Intel - EP20K600CF672I8 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	2432
Number of Logic Elements/Cells	24320
Total RAM Bits	311296
Number of I/O	508
Number of Gates	1537000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k600cf672i8

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MegaLAB Structure

APEX 20KC devices are constructed from a series of MegaLAB[™] structures. Each MegaLAB structure contains 16 logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. In EP20K1000C devices, MegaLAB structures contain 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure.

Figure 2. MegaLAB Structure

Logic Array Block

Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20KC LAB.

APEX 20KC devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas, minimizing the use of the MegaLAB and FastTrack interconnect and providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect. The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit.

Figure 4. LAB Control Signal Generation

Notes to Figure 4:

- The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the LAB.
- (2) The SYNCCLR signal can be generated by the local interconnect or global signals.

Logic Element

The LE, the smallest unit of logic in the APEX 20KC architecture, is compact and provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack interconnect routing structures. See Figure 5.

Figure 5. APEX 20KC Logic Element

Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives the outputs of the LE.

Each LE has two outputs that drive the local, MegaLAB, or FastTrack interconnect routing structure. Each output can be driven independently by the LUT's or register's output. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, improves device utilization because the register and the LUT can be used for unrelated functions. The LE can also drive out registered and unregistered versions of the LUT output.

Cascade Chain

With the cascade chain, the APEX 20KC architecture can implement functions with a very wide fan-in. Adjacent LUTs can compute portions of a function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a short cascade delay. Cascade chain logic can be created automatically by the Quartus II Compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than ten LEs are implemented automatically by linking LABs together. For enhanced fitting, a long cascade chain skips alternate LABs in a MegaLAB structure. A cascade chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 7 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in.

Table 8. APEX 20KC Routing Scheme									
Source	Destination								
	Row I/O Pin	Column I/O Pin	LE	ESB	Local Interconnect	MegaLAB Interconnect	Row FastTrack Interconnect	Column FastTrack Interconnect	FastRow Interconnect
Row I/O pin					\checkmark	\checkmark	~	\checkmark	
Column I/O pin								~	~
LE					\checkmark	\checkmark	~	\checkmark	
ESB					 Image: A start of the start of	\checkmark	~	\checkmark	
Local interconnect	~	~	~	~					
MegaLAB interconnect					~				
Row FastTrack interconnect						~		~	
Column FastTrack interconnect						~	~		
FastRow interconnect					~				

Product-Term Logic

The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals.

In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode.

Embedded System Block

The ESB can implement various types of memory blocks, including dual-port RAM, ROM, FIFO, and CAM blocks. The ESB includes input and output registers; the input registers synchronize writes, and the output registers can pipeline designs to improve system performance. The ESB offers a dual-port mode, which supports simultaneous reads and writes at two different clock frequencies. Figure 17 shows the ESB block diagram.

Figure 17. ESB Block Diagram

Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.

Figure 21. ESB in Input/Output Clock Mode Note (1)

Note to Figure 21:

(1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset.

Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate.

Programmable Speed/Power Control

APEX 20KC ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo Bit[™] option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current.

Designers can program each ESB in the APEX 20KC device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power.

I/O Structure

The APEX 20KC IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. The register in the APEX 20KC IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. This feature is useful for cases where the APEX 20KC device controls an activelow input or another device; it prevents inadvertent activation of the input upon power-up.

Figure 25 shows how fast bidirectional I/O pins are implemented in APEX 20KC devices. This feature is useful for cases where the APEX 20KC device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

Open-drain output pins on APEX 20KC devices (with a series resistor and a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a V_{IH} of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tristate; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

ClockLock & ClockBoost Features

APEX 20KC devices support the ClockLock and ClockBoost clock management features, which are implemented with PLLs. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost circuitry allows the designer to distribute a low-speed clock and multiply that clock on-device. APEX 20KC devices include a high-speed clock tree; unlike ASICs, the user does not have to design and optimize the clock tree. The ClockLock and ClockBoost features work in conjunction with the APEX 20KC device's high-speed clock to provide significant improvements in system performance and bandwidth. APEX 20KC devices in -7 and -8 speed grades have PLLs and support the ClockLock and ClockBoost features.

The ClockLock and ClockBoost features in APEX 20KC devices are enabled through the Quartus II software. External devices are not required to use these features.

APEX 20KC ClockLock Feature

APEX 20KC devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200C devices have two PLLs; the EP20K400C and larger devices have four PLLs.

The following sections describe some of the features offered by the APEX 20KC PLLs.

External PLL Feedback

The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KC device and another high-speed device, such as SDRAM.

Table 12. APEX 20KC Clock Input & Output Parameters (Part 2 of 2) Note (1)							
Symbol	Parameter	I/O Standard	-7 Spee	-7 Speed Grade		-8 Speed Grade	
			Min	Max	Min	Max	
f _{CLOCK1_EXT}	Output clock frequency for	3.3-V LVTTL	(5)	(5)	(5)	(5)	MHz
	external clock1 output	2.5-V LVTTL	(5)	(5)	(5)	(5)	MHz
		1.8-V LVTTL	(5)	(5)	(5)	(5)	MHz
		GTL+	(5)	(5)	(5)	(5)	MHz
		SSTL-2 Class I	(5)	(5)	(5)	(5)	MHz
		SSTL-2 Class II	(5)	(5)	(5)	(5)	MHz
		SSTL-3 Class I	(5)	(5)	(5)	(5)	MHz
		SSTL-3 Class II	(5)	(5)	(5)	(5)	MHz
		LVDS	(5)	(5)	(5)	(5)	MHz
f _{IN}	Input clock frequency	3.3-V LVTTL	(5)	(5)	(5)	(5)	MHz
		2.5-V LVTTL	(5)	(5)	(5)	(5)	MHz
		1.8-V LVTTL	(5)	(5)	(5)	(5)	MHz
		GTL+	(5)	(5)	(5)	(5)	MHz
		SSTL-2 Class I	(5)	(5)	(5)	(5)	MHz
		SSTL-2 Class II	(5)	(5)	(5)	(5)	MHz
		SSTL-3 Class I	(5)	(5)	(5)	(5)	MHz
		SSTL-3 Class II	(5)	(5)	(5)	(5)	MHz
		LVDS	(5)	(5)	(5)	(5)	MHz

Notes to Tables 11 and 12:

- (1) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.
- (2) The maximum lock time is 40 µs or 2,000 input clock cycles, whichever occurs first.
- (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs remain disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK_ENA pin goes high in user mode.
- (4) The PLL VCO operating range is 200 MHz $\leq f_{VCO} \leq$ 840 MHz for LVDS mode.

(5) Contact Altera Applications for information on these parameters.

SignalTap Embedded Logic Analyzer

APEX 20KC devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20KC device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured.

Table 28. GTL+ I/O Specifications							
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units	
V _{TT}	Termination voltage		1.35	1.5	1.65	V	
V _{REF}	Reference voltage		0.88	1.0	1.12	V	
V _{IH}	High-level input voltage		V _{REF} + 0.1			V	
V _{IL}	Low-level input voltage				V _{REF} – 0.1	V	
V _{OL}	Low-level output voltage	I _{OL} = 36 mA <i>(2)</i>			0.65	V	

Table 29. SSTL-2 Class I Specifications						
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	I/O supply voltage		2.375	2.5	2.625	V
V _{TT}	Termination voltage		$V_{REF} - 0.04$	V _{REF}	V _{REF} + 0.04	V
V _{REF}	Reference voltage		1.15	1.25	1.35	V
V _{IH}	High-level input voltage		V _{REF} + 0.18		V _{CCIO} + 0.3	V
V _{IL}	Low-level input voltage		-0.3		V _{REF} – 0.18	V
V _{OH}	High-level output voltage	I _{OH} = -7.6 mA (1)	V _{TT} + 0.57			V
V _{OL}	Low-level output voltage	I _{OL} = 7.6 mA <i>(2)</i>			V _{TT} – 0.57	V

Table 32. SSTL-3 Class II Specifications						
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	I/O supply voltage		3.0	3.3	3.6	V
V _{TT}	Termination voltage		V _{REF} - 0.05	V _{REF}	V _{REF} + 0.05	V
V _{REF}	Reference voltage		1.3	1.5	1.7	V
V _{IH}	High-level input voltage		V _{REF} + 0.2		V _{CCIO} + 0.3	V
V _{IL}	Low-level input voltage		-0.3		V _{REF} - 0.2	V
V _{OH}	High-level output voltage	I _{OH} = -16 mA (1)	V _{TT} + 0.8			V
V _{OL}	Low-level output voltage	I _{OL} = 16 mA <i>(2)</i>			V _{TT} – 0.8	V

Table 33. HSTL Class I I/O Specifications						
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	I/O supply voltage		1.71	1.8	1.89	V
V _{TT}	Termination voltage		$V_{REF} - 0.05$	V _{REF}	V _{REF} + 0.05	V
V _{REF}	Reference voltage		0.68	0.75	0.90	V
V _{IH}	High-level input voltage		V _{REF} + 0.1		V _{CCIO} + 0.3	V
V _{IL}	Low-level input voltage		-0.3		V _{REF} – 0.1	V
V _{OH}	High-level output voltage	I _{OH} = -8 mA (1)	V _{CCIO} – 0.4			V
V _{OL}	Low-level output voltage	I _{OL} = 8 mA (2)			0.4	V

Altera Corporation

a2

dout1

t_{ESBDATASU}

t_{ESBDATAH}

t_{ESBSWC}

Figure 34. ESB Synchronous Timing Waveforms

Figure 35 shows the timing model for bidirectional I/O pin timing.

din1

a3

 $t_{ESBWEH} \longrightarrow$

t_{ESBDATACO1}

din2

a2

din3

din2

Wraddress

CLK

Data-Out

a0

a1

dout0

t_{ESBWESU}

Table 37. APEX 20KC f _{MAX} ESB Timing Parameters					

Г

Symbol	Parameter
t _{ESBARC}	ESB asynchronous read cycle time
t _{ESBSRC}	ESB synchronous read cycle time
t _{ESBAWC}	ESB asynchronous write cycle time
t _{ESBSWC}	ESB synchronous write cycle time
t _{ESBWASU}	ESB write address setup time with respect to WE
t _{ESBWAH}	ESB write address hold time with respect to WE
t _{ESBWDSU}	ESB data setup time with respect to WE
t _{ESBWDH}	ESB data hold time with respect to WE
t _{ESBRASU}	ESB read address setup time with respect to RE
t _{ESBRAH}	ESB read address hold time with respect to RE
t _{ESBWESU}	ESB WE setup time before clock when using input register
t _{ESBDATASU}	ESB data setup time before clock when using input register
t _{ESBWADDRSU}	ESB write address setup time before clock when using input registers
t _{ESBRADDRSU}	ESB read address setup time before clock when using input registers
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers
t _{ESBDATACO2}	ESB clock-to-output delay without output registers
t _{ESBDD}	ESB data-in to data-out delay for RAM mode
t _{PD}	ESB macrocell input to non-registered output
t _{PTERMSU}	ESB macrocell register setup time before clock
t _{PTERMCO}	ESB macrocell register clock-to-output delay

Table 38. APEX 20KC f_{MAX} Routing Delays

Symbol	Parameter
t _{F1-4}	Fan-out delay estimate using local interconnect
t _{F5-20}	Fan-out delay estimate using MegaLab interconnect
t _{F20+}	Fan-out delay estimate using FastTrack interconnect

Table 39. APEX 20KC Minimum Pulse Width Timing Parameters				
Symbol	Parameter			
t _{CH}	Minimum clock high time from clock pin			
t _{CL}	Minimum clock low time from clock pin			
t _{CLRP}	LE clear pulse width			
t _{PREP}	LE preset pulse width			
t _{ESBCH}	Clock high time			
t _{ESBCL}	Clock low time			
t _{ESBWP}	Write pulse width			
t _{ESBRP}	Read pulse width			

Tables 40 and 41 describe APEX 20KC external timing parameters. The timing values for these pin-to-pin delays are reported for all pins using the 3.3-V LVTTL I/O standard.

Table 40. APEX 20KC External Timing Parameters Note (1)					
Symbol	Clock Parameter Condit				
t _{INSU}	Setup time with global clock at IOE register				
t _{INH}	Hold time with global clock at IOE register				
t _{оитсо}	Clock-to-output delay with global clock at IOE output register (2)				
t _{INSUPLL}	Setup time with PLL clock at IOE input register				
t _{INHPLL}	Hold time with PLL clock at IOE input register				
t _{OUTCOPLL}	Clock-to-output delay with PLL clock at IOE output register	(2)			

Table 49. EP20K200C External Bidirectional Timing Parameters										
Symbol	-7 Speed Grade		-8 Spee	-8 Speed Grade		-9 Speed Grade				
	Min	Max	Min	Max	Min	Max				
t _{INSUBIDIR}	1.38		1.78		1.99		ns			
t _{INHBIDIR}	0.00		0.00		0.00		ns			
t _{OUTCOBIDIR}	2.00	3.79	2.00	4.31	2.00	4.70	ns			
t _{XZBIDIR}		6.12		6.51		7.89	ns			
t _{ZXBIDIR}		6.12		6.51		7.89	ns			
t _{INSUBIDIRPLL}	2.82		3.47		-		ns			
t _{INHBIDIRPLL}	0.00		0.00		-		ns			
t _{OUTCOBIDIRPLL}	0.50	2.36	0.50	2.62	-	-	ns			
t _{XZBIDIRPLL}		4.69		4.82		-	ns			
t _{ZXBIDIRPLL}		4.69		4.82		-	ns			

Table 50. EP20K400C f _{MAX} LE Timing Parameters										
Symbol	-7 Spee	d Grade	-8 Spee	d Grade	-9 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.01		0.01		0.01		ns			
t _H	0.10		0.10		0.10		ns			
t _{CO}		0.27		0.30		0.32	ns			
t _{LUT}		0.65		0.78		0.92	ns			

Г

٦

٦

Table 55. EP20K400C External Bidirectional Timing Parameters										
Symbol	-7 Spec	ed Grade	-8 Spee	ed Grade	-9 Spec	Unit				
	Min	Max	Min	Max	Min	Max				
t _{INSUBIDIR}	1.29		1.67		1.92		ns			
t _{INHBIDIR}	0.00		0.00		0.00		ns			
t _{OUTCOBIDIR}	2.00	4.25	2.00	4.61	2.00	5.03	ns			
t _{XZBIDIR}		6.55		6.97		7.35	ns			
t _{ZXBIDIR}		6.55		6.97		7.36	ns			
t _{INSUBIDIRPLL}	3.22		3.80		-		ns			
t _{INHBIDIRPLL}	0.00		0.00		-		ns			
t _{OUTCOBIDIRPLL}	0.50	2.27	0.50	2.55	-	-	ns			
tXZBIDIRPLL		4.62		4.84		-	ns			
t _{ZXBIDIRPLL}		4.62		4.84		-	ns			

Table 56. EP20K600C f _{MAX} LE Timing Parameters										
Symbol	-7 Spee	ed Grade	-8 Spee	d Grade	-9 Spee	Unit				
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.01		0.01		0.01		ns			
t _H	0.10		0.10		0.10		ns			
t _{CO}		0.27		0.30		0.32	ns			
t _{LUT}		0.65		0.78		0.92	ns			

Г

Table 61. EP20K600C External Bidirectional Timing Parameters										
Symbol	-7 Spe	ed Grade	-8 Spe	ed Grade	-9 Spe	Unit				
	Min	Max	Min	Max	Min	Max				
t _{INSUBIDIR}	2.03		2.57		2.97		ns			
t _{INHBIDIR}	0.00		0.00		0.00		ns			
t _{OUTCOBIDIR}	2.00	4.29	2.00	4.77	2.00	5.11	ns			
t _{XZBIDIR}		8.31		9.14		9.76	ns			
t _{ZXBIDIR}		8.31		9.14		9.76	ns			
t _{INSUBIDIRPLL}	3.99		4.77		-		ns			
t _{INHBIDIRPLL}	0.00		0.00		-		ns			
t _{OUTCOBIDIRPLL}	0.50	2.37	0.50	2.63	-	-	ns			
t _{XZBIDIRPLL}		6.35		6.94		-	ns			
t _{ZXBIDIRPLL}		6.35		6.94		-	ns			

Table 62. EP20K1	000C f _{max} le 1	iming Microp	arameters				
Symbol	-7 Spee	d Grade	-8 Spee	d Grade	-9 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.01		0.01		0.01		ns
t _H	0.10		0.10		0.10		ns
t _{CO}		0.27		0.30		0.32	ns
t _{LUT}		0.66		0.79		0.92	ns

Γ

٦

Table 69. Selectable I/O Standard Output Delays									
Symbol	-7 Spe	ed Grade	-8 Spe	ed Grad	-9 Spee	d Grade	Unit		
	Min	Max	Min	Max	Min	Max	Min		
LVCMOS		0.00		0.00		0.00	ns		
LVTTL		0.00		0.00		0.00	ns		
2.5 V		0.00		0.00		0.00	ns		
1.8 V		1.18		1.41		1.57	ns		
PCI		-0.52		-0.53		-0.56	ns		
GTL+		-0.18		-0.29		-0.39	ns		
SSTL-3 Class I		-0.67		-0.71		-0.75	ns		
SSTL-3 Class II		-0.67		-0.71		-0.75	ns		
SSTL-2 Class I		-0.67		-0.71		-0.75	ns		
SSTL-2 Class II		-0.67		-0.71		-0.75	ns		
LVDS		-0.69		-0.70		-0.73	ns		
CTT		0.00		0.00		0.00	ns		
AGP		0.00		0.00		0.00	ns		

Power Consumption

To estimate device power consumption, use the interactive power estimator on the Altera web site at http://www.altera.com.

Configuration & Operation

The APEX 20KC architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The APEX architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

Before and during device configuration, all I/O pins are pulled to V_{CCIO} by a built-in weak pull-up resistor.