmable clock phase and						
	delay shifting							
	Powerful I/O features							
	 Compliant with peripheral com Instance (PCLSIC) PCL 							
	Interest Group (PCI SIG) PCI L Revision 2.2 for 3.3-V operation	at 33 or 66 MHz and 32 or 64 bits						
	 Support for high-speed externa 							
	synchronous dynamic RAM (S							
	(SRAM)							
	 16 input and 16 output LVDS channels at 840 megabits per second (Mbps) Direct connection from I/O pins to local interconnect providing fast t_{CO} and t_{SU} times for complex logic 							
	 MultiVolt I/O support for 1.8-V 							
	 Programmable clamp to V_{CCIO} 							
	 Individual tri-state output enab 							
	 Programmable output slew-rat noise 							
	 Support for advanced I/O stan 	dards, including low-voltage						
	differential signaling (LVDS), L							
	SSTL-3 and SSTL-2, GTL+, and	HSTL Class I						
	 Supports hot-socketing operation 							
	 Pull-up on I/O pins before and 	during configuration						
	Table 2. APEX 20KC Supply Voltages							
	Feature	Voltage						
	Internal supply voltage (V _{CCINT})	1.8 V						
	MultiVolt I/O interface voltage levels (V _{CCIO})	1.8 V, 2.5 V, 3.3 V, 5.0 V (1)						
	Note to Table 2: (1) APEX 20KC devices can be 5.0-V tolerant b	by using an external resistor.						

- Advanced interconnect structure
 - Copper interconnect for high performance
 - Four-level hierarchical FastTrack[®] interconnect structure providing fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
 - Interleaved local interconnect allows one LE to drive 29 other LEs through the fast local interconnect
- Advanced software support
 - Software design support and automatic place-and-route provided by the Altera[®] Quartus[™] II development system for Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations
 - Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions optimized for APEX 20KC architecture available
 - NativeLink[™] integration with popular synthesis, simulation, and timing analysis tools
 - Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation
 - Supports popular revision-control software packages including PVCS, RCS, and SCCS

Table 3. APE	Notes (1), (2)				
Device	Device 208-Pin PQFP 240-Pin PQFP 356-Pin BGA				
EP20K200C	136	168	271		
EP20K400C				488	
EP20K600C				488	
EP20K1000C				488	

Table 4. APEX 20KC FineLine BGA Package Options & I/O Count Notes (1), (2)						
Device	484 Pin	672 Pin	1,020 Pin			
EP20K200C	376					
EP20K400C		488 (3)				
EP20K600C		508 (3)	588			
EP20K1000C		508 <i>(3)</i>	708			

Notes to Tables 3 and 4:

- (1) I/O counts include dedicated input and clock pins.
- (2) APEX 20KC device package types include plastic quad flat pack (PQFP), 1.27-mm pitch ball-grid array (BGA), and 1.00-mm pitch FineLine BGA[™] packages.
- (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information.

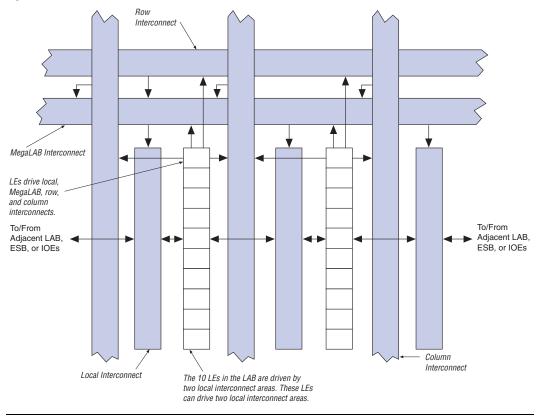

Table 5. APEX 20KC QFP & BGA Package Sizes							
Feature	208-Pin PQFP	240-Pin PQFP	356-Pin BGA	652-Pin BGA			
Pitch (mm)	0.50	0.50	1.27	1.27			
Area (mm ²)	924	1,218	1,225	2,025			
Length \times Width (mm \times mm)	$\textbf{30.4} \times \textbf{30.4}$	$\textbf{34.9} \times \textbf{34.9}$	35.0 × 35.0	45.0 × 45.0			

Table 6. APEX 20KC FineLine BGA Package Sizes					
Feature	484 Pin	672 Pin	1,020 Pin		
Pitch (mm)	1.00	1.00	1.00		
Area (mm ²)	529	729	1,089		
Length \times Width (mm \times mm)	23 × 23	27 × 27	33 × 33		

General Description

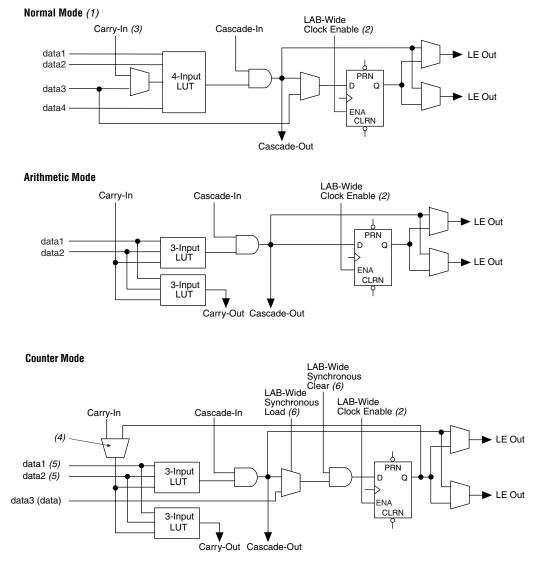
Similar to APEX 20K and APEX 20KE devices, APEX 20KC devices offer the MultiCore architecture, which combines the strengths of LUT-based and product-term-based devices with an enhanced memory structure. LUT-based logic provides optimized performance and efficiency for datapath, register-intensive, mathematical, or digital signal processing (DSP) designs. Product-term-based logic is optimized for complex combinatorial paths, such as complex state machines. LUT- and productterm-based logic combined with memory functions and a wide variety of MegaCore and AMPP functions make the APEX 20KC architecture uniquely suited for SOPC designs. Applications historically requiring a combination of LUT-, product-term-, and memory-based devices can now be integrated into one APEX 20KC device.

Figure 3. LAB Structure

Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs.

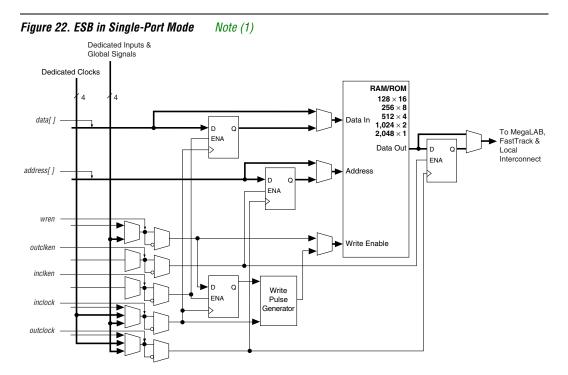
If both the rising and falling edges of a clock are used in a LAB, both LABwide clock signals are used.


Cascade Chain

With the cascade chain, the APEX 20KC architecture can implement functions with a very wide fan-in. Adjacent LUTs can compute portions of a function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a short cascade delay. Cascade chain logic can be created automatically by the Quartus II Compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than ten LEs are implemented automatically by linking LABs together. For enhanced fitting, a long cascade chain skips alternate LABs in a MegaLAB structure. A cascade chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 7 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in.

Figure 8. APEX 20KC LE Operating Modes


Notes to Figure 8:

- (1) LEs in normal mode support register packing.
- (2) There are two LAB-wide clock enables per LAB.
- (3) When using the carry-in in normal mode, the packed register feature is unavailable.
- (4) A register feedback multiplexer is available on LE1 of each LAB.
- (5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for LEs other than the second LE in an LAB.
- (6) The LAB-wide synchronous clear and LAB wide synchronous load affect all registers in an LAB.

Altera Corporation

Single-Port Mode

The APEX 20KC ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.

Note toFigure 22:

(1) All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset.

Content-Addressable Memory

In APEX 20KC devices, the ESB can implement CAM. CAM can be thought of as the inverse of RAM. When read, RAM outputs the data for a given address. Conversely, CAM outputs an address for a given data word. For example, if the data FA12 is stored in address 14, the CAM outputs 14 when FA12 is driven into it.

Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate.

Programmable Speed/Power Control

APEX 20KC ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo Bit[™] option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current.

Designers can program each ESB in the APEX 20KC device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power.

I/O Structure

The APEX 20KC IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. Notes to Figure 25:

- (1) This programmable delay has four settings: off and three levels of delay.
- (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 26 shows how a row IOE connects to the interconnect.

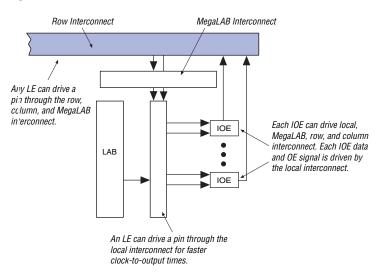
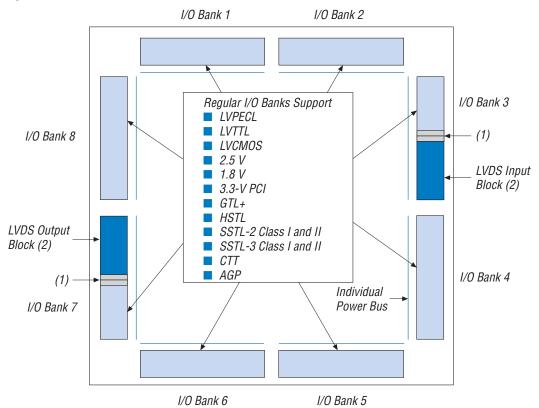



Figure 26. Row IOE Connection to the Interconnect

Figure 28. APEX 20KC I/O Banks

Notes to Figure 28:

- For more information on placing I/O pins in LVDS blocks, refer to the "Guidelines for Using LVDS Blocks" section in Application Note 120 (Using LVDS in APEX 20KE Devices).
- (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with V_{CCIO} set to 3.3 V, 2.5 V, or 1.8 V.

Power Sequencing & Hot Socketing

Because APEX 20KC devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the V_{CCIO} and V_{CCINT} power supplies may be powered in any order.

Signals can be driven into APEX 20KC devices before and during powerup without damaging the device. In addition, APEX 20KC devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20KC devices operate as specified by the user.

MultiVolt I/O Interface

The APEX architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

APEX 20KC devices support the MultiVolt I/O interface feature. The APEX 20KC VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output levels is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KC device is 5.0-V tolerant with the addition of a resistor and the PCI clamp diode enabled.

For more information on 5.0-V tolerance, refer to the "5.0-V Tolerance in APEX 20KE Devices White Paper," as the information found therein also applies to APEX 20KC devices.

Table 10. Al	Table 10. APEX 20KC MultiVolt I/O Support									
V _{CCIO} (V)	Input Signals (V) Output Signals									
	1.8	2.5	3.3	5.0	1.8	2.5	3.3	5.0		
1.8	~	🗸 (1)	🗸 (1)		\checkmark					
2.5		~	 (1) 			 ✓ 				
3.3		\checkmark	\checkmark	 (2) 		✓ (3)	\checkmark	\checkmark		

Table 10 summarizes APEX 20KC MultiVolt I/O support.

Notes to Table 10:

 The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case.

(2) An APEX 20KC device can be made 5.0-V tolerant with the addition of an external resistor and the PCI clamp diode enabled.

(3) When V_{CCIO} = 3.3 V, an APEX 20KC device can drive a 2.5-V device with 3.3-V tolerant inputs.

Altera Corporation

Open-drain output pins on APEX 20KC devices (with a series resistor and a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a V_{IH} of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tristate; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

ClockLock & ClockBoost Features

APEX 20KC devices support the ClockLock and ClockBoost clock management features, which are implemented with PLLs. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost circuitry allows the designer to distribute a low-speed clock and multiply that clock on-device. APEX 20KC devices include a high-speed clock tree; unlike ASICs, the user does not have to design and optimize the clock tree. The ClockLock and ClockBoost features work in conjunction with the APEX 20KC device's high-speed clock to provide significant improvements in system performance and bandwidth. APEX 20KC devices in -7 and -8 speed grades have PLLs and support the ClockLock and ClockBoost features.

The ClockLock and ClockBoost features in APEX 20KC devices are enabled through the Quartus II software. External devices are not required to use these features.

APEX 20KC ClockLock Feature

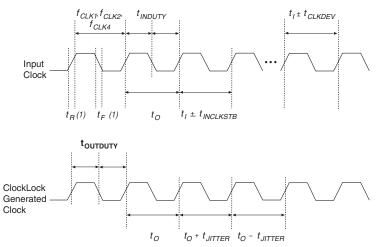
APEX 20KC devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200C devices have two PLLs; the EP20K400C and larger devices have four PLLs.

The following sections describe some of the features offered by the APEX 20KC PLLs.

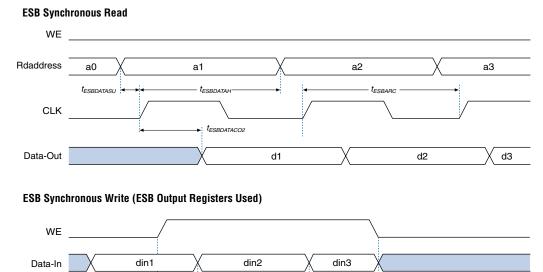
External PLL Feedback

The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KC device and another high-speed device, such as SDRAM.

ClockLock & ClockBoost Timing Parameters


For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20KC ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KC devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 29 shows the incoming and generated clock specifications.

For more information on ClockLock and ClockBoost circuitry, see *Application Note* 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices.


Figure 29. Specifications for the Incoming & Generated Clocks

The t_l parameter refers to the nominal input clock period; the t_0 parameter refers to the nominal output clock period.

Note to Figure 29:

(1) Rise and fall times are measured from 10% to 90%.

a2

dout1

t_{ESBDATASU}

t_{ESBDATAH}

t_{ESBSWC}

Figure 34. ESB Synchronous Timing Waveforms

Figure 35 shows the timing model for bidirectional I/O pin timing.

din1

a3

 $t_{ESBWEH} \longrightarrow$

t_{ESBDATACO1}

din2

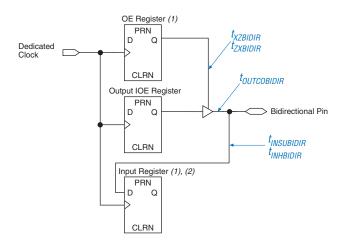
a2

din3

din2

Wraddress

CLK


Data-Out

a0

a1

dout0

t_{ESBWESU}

Figure 35. Synchronous Bidirectional Pin External Timing

Notes to Figure 35:

- The output enable and input registers are LE registers in the LAB adjacent to the (1)bidirectional pin. Use the "Output Enable Routing = Single-Pin" option in the Quartus II software to set the output enable register.
- Use the "Decrease Input Delay to Internal Cells = OFF" option in the Quartus II (2) software to set the LAB-adjacent input register. This maintains a zero hold time for LAB-adjacent registers while giving a fast, position-independent setup time. Set "Decrease Input Delay to Internal Cells = ON" and move the input register farther away from the bidirectional pin for a faster setup time with zero hold time. The exact position where zero hold occurs with the minimum setup time varies with device density and speed grade.

Tables 36 to 38 describes the f_{MAX} timing parameters shown in Figure 32. Table 39 describes the functional timing parameters.

Table 36. APEX 20KC f _{MAX} LE Timing Parameters							
Symbol	Parameter						
t _{SU}	LE register setup time before clock						
t _H	LE register hold time before clock						
t _{CO}	LE register clock-to-output delay						
t _{LUT}	LUT delay for data-in to data-out						

Symbol	-7 Spee	d Grade	-8 Spee	d Grade	-9 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Мах	1
	1.38		1.78		1.99		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
t _{OUTCOBIDIR}	2.00	3.79	2.00	4.31	2.00	4.70	ns
t _{xzbidir}		6.12		6.51		7.89	ns
t _{ZXBIDIR}		6.12		6.51		7.89	ns
t _{INSUBIDIRPLL}	2.82		3.47		-		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
	0.50	2.36	0.50	2.62	-	-	ns
t _{XZBIDIRPLL}		4.69		4.82		-	ns
		4.69		4.82		-	ns

Table 50. EP20K400C f _{MAX} LE Timing Parameters								
Symbol	-7 Spee	d Grade	-8 Spee	d Grade	-9 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{SU}	0.01		0.01		0.01		ns	
t _H	0.10		0.10		0.10		ns	
t _{CO}		0.27		0.30		0.32	ns	
t _{LUT}		0.65		0.78		0.92	ns	

Г

٦

Symbol	-7 Spee	d Grade	-8 Spee	d Grade	-9 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.30		1.51		1.69	ns
t _{ESBSRC}		2.35		2.49		2.72	ns
t _{ESBAWC}		2.92		3.46		3.86	ns
t _{ESBSWC}		3.05		3.44		3.85	ns
t _{ESBWASU}	0.45		0.50		0.54		ns
t _{ESBWAH}	0.44		0.50		0.55		ns
t _{ESBWDSU}	0.57		0.63		0.68		ns
t _{ESBWDH}	0.44		0.50		0.55		ns
t _{ESBRASU}	1.25		1.43		1.56		ns
t _{ESBRAH}	0.00		0.03		0.11		ns
t _{ESBWESU}	0.00		0.00		0.00		ns
t _{ESBDATASU}	2.01		2.27		2.45		ns
t _{ESBWADDRSU}	-0.20		-0.24		-0.28		ns
t _{ESBRADDRSU}	0.02		0.00		-0.02		ns
t _{ESBDATACO1}		1.09		1.28		1.43	ns
t _{ESBDATACO2}		2.10		2.52		2.82	ns
t _{ESBDD}		2.50		2.97		3.32	ns
t _{PD}		1.48		1.78		2.00	ns
t _{PTERMSU}	0.58		0.72		0.81		ns
t _{PTERMCO}		1.10		1.29		1.45	ns

Table 52. EP20K400C f _{MAX} Routing Delays								
Symbol	-7 Spee	-7 Speed Grade		-8 Speed Grade -9 Speed Grade		Unit		
	Min	Мах	Min	Max	Min	Max		
t _{F1-4}		0.15		0.17		0.19	ns	
t _{F5-20}		0.94		1.06		1.25	ns	
t _{F20+}		1.73		1.96		2.30	ns	

Table 57. EP20K600C f _{MAX} ESB Timing Parameters							
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Max	Min	Max	Min	Мах	1
t _{ESBARC}		1.30		1.51		1.69	ns
t _{ESBSRC}		2.35		2.49		2.72	ns
t _{ESBAWC}		2.92		3.46		3.86	ns
t _{ESBSWC}		3.05		3.44		3.85	ns
t _{ESBWASU}	0.45		0.50		0.54		ns
t _{ESBWAH}	0.44		0.50		0.55		ns
t _{ESBWDSU}	0.57		0.63		0.68		ns
t _{ESBWDH}	0.44		0.50		0.55		ns
t _{ESBRASU}	1.25		1.43		1.56		ns
t _{ESBRAH}	0.00		0.03		0.11		ns
t _{ESBWESU}	0.00		0.00		0.00		ns
t _{ESBDATASU}	2.01		2.27		2.45		ns
t _{ESBWADDRSU}	-0.20		-0.24		-0.28		ns
t _{ESBRADDRSU}	0.02		0.00		-0.02		ns
t _{ESBDATACO1}		1.09		1.28		1.43	ns
t _{ESBDATACO2}		2.10		2.52		2.82	ns
t _{ESBDD}		2.50		2.97		3.32	ns
t _{PD}		1.48		1.78		2.00	ns
t _{PTERMSU}	0.58		0.72		0.81		ns
t _{PTERMCO}		1.10		1.29		1.45	ns

Table 58. EP20K600C f _{MAX} Routing Delays							
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Мах	Min	Max	Min	Мах	
t _{F1-4}		0.15		0.16		0.18	ns
t _{F5-20}		0.94		1.05		1.20	ns
t _{F20+}		1.76		1.98		2.23	ns

Table 67. EP20K1000C External Bidirectional Timing Parameters							
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	1
t _{INSUBIDIR}	1.86		2.54		3.15		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
t _{OUTCOBIDIR}	2.00	4.63	2.00	5.26	2.00	5.69	ns
t _{XZBIDIR}		8.98		9.89		10.67	ns
t _{ZXBIDIR}		8.98		9.89		10.67	ns
t _{INSUBIDIRPLL}	4.17		5.27		-		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
t _{OUTCOBIDIRPLL}	0.50	2.32	0.50	2.55	-	-	ns
t _{XZBIDIRPLL}		6.67		7.18		-	ns
t _{ZXBIDIRPLL}		6.67		7.18		-	ns

Tables 68 and 69 show selectable I/O standard input and output delays for APEX 20KC devices. If you select an I/O standard input or output delay other than LVCMOS, add the delay for the selected speed grade to the LVCMOS value.

Table 68. Selectable I/O Standard Input Delays								
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	Min	
LVCMOS		0.00		0.00		0.00	ns	
LVTTL		0.00		0.00		0.00	ns	
2.5 V		0.00		0.00		0.00	ns	
1.8 V		0.04		0.11		0.14	ns	
PCI		0.00		0.04		0.03	ns	
GTL+		-0.30		0.25		0.23	ns	
SSTL-3 Class I		-0.19		-0.13		-0.13	ns	
SSTL-3 Class II		-0.19		-0.13		-0.13	ns	
SSTL-2 Class I		-0.19		-0.13		-0.13	ns	
SSTL-2 Class II		-0.19		-0.13		-0.13	ns	
LVDS		-0.19		-0.17		-0.16	ns	
CTT		0.00		0.00		0.00	ns	
AGP		0.00		0.00		0.00	ns	

SRAM configuration elements allow APEX 20KC devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming user-mode operation. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for an APEX 20KC device can be loaded with one of five configuration schemes (see Table 70), chosen on the basis of the target application. An EPC16, EPC2, or EPC1 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20KC device. When a configuration device is used, the system can configure automatically at system power-up.

Multiple APEX 20KC devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 70. Data Sources for Configuration				
Configuration Scheme	Data Source			
Configuration device	EPC16, EPC8, EPC4, EPC2, or EPC1 configuration device			
Passive serial (PS)	MasterBlaster or ByteBlasterMV download cable or serial data source			
Passive parallel asynchronous (PPA)	Parallel data source			
Passive parallel synchronous (PPS)	Parallel data source			
JTAG	MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam Standard Test and Programming Language (STAPL) or JBC File			

For more information on configuration, see *Application Note 116* (*Configuring SRAM-Based LUT Devices*).

Device Pin- Outs	See the Altera web site (http://www.altera.com) or the <i>Altera Digital Library</i> for pin-out information.
Ordering Information	Figure 39 describes the ordering codes for Stratix devices. For more information on a specific package, refer to the <i>Altera Device Package Information Data Sheet</i> .