
Intel - EP20K600CF672C9 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	2432
Number of Logic Elements/Cells	24320
Total RAM Bits	311296
Number of I/O	508
Number of Gates	1537000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k600cf672c9

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

and More Features	 Low-power operation design 1.8-V supply voltage (see Table Copper interconnect reduces point 				
	 MultiVolt[™] I/O support for 1.3 				
	 ESBs offering programmable p 				
	 Flexible clock management circuitry 				
	loops (PLLs)	1 1			
	 Built-in low-skew clock tree 				
	 Up to eight global clock signals 	3			
	 ClockLockTM feature reducing of 	clock delay and skew			
	 ClockBoost[™] feature providing division 	g clock multiplication and			
		programmable clock phase and			
	delay shifting				
	Powerful I/O features				
	 Compliant with peripheral component interconnect Special 				
	Interest Group (PCI SIG) PCI L Revision 2.2 for 3.3-V operation	n at 33 or 66 MHz and 32 or 64 bits			
	 Support for high-speed externa 				
	synchronous dynamic RAM (S				
	(SRAM)				
	- 16 input and 16 output LVDS c	hannels at 840 megabits per			
	second (Mbps)	as to local interconnect providing			
	fast t_{CO} and t_{SU} times for comp	is to local interconnect providing			
	 MultiVolt I/O support for 1.8-V 				
	 Programmable clamp to V_{CCIO} 				
	 Individual tri-state output enablight 				
	 Programmable output slew-rate control to reduce switching noise 				
	 Support for advanced I/O standards, including low-voltage 				
	differential signaling (LVDS), LVPECL, PCI-X, AGP, CTT,				
	SSTL-3 and SSTL-2, GTL+, and HSTL Class I				
	 Supports hot-socketing operation 				
	 Pull-up on I/O pins before and 	during configuration			
	Table 2. APEX 20KC Supply Voltages				
	Feature	Voltage			
	Internal supply voltage (V _{CCINT})	1.8 V			
	MultiVolt I/O interface voltage levels (V _{CCIO})	1.8 V, 2.5 V, 3.3 V, 5.0 V (1)			
	Note to Table 2: (1) APEX 20KC devices can be 5.0-V tolerant b	by using an external resistor.			

Table 4. APEX 20KC FineLine BGA Package Options & I/O Count Notes (1), (2)			
Device	484 Pin	672 Pin	1,020 Pin
EP20K200C	376		
EP20K400C		488 (3)	
EP20K600C		508 (3)	588
EP20K1000C		508 <i>(3)</i>	708

Notes to Tables 3 and 4:

- (1) I/O counts include dedicated input and clock pins.
- (2) APEX 20KC device package types include plastic quad flat pack (PQFP), 1.27-mm pitch ball-grid array (BGA), and 1.00-mm pitch FineLine BGA[™] packages.
- (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information.

Table 5. APEX 20KC QFP & BGA Package Sizes				
Feature	208-Pin PQFP	240-Pin PQFP	356-Pin BGA	652-Pin BGA
Pitch (mm)	0.50	0.50	1.27	1.27
Area (mm ²)	924	1,218	1,225	2,025
Length \times Width (mm \times mm)	$\textbf{30.4} \times \textbf{30.4}$	$\textbf{34.9} \times \textbf{34.9}$	35.0 × 35.0	45.0 imes 45.0

Table 6. APEX 20KC FineLine BGA Package Sizes				
Feature484 Pin672 Pin1,020 Pin				
Pitch (mm)	1.00	1.00	1.00	
Area (mm ²)	529	729	1,089	
$\label{eq:length} \mbox{Length} \times \mbox{Width} \mbox{(mm} \times \mbox{mm)} \mbox{ 23} \times \mbox{23} \mbox{ 27} \times \mbox{27} \mbox{ 33} \times \mbox{33} \mbox{ 33} $				

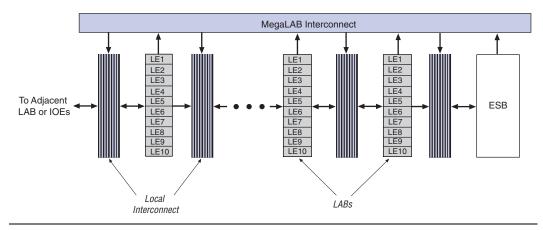
General Description

Similar to APEX 20K and APEX 20KE devices, APEX 20KC devices offer the MultiCore architecture, which combines the strengths of LUT-based and product-term-based devices with an enhanced memory structure. LUT-based logic provides optimized performance and efficiency for datapath, register-intensive, mathematical, or digital signal processing (DSP) designs. Product-term-based logic is optimized for complex combinatorial paths, such as complex state machines. LUT- and productterm-based logic combined with memory functions and a wide variety of MegaCore and AMPP functions make the APEX 20KC architecture uniquely suited for SOPC designs. Applications historically requiring a combination of LUT-, product-term-, and memory-based devices can now be integrated into one APEX 20KC device. After an APEX 20KC device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications.

APEX 20KC devices are supported by the Altera Quartus II development system, a single, integrated package that offers HDL and schematic design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, SignalTap logic analysis, and device configuration. The Quartus II software runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations.

The Quartus II software provides NativeLink interfaces to other industrystandard PC- and UNIX workstation-based EDA tools. For example, designers can invoke the Quartus II software from within third-party design tools. Further, the Quartus II software contains built-in optimized synthesis libraries; synthesis tools can use these libraries to optimize designs for APEX 20KC devices. For example, the Synopsys Design Compiler library, supplied with the Quartus II development system, includes DesignWare functions optimized for the APEX 20KC architecture.

Functional Description


APEX 20KC devices incorporate LUT-based logic, product-term-based logic, and memory into one device on an all-copper technology process. Signal interconnections within APEX 20KC devices (as well as to and from device pins) are provided by the FastTrack interconnect—a series of fast, continuous row and column channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack interconnect. Each IOE contains a bidirectional I/O buffer and a register that can be used as either an input or output register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. IOEs provide a variety of features, such as 3.3-V, 64-bit, 66-MHz PCI compliance; JTAG BST support; slew-rate control; and tri-state buffers. APEX 20KC devices offer enhanced I/O support, including support for 1.8-V I/O, 2.5-V I/O, LVCMOS, LVTTL, LVPECL, 3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, HSTL, CTT, and 3.3-V AGP I/O standards.

MegaLAB Structure

APEX 20KC devices are constructed from a series of MegaLAB[™] structures. Each MegaLAB structure contains 16 logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. In EP20K1000C devices, MegaLAB structures contain 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure.

Figure 2. MegaLAB Structure

Logic Array Block

Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20KC LAB.

APEX 20KC devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas, minimizing the use of the MegaLAB and FastTrack interconnect and providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect.

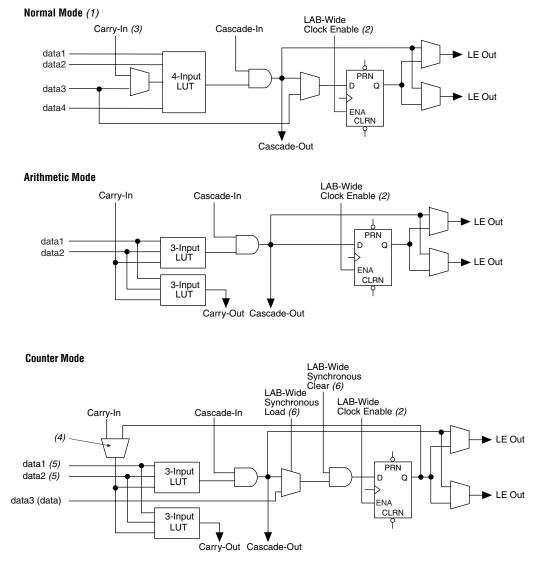
The APEX 20KC architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through 10 in an LAB and all LABs in the same MegaLAB structure.

Carry Chain

The carry chain provides a very fast carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higherorder bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the APEX 20KC architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Quartus II Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as DesignWare functions from Synopsys and library of parameterized modules (LPM) functions automatically take advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than ten LEs by automatically linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLAB structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the next evennumbered LAB, or from an odd-numbered LAB to the next oddnumbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure.

Figure 6 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the local, MegaLAB, or FastTrack interconnect routing structures.


Cascade Chain

With the cascade chain, the APEX 20KC architecture can implement functions with a very wide fan-in. Adjacent LUTs can compute portions of a function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a short cascade delay. Cascade chain logic can be created automatically by the Quartus II Compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than ten LEs are implemented automatically by linking LABs together. For enhanced fitting, a long cascade chain skips alternate LABs in a MegaLAB structure. A cascade chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 7 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in.

Figure 8. APEX 20KC LE Operating Modes

Notes to Figure 8:

- (1) LEs in normal mode support register packing.
- (2) There are two LAB-wide clock enables per LAB.
- (3) When using the carry-in in normal mode, the packed register feature is unavailable.
- (4) A register feedback multiplexer is available on LE1 of each LAB.
- (5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for LEs other than the second LE in an LAB.
- (6) The LAB-wide synchronous clear and LAB wide synchronous load affect all registers in an LAB.

Altera Corporation

Normal Mode

The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Quartus II Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. LEs in normal mode support packed registers.

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 8, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

The Quartus II software implements parameterized functions that use the arithmetic mode automatically where appropriate; the designer does not need to specify how the carry chain will be used.

Counter Mode

The counter mode offers clock enable, counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in an LAB use the counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. The Quartus II software automatically places any registers that are not used by the counter into other LABs.

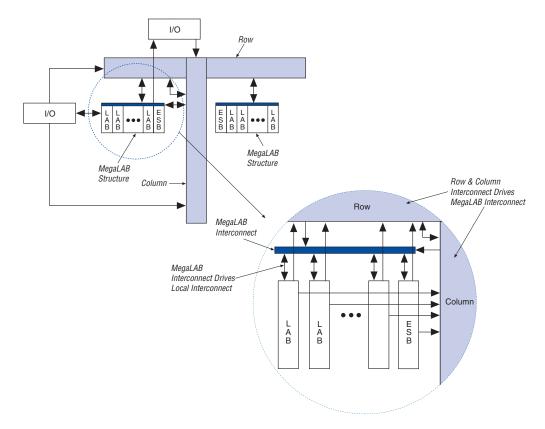


Figure 10. FastTrack Connection to Local Interconnect

Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other.

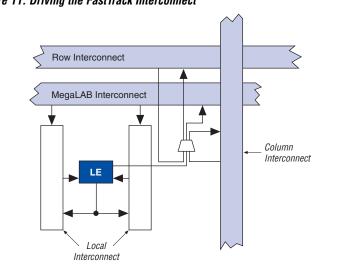


Figure 11. Driving the FastTrack Interconnect

APEX 20KC devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRowTM interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. The FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K400C and larger devices, the FastRow interconnect drives the two MegaLAB structures in the top left corner, the two MegaLAB structures in the two right corner, the two MegaLAB structures in the bottom left corner, and the two MegaLAB structures in the bottom right corner. On EP20K200C and smaller devices, FastRow interconnect drives the two MegaLAB structures on the top and the two MegaLAB structures on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLAB structures except the end local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect.

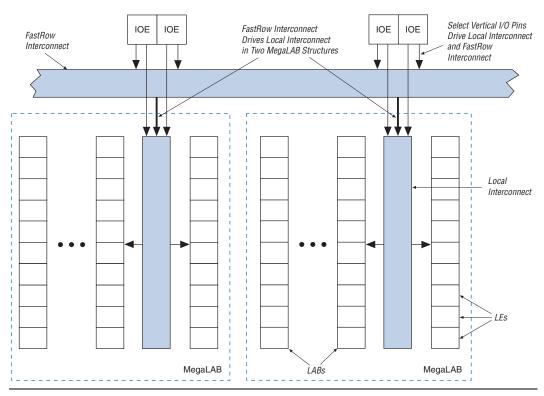
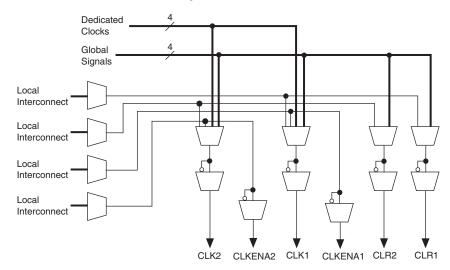
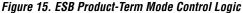




Figure 12. APEX 20KC FastRow Interconnect

Table 8 summarizes how various elements of the APEX 20KC architecture drive each other.

The programmable register also supports an asynchronous clear function. Within the ESB, two asynchronous clears are generated from global signals and the local interconnect. Each macrocell can either choose between the two asynchronous clear signals or choose to not be cleared. Either of the two clear signals can be inverted within the ESB. Figure 15 shows the ESB control logic when implementing product-terms.

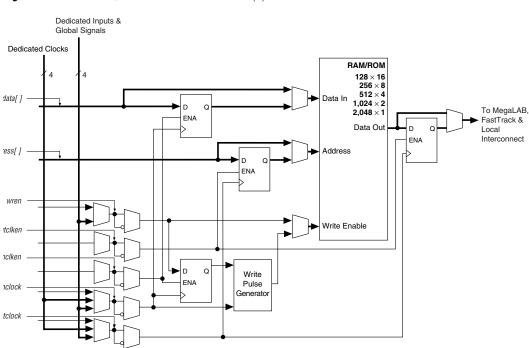
Parallel Expanders

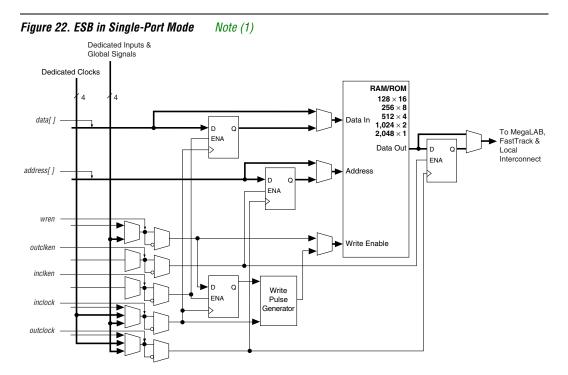
Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 32 product terms to feed the macrocell OR logic directly, with two product terms provided by the macrocell and 30 parallel expanders provided by the neighboring macrocells in the ESB.

The Quartus II Compiler can allocate up to 15 sets of up to two parallel expanders per set to the macrocells automatically. Each set of two parallel expanders incurs a small, incremental timing delay. Figure 16 shows the APEX 20KC parallel expanders.

Read/Write Clock Mode

The read/write clock mode contains two clocks. One clock controls all registers associated with writing: data input, WE, and write address. The other clock controls all registers associated with reading: read enable (RE), read address, and data output. The ESB also supports clock enable and asynchronous clear signals; these signals also control the read and write registers independently. Read/write clock mode is commonly used for applications where reads and writes occur at different system frequencies. Figure 20 shows the ESB in read/write clock mode.

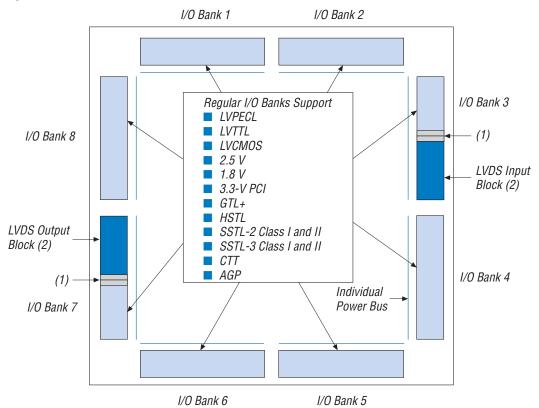



Figure 20. ESB in Read/Write Clock Mode Note (1)

(1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset.

Single-Port Mode

The APEX 20KC ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.


Note toFigure 22:

(1) All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset.

Content-Addressable Memory

In APEX 20KC devices, the ESB can implement CAM. CAM can be thought of as the inverse of RAM. When read, RAM outputs the data for a given address. Conversely, CAM outputs an address for a given data word. For example, if the data FA12 is stored in address 14, the CAM outputs 14 when FA12 is driven into it.

Figure 28. APEX 20KC I/O Banks

Notes to Figure 28:

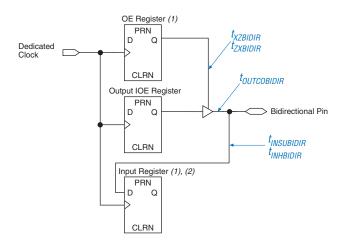
- For more information on placing I/O pins in LVDS blocks, refer to the "Guidelines for Using LVDS Blocks" section in Application Note 120 (Using LVDS in APEX 20KE Devices).
- (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with V_{CCIO} set to 3.3 V, 2.5 V, or 1.8 V.

Power Sequencing & Hot Socketing

Because APEX 20KC devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the V_{CCIO} and V_{CCINT} power supplies may be powered in any order.

APEX 20KC Programmable Logic Device Data Sheet

Table 20. APEX 20KC Device Capacitance Note (10)					
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF


Notes to Tables 17 through 20:

(1) See the Operating Requirements for Altera Devices Data Sheet.

- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 4.6 V for input currents less than 100 mA and time periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^\circ$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V.
- (7) These values are specified under the APEX 20KC device recommended operating conditions, shown in Table 18 on page 55.
- (8) This value is specified for normal device operation. The value may vary during power-up.
- (9) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}.
- (10) Capacitance is sample-tested only.

Tables 21 through 35 list the DC operating specifications for the supported I/O standards. These tables list minimal specifications only; APEX 20KC devices may exceed these specifications.

Table 21. LVTTL I/O Specifications					
Symbol	Parameter	Conditions	Minimum	Maximum	Units
V _{CCIO}	Output supply voltage		3.0	3.6	V
V _{IH}	High-level input voltage		2.0	V _{CCIO} + 0.3	V
V _{IL}	Low-level input voltage		-0.3	0.8	V
I _I	Input pin leakage current	V _{IN} = 0 V or 3.3 V	-10	10	μA
V _{OH}	High-level output voltage	I _{OH} = -12 mA, V _{CCIO} = 3.0 V (1)	2.4		V
V _{OL}	Low-level output voltage	I _{OL} = 12 mA, V _{CCIO} = 3.0 V <i>(2)</i>		0.4	V

Figure 35. Synchronous Bidirectional Pin External Timing

Notes to Figure 35:

- The output enable and input registers are LE registers in the LAB adjacent to the (1)bidirectional pin. Use the "Output Enable Routing = Single-Pin" option in the Quartus II software to set the output enable register.
- Use the "Decrease Input Delay to Internal Cells = OFF" option in the Quartus II (2) software to set the LAB-adjacent input register. This maintains a zero hold time for LAB-adjacent registers while giving a fast, position-independent setup time. Set "Decrease Input Delay to Internal Cells = ON" and move the input register farther away from the bidirectional pin for a faster setup time with zero hold time. The exact position where zero hold occurs with the minimum setup time varies with device density and speed grade.

Tables 36 to 38 describes the f_{MAX} timing parameters shown in Figure 32. Table 39 describes the functional timing parameters.

Table 36. APEX 20KC f _{MAX} LE Timing Parameters		
Symbol	Parameter	
t _{SU}	LE register setup time before clock	
t _H	LE register hold time before clock	
t _{CO}	LE register clock-to-output delay	
t _{LUT}	LUT delay for data-in to data-out	

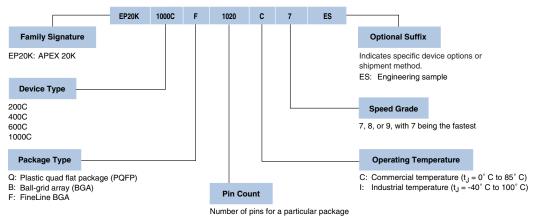

Table 42. APEX 20KC Selectable I/O Standard Input Adder Delays (Part 2 of 2) Note (1)		
Symbol	Parameter	Condition
LVDS	Input adder delay for the LVDS I/O standard	
CTT	Input adder delay for the CTT I/O standard	
AGP	Input adder delay for the AGP I/O standard	

Table 43. APEX 20KC Selectable I/O Standard Output Adder Delays Note (1)			
Symbol	Parameter	Condition	
LVCMOS	Output adder delay for the LVCMOS I/O standard		
LVTTL	Output adder delay for the LVTTL I/O standard	Cload = 35 pF Rup = 564.5 Ω Rdn = 430 Ω (2)	
2.5 V	Output adder delay for the 2.5-V I/O standard	Cload = 35 pF Rup = 450 Ω Rdn = 450 Ω (2)	
1.8 V	Output adder delay for the 1.8-V I/O standard	Cload = 35 pF Rup = 520 Ω Rdn = 480 Ω (2)	
PCI	Output adder delay for the PCI I/O standard	Cload = 10 pF Rup = 1M Ω Rdn = 25 Ω (2)	
GTI+	Output adder delay for the GTL+ I/O standard	Cload = 30 pF Rup = 25 Ω <i>(2)</i>	
SSTL-3 Class I	Output adder delay for the SSTL-3 Class I I/O standard	Cload1 = 0 pF Cload2 = 30 pF R = 25 Ω (2)	
SSTL-3 Class II	Output adder delay for the SSTL-3 Class II I/O standard	Cload1 = 0 pF Cload2 = 30 pF R = 25 Ω (2)	
SSTL-2 Class I	Output adder delay for the SSTL-2 Class I I/O standard		
SSTL-2 Class II	Output adder delay for the SSTL-2 Class II I/O standard		
LVDS	Output adder delay for the LVDS I/O standard	Cload = 4 pF R=100 Ω <i>(2)</i>	
CTT	Output adder delay for the CTT I/O standard		
AGP	Output adder delay for the AGP I/O standard		

Note to Tables 42 and 43:

- (1) These delays report the differences in delays for different I/O standards. Add the delay for the I/O standard that is used to the external timing parameters.
- (2) See Figure 36 for more information.

Figure 39. APEX 20KC Device Packaging Ordering Information

Revision History

The information contained in the *APEX 20KC Programmable Logic Device Data Sheet* version 2.2 supersedes information published in previous versions.

Version 2.2

The following changes were made to the *APEX 20KC Programmable Logic Device Data Sheet* version 2.2:

- Updated Tables 1.
- Updated notes in Tables 20.

Version 2.1

The following changes were made to the *APEX 20KC Programmable Logic Device Data Sheet* version 2.1:

- Removed figure on AC Test Conditions.
- Updated conditions in Tables 40 and 41.
- Added Tables 42 and 43.
- Updated V_{OD} in Table 27.
- Added Figures 36 through 38.
- Updated Tables 44 through 49.
- Updated Tables 62 through 67.
- Removed notes in Tables 44 through 67.
- Various textual changes throughout the document.