

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	· ·
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	· .
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08js16lcfk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number	Package Description	Original (gold wire) package document number	Current (copper wire) r package document numbe		
MC68HC908JW32	48 QFN	98ARH99048A	98ASA00466D		
MC9S08AC16					
MC9S908AC60					
MC9S08AC128					
MC9S08AW60					
MC9S08GB60A					
MC9S08GT16A					
MC9S08JM16					
MC9S08JM60					
MC9S08LL16					
MC9S08QE128					
MC9S08QE32					
MC9S08RG60					
MCF51CN128					
MC9RS08LA8	48 QFN	98ARL10606D	98ASA00466D		
MC9S08GT16A	32 QFN	98ARH99035A	98ASA00473D		
MC9S908QE32	32 QFN	98ARE10566D	98ASA00473D		
MC9S908QE8	32 QFN	98ASA00071D	98ASA00736D		
MC9S08JS16	24 QFN	98ARL10608D	98ASA00734D		
MC9S08QB8					
MC9S08QG8	24 QFN	98ARL10605D	98ASA00474D		
MC9S08SH8	24 QFN	98ARE10714D	98ASA00474D		
MC9RS08KB12	24 QFN	98ASA00087D	98ASA00602D		
MC9S08QG8	16 QFN	98ARE10614D	98ASA00671D		
MC9RS08KB12	8 DFN	98ARL10557D	98ASA00672D		
MC9S08QG8					
MC9RS08KA2	6 DFN	98ARL10602D	98ASA00735D		

Pin Assignments

2 Pin Assignments

This section shows the pin assignments in the packages available for the MC9S08JS16 series.

	Pin Number (Package)		Priority	> Highest
24 (QFN)	20 (SOIC)	Port Pin	Alt 1	Alt 2
1	4	PTB0	IRQ	TCLK
2	5	PTB1		RESET
3	6	PTB2	BKGD	MS
4	7	PTB3		BLMS
5	8	PTA0	KBIP0	TPMCH0
6		NC		
7	9	PTA1	KBIP1	MISO
8	10	PTA2	KBIP2	MOSI
9	11	PTA3	KBIP3	SPSCK
10	12	PTA4	KBIP4	SS
11	13			V _{DD}
12	_	NC		
13	14			V _{SS}
14	15			USBDN
15	16			USBDP
16	17			V _{USB33}
17	18	PTA5	KBIP5	TPMCH1
18	—	NC		
19	19	PTA6	KBIP6	RxD
20	20	PTA7	KBIP7	TxD
21	1	PTB4	XTAL	
22	2	PTB5	EXTAL	
23	3			V _{SSOSC}
24	—	NC		

Table 1. Pin Availability by Package Pin-Count

 $P_D = P_{int} + P_{I/O}P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions must be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage. This device was qualified to AEC-Q100 Rev E. A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 5. ESD Protection Characteristics

Parameter	Symbol	Value	Unit
ESD Target for Machine Model (MM) — MM circuit description	V _{THMM}	200	V
ESD Target for Human Body Model (HBM) — HBM circuit description	V _{THHBM}	2000	V

3.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Table 6. DC Characteristics

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1		Operating voltage ²	—	2.7	—	5.5	V

Electrical Characteristics

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
2	Р	Output high voltage — Low drive (PTxDSn = 0) 5 V, $I_{Load} = -2 \text{ mA}$ 3 V, $I_{Load} = -0.6 \text{ mA}$ 5 V, $I_{Load} = -0.4 \text{ mA}$ 3 V, $I_{Load} = -0.24 \text{ mA}$ Output high voltage — High drive (PTxDSn = 1)	V _{OH}	V _{DD} - 1.5 V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.8	 		V
		5 V, I _{Load} = -10 mA 3 V, I _{Load} = -3 mA 5 V, I _{Load} = -2 mA 3 V, I _{Load} = -0.4 mA	$V_{OH} \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
3	Р	Output low voltage — Low drive (PTxDSn = 0) 5 V, I _{Load} = 2 mA 3 V, I _{Load} = 0.6 mA 5 V, I _{Load} = 0.4 mA 3 V, I _{Load} = 0.24 mA	Vol	1.5 0.8	 	 	v
5	•	Output low voltage — High drive (PTxDSn = 1) $5 \text{ V}, \text{ I}_{\text{Load}} = 10 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 3 \text{ mA}$ $5 \text{ V}, \text{ I}_{\text{Load}} = 2 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 0.4 \text{ mA}$	VOL	1.5 0.8			·
4	Ρ	Output high current — Max total I _{OH} for all ports 5 V 3 V	I _{OHT}				mA
5	Ρ	Output low current — Max total I _{OL} for all ports 5 V 3 V	I _{OLT}	_	_		mA
6	Ρ	Input high voltage; all digital inputs	V _{IH}	$0.65 imes V_{DD}$	_		v
7	Ρ	Input low voltage; all digital inputs	V _{IL}	—	—	$0.35\times V_{DD}$	v
8	Ρ	Input hysteresis; all digital inputs	V _{hys}	$0.06 \times V_{DD}$	—	—	mV
9	Ρ	Input leakage current; input only pins ³	ll _{In} l	—	0.1	1	μA
10	Ρ	High Impedance (off-state) leakage current ³	ll _{oz} l	_	0.1	1	μA
11	Ρ	Internal pullup resistors ⁴	_			65	kΩ
12	Ρ	Internal pulldown resistors ⁵	R _{PD}	20	45	65	kΩ
13	С	Internal pullup resistor to USBDP (to V _{USB33}) Idle Transmit	R _{PUPD}				kΩ
14	С	Input capacitance; all non-supply pins	C _{In}	_	_	8	pF
15	С	RAM retention voltage	V _{RAM}	0.6	1.0		V
16	Ρ	POR rearm voltage	V _{POR}	0.9	1.4	2.0	V
17	D	POR rearm time	t _{POR}	10	—	—	μS

Table 6. DC Characteristics (continued)

Num	С	Parameter	Sy	mbol	Min	Typical ¹	Max	Unit
18	Ρ		, falling ⁵ rising	LVD1	3.9 4.0	4.0 4.1	4.1 4.2	v
19	Ρ		o falling Trising	LVD0	2.48 2.54	2.56 2.62	2.64 2.70	v
20	С		v_{l} falling v_{l} rising	LVW3	4.5 4.6	4.6 4.7	4.7 4.8	v
21	Ρ		$_{0} falling V_{1}$	LVW2	4.2 4.3	4.3 4.4	4.4 4.5	v
22	Ρ		v_{l} falling v_{l} rising	LVW1	2.84 2.90	2.92 2.98	3.00 3.06	v
23	С		o falling Trising	LVWO	2.66 2.72	2.74 2.80	2.82 2.88	v
24	Т	Low-voltage inhibit reset/recover hysteresis	5 V V 3 V	/ _{hys}		100 60		mV

Typical values are based on characterization data at 25 °C unless otherwise stated.
Operating voltage with USB enabled can be found in Section 3.11, "USB Electricals."

³ Measured with $V_{In} = V_{DD}$ or V_{SS} . ⁴ Measured with $V_{In} = V_{SS}$. ⁵ Measured with $V_{In} = V_{DD}$.

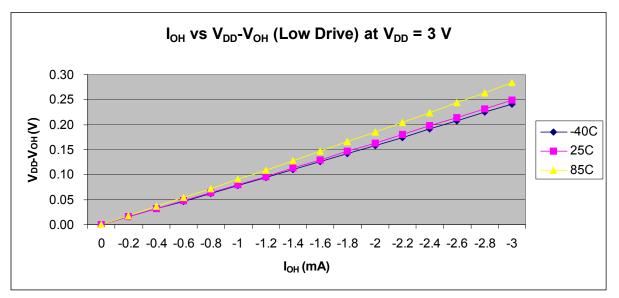


Figure 4. Typical I_{OH} (Low Drive) vs V_{DD}–V_{OH} at V_{DD} = 3 V

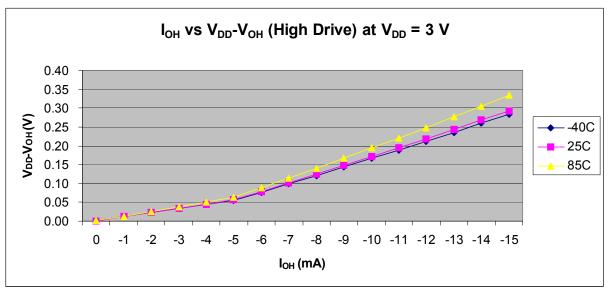


Figure 5. Typical I_{OH} (High Drive) vs V_{DD}–V_{OH} at V_{DD} = 3 V

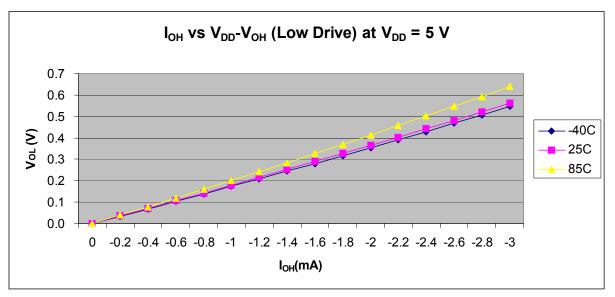


Figure 6. Typical I_{OH} (Low Drive) vs V_{DD}–V_{OH} at V_{DD} = 5 V

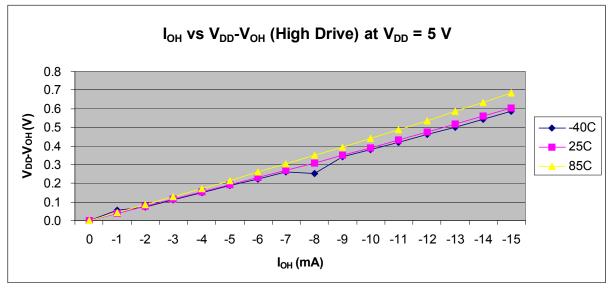


Figure 7. Typical I_{OH} (High Drive) vs V_{DD}–V_{OH} at V_{DD} = 5 V

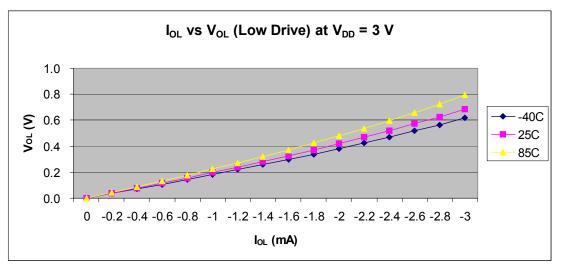


Figure 10. I_{OL} vs V_{OL} (Low Drive) at V_{DD} = 3 V

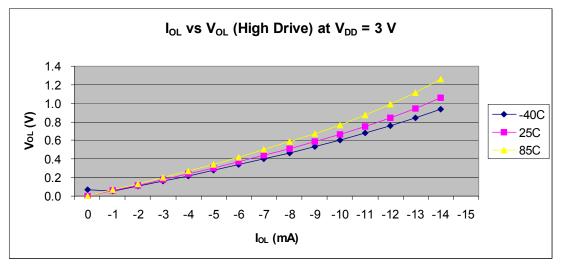


Figure 11. I_{OL} vs V_{OL} (High Drive) at V_{DD} = 3 V

3.6 Supply Current Characteristics

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
1	С	Run supply current ³ measured at (CPU clock	DI	5	1.03	—	mA
I	C	= 2 MHz, f _{Bus} = 1 MHz, BLPE mode)	RI _{DD}	3	0.83	_	IIIA
_		Run supply current ³ measured at (CPU		5	19.93	_	
2	P	clock = 48 MHz, f _{Bus} = 24 MHz, PEE mode, all module on)		3	18.74	_	mA
3	Р	Stop2 mode supply current	601	5	1.36	_	μA
3	F		S2I _{DD}	3	1.18	—	μA
4	Р	Stop3 mode supply current, all module off	S3I _{DD}	5	1.50	_	μA
4		Stope mode supply current, all module of		3	1.31	_	μA
5	Р	RTC adder to stop2 or stop3 ³ , 25 °C		5	300	_	nA
5			∆I _{SRTC}	3	300	_	nA
6	Р	LVD adder to stop3 (LVDE = LVDSE = 1)	A.L.	5	106.7	_	μA
0			ΔI_{SLVD}	3	95.6	_	μA
7	Р	Adder to stop3 for oscillator enabled ⁴	مام	5	5.6	_	μA
/		(ERCLKEN =1 and EREFSTEN = 1)	ΔI_{SOSC}	3	5.3	_	μΑ
8	Т	USB module enable current ⁵	ΔI_{USBE}	5	1.5	_	mA
9	Т	USB suspend current ⁶	I _{SUSP}	5	273.3	—	μA

Table 7. Supply Current Characteristics

¹ Typicals are measured at 25 °C. See Figure 12 through Figure 10 for typical curves across voltage/temperature.

² Values given here are preliminary estimates prior to completing characterization.

³ Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode. Wait mode typical is 560 μ A at 5 V and 422 μ A at 3 V with f_{Bus} = 1 MHz.

⁴ Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0).

⁵ Here USB module is enabled and clocked at 48 MHz (USBEN = 1, USBVREN =1, USBPHYEN = 1 and USBPU = 1), and D+ and D- pulled down by two 15.1 k Ω resisters independently. The current consumption may be much higher when the packets are being transmitted through the attached cable.

⁶ MCU enters stop3 mode, USB bus in idle state. The USB suspend current will be dominated by the D+ pullup resister.

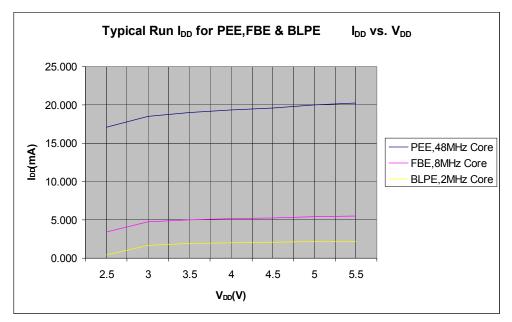
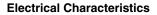
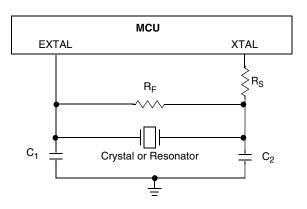



Figure 12. Typical Run I_{DD} for PEE, FBE and BLPE Modes (I_{\text{DD}} vs. V_{\text{DD}})

3.7 External Oscillator (XOSC) Characteristics

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode ² High range (RANGE = 1) PEE or PBE mode ³ High range (RANGE = 1, HGO = 1) BLPE mode High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi-fll} f _{hi-pll} f _{hi-hgo} f _{hi-lp}	32 1 1 1 1	 	38.4 5 16 16 8	kHz MHz MHz MHz MHz MHz
2		Load capacitors	C _{1,} C ₂			r resonato commend	
3	_	Feedback resistor Low range (32 kHz to 38.4 kHz) High range (1 MHz to 16 MHz)	R _F	_	10 1	_	MΩ
4	_	Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) $\geq 8 \text{ MHz}$ 4 MHz 1 MHz	R _S		0 100 0 0 0 0	 0 10 20	kΩ
5	т	Crystal start-up time ⁴ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁵ High range, high gain (RANGE = 1, HGO = 1) ⁵	t CSTL-LP CSTL-HGO CSTH-LP CSTH-HGO	 	200 400 5 15	 	ms
6	т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² PEE or PBE mode ³ BLPE mode	f _{extal}	0.03125 1 0		5 16 40	MHz


¹ Typical data was characterized at 3.0 V, 25 °C or is recommended value.

² When MCG is configured for FEE or FBE mode, input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ When MCG is configured for PEE or PBE mode, input clock source must be divided using RDIV to within the range of 1 MHz to 2 MHz.

⁴ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal.

MC9S08JS16 Series MCU Data Sheet, Rev. 4

- ³ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.
- ⁴ Jitter measurements are based upon a 48 MHz clock frequency.
- ⁵ 625 ns represents 5 time quanta for CAN applications, under worst case conditions of 8 MHz CAN bus clock, 1 Mbps CAN bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit.
- ⁶ Below D_{lock} minimum, the MCG is guaranteed to enter lock. Above D_{lock} maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock.
- ⁷ Below D_{unl} minimum, the MCG will not exit lock if already in lock. Above D_{unl} maximum, the MCG is guaranteed to exit lock.

3.9 AC Characteristics

This section describes AC timing characteristics for each peripheral system.

3.9.1 Control Timing

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC		24	MHz
2	D	Internal low-power oscillator period	t _{LPO}	700	—	1300	μs
3	D	External reset pulse width ² (t _{cyc} = 1/f _{Self_reset})	t _{extrst}	$1.5 \times t_{Self_reset}$	_	_	ns
4	D	Reset low drive	t _{rstdrv}	$66 imes t_{cyc}$	—	_	ns
5	D	Active background debug mode latch setup time	t _{MSSU}	25	_	_	ns
6	D	Active background debug mode latch hold time	t _{MSH}	25	—	_	ns
7	D	IRQ pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
8	D	KBIPx pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
9	с	Port rise and fall time (load = 50 pF) ⁴ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		3 30	_	ns

Figure 13. Control Timing

¹ Typical values are based on characterization data at $V_{DD} = 5.0$ V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 85°C.

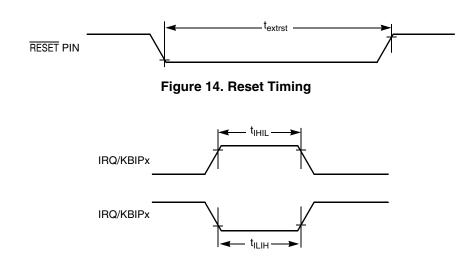


Figure 15. IRQ/KBIPx Timing

3.9.2 Timer/PWM (TPM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Num	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TPMext}	dc	f _{Bus} /4	MHz
2	D	External clock period	t _{TPMext}	4	—	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	—	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 10. TPM Input Timing

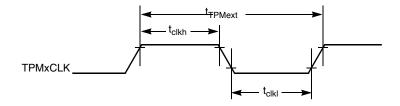
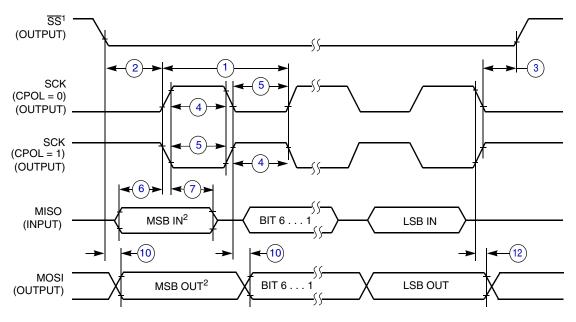


Figure 16. Timer External Clock

MC9S08JS16 Series MCU Data Sheet, Rev. 4

Num ¹	С	Characteristic ²		Symbol	Min	Typical	Мах	Unit
1	D	Operating frequency ³	Master Slave	f _{op} f _{op}	f _{Bus} /2048DC		f _{Bus} /2 f _{Bus} /4	Hz
2	D	Cycle time	Master Slave	t _{SCK} t _{SCK}	2 4	_	2048 —	t _{cyc}
3	D	Enable lead time	Master Slave	t _{Lead} t _{Lead}		1/2 1/2		t _{SCK}
4	D	Enable lag time	Master Slave	t _{Lag} t _{Lag}	—	1/2 1/2		t _{SCK}
5	D	Clock (SPSCK) high time	Master Slave	t _{SCKH}	— 1/2 t _{SCK} – 25	1/2 t _{SCK} 1/2 t _{SCK}	_ _	ns
6	D	Clock (SPSCK) low time	Master Slave	t _{SCKL}	— 1/2 t _{SCK} – 25	1/2 t _{SCK} 1/2 t _{SCK}	—	ns
7	D	Data setup time (inputs)	Master Slave	t _{SI(M)} t _{SI(S)}	30 30	_		ns
8	D	Data hold time (inputs)	Master Slave	t _{HI(M)} t _{HI(S)}	30 30	_		ns
9	D	Access time, slave ⁴		t _A	—	_	40	ns
10	D	Disable time, slave ⁵		t _{dis}	—	_	40	ns
11	D	Data setup time (outputs)	Master Slave	t _{SO} t _{SO}		_	25 25	ns
12	D	Data hold time (outputs)	Master Slave	t _{НО} t _{НО}	-10 -10		_	ns

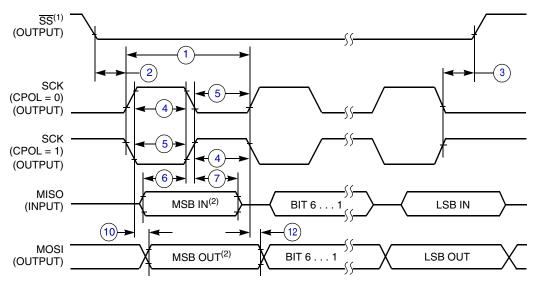
Table 11. SPI Electrical Characteristic


¹ Refer to Figure 18 through Figure 21.
² All timing is shown with respect to 20% V_{DD} and 80% V_{DD}, unless noted; 50 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins.

³ The maximum frequency is 8 MHz when input filter on SPI pins is disabled.

⁴ Time to data active from high-impedance state.

⁵ Hold time to high-impedance state.

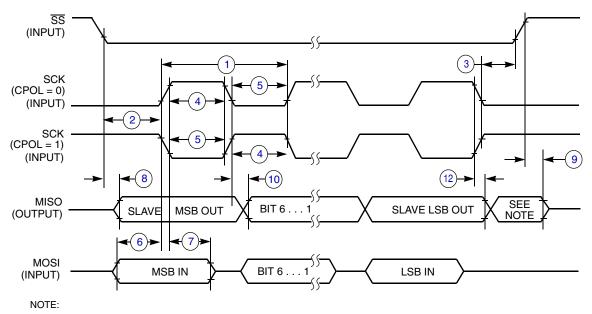


NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

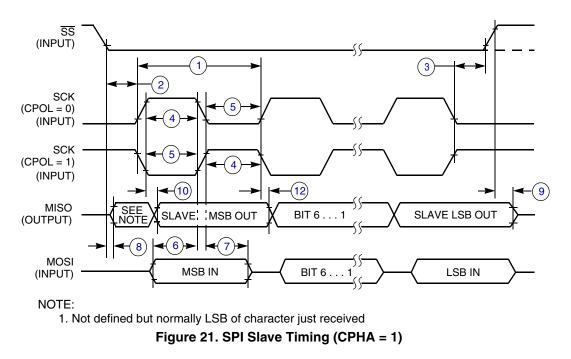
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI Master Timing (CPHA = 0)


NOTES:

- 1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

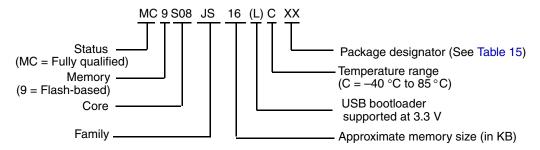
Figure 19. SPI Master Timing (CPHA = 1)


MC9S08JS16 Series MCU Data Sheet, Rev. 4

1. Not defined but normally MSB of character just received

3.11 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory. Program and erase operations do not require any special power sources other than the normal V_{DD} supply.


Ordering Information

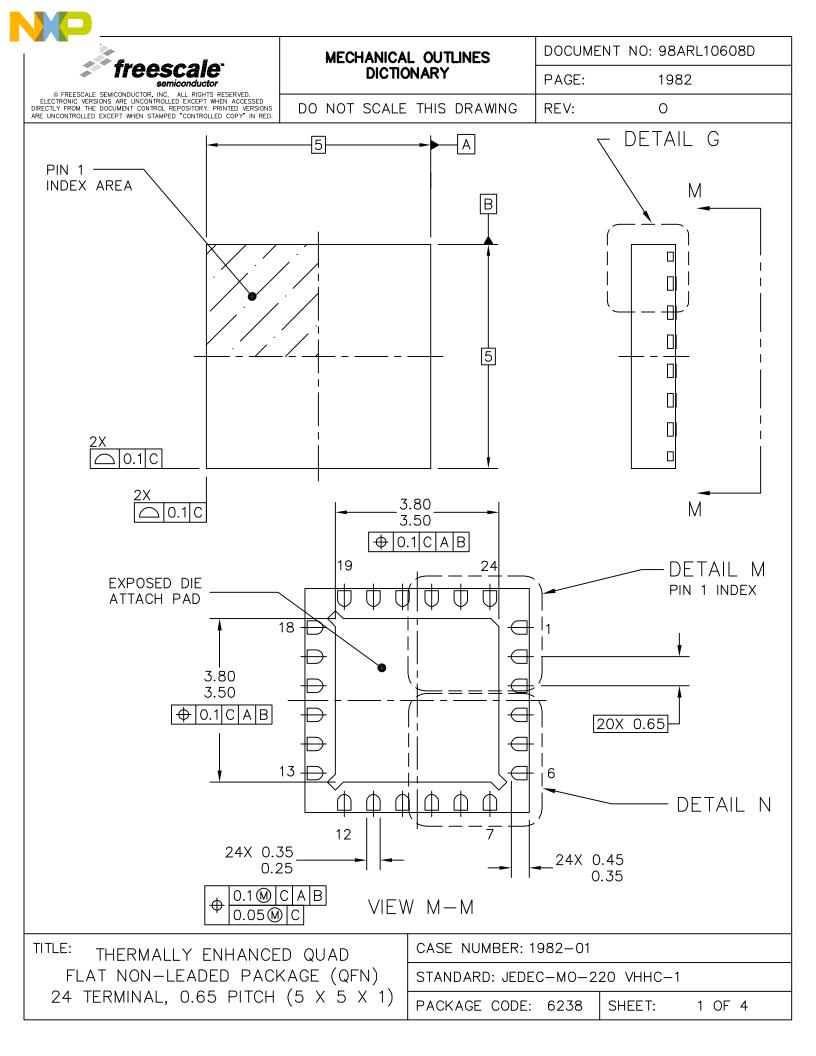
	Symbol	Min	Typical	Max	Unit
External 3.3 V regulator output current		39		_	mA

Table 14. External 3.3 V Voltage Regulator Supply for V_{usb33} Pin

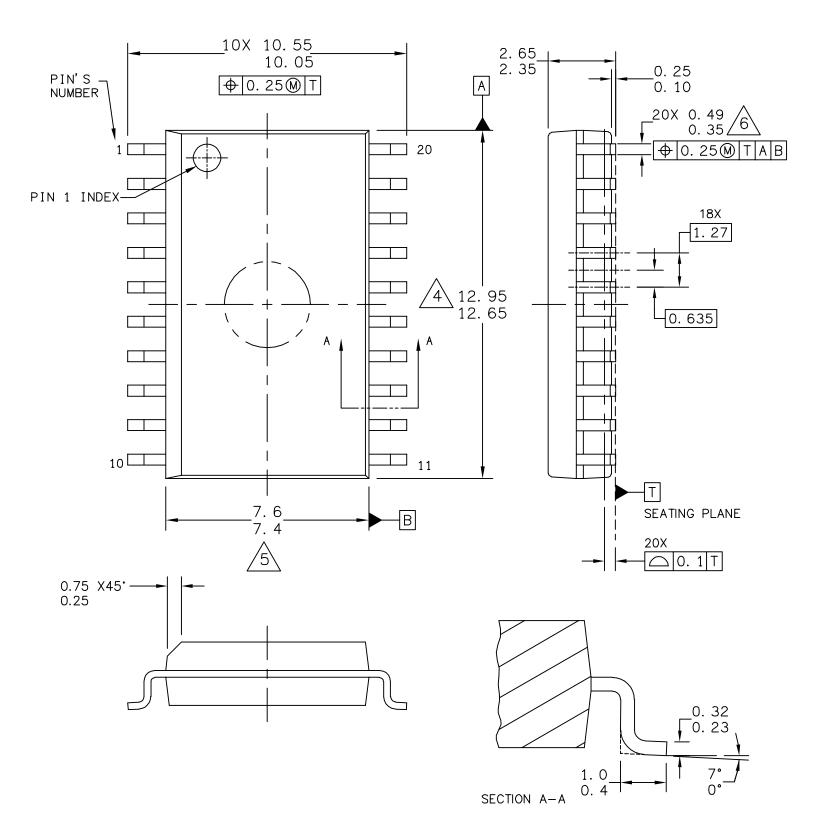
4 Ordering Information

This section contains ordering information for Device Numbering System. See below for an example of the device numbering system.

4.1 Package Information


Table 15. Package Descriptions

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
24	Quad Flat No-Leads	QFN	FK	1982-01	98ARL10608D
20	Wide Body Small Outline Integrated Circuit	W-SOIC	WJ	751D	98ASB42343B


4.2 Mechanical Drawings

This following pages contain mechanical specifications for MC9S08JS16 series package options.

- 24-pin QFN (quad flat no-lead)
- 20-pin W-SOIC (wide body small outline integrated circuit)

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:		DOCUMENT NO: 98ASB42343B		REV: J
20LD SOIC W/B, 1. CASE-OUTLI		CASE NUMBER	R: 751D-07	23 MAR 2005
		STANDARD: JE	DEC MS-013AC	

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 5. THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 6. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.62 mm.

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:	DOCUMENT NO	REV: J		
20LD SOIC W/B, 1.2 CASE OUTLINE	CASE NUMBER: 751D-07		23 MAR 2005	
	_	STANDARD: JEDEC MS-013AC		