

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	48MHz
Connectivity	LINbus, SCI, SPI, USB
Peripherals	LVD, POR, PWM
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VQFN Exposed Pad
Supplier Device Package	24-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08js8cfk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number	Package Description	Original (gold wire) package document number	Current (copper wire) package document number
MC68HC908JW32	48 QFN	98ARH99048A	98ASA00466D
MC9S08AC16			
MC9S908AC60			
MC9S08AC128			
MC9S08AW60			
MC9S08GB60A			
MC9S08GT16A			
MC9S08JM16			
MC9S08JM60			
MC9S08LL16			
MC9S08QE128			
MC9S08QE32			
MC9S08RG60			
MCF51CN128			
MC9RS08LA8	48 QFN	98ARL10606D	98ASA00466D
MC9S08GT16A	32 QFN	98ARH99035A	98ASA00473D
MC9S908QE32	32 QFN	98ARE10566D	98ASA00473D
MC9S908QE8	32 QFN	98ASA00071D	98ASA00736D
MC9S08JS16	24 QFN	98ARL10608D	98ASA00734D
MC9S08QB8			
MC9S08QG8	24 QFN	98ARL10605D	98ASA00474D
MC9S08SH8	24 QFN	98ARE10714D	98ASA00474D
MC9RS08KB12	24 QFN	98ASA00087D	98ASA00602D
MC9S08QG8	16 QFN	98ARE10614D	98ASA00671D
MC9RS08KB12	8 DFN	98ARL10557D	98ASA00672D
MC9S08QG8			
MC9RS08KA2	6 DFN	98ARL10602D	98ASA00735D

Freescale Semiconductor

Data Sheet: Technical Data

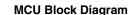
Document Number: MC9S08JS16 Rev. 4, 4/2009

MC9S08JS16 Series

Covers: MC9S08JS16 MC9S08JS8 MC9S08JS16L MC9S08JS8L

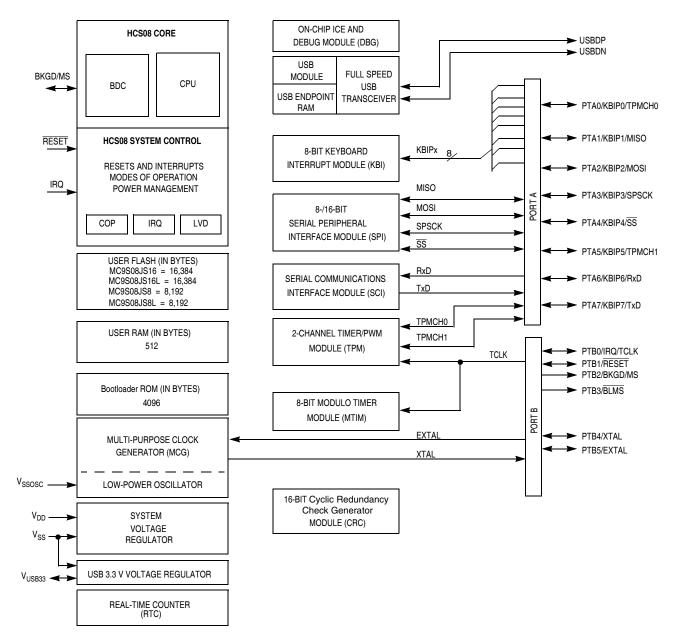
Features:

- 8-Bit HCS08 Central Processor Unit (CPU)
 - 48 MHz HCS08 CPU (central processor unit)
 - 24 MHz internal bus frequency
 - Support for up to 32 interrupt/reset sources
- Memory Options
 - Up to 16 KB of on-chip in-circuit programmable flash memory with block protection and security options
 - Up to 512 bytes of on-chip RAM
 - 256 bytes of USB RAM
- Clock Source Options
 - Clock source options include crystal, resonator, external clock
 - MCG (multi-purpose clock generator) PLL and FLL; internal reference clock with trim adjustment
- System Protection
 - Optional computer operating properly (COP) reset with option to run from independent 1 kHz internal clock source or the bus clock
 - Low-voltage detection
 - Illegal opcode detection with reset
 - Illegal address detection with reset
- Power-Saving Modes
 - Wait plus two stops
- · USB Bootload
 - Mass erase entire flash array
 - Partial erase flash array erase all flash blocks except for the first 1 KB of flash
- Program flash
- Peripherals
 - USB USB 2.0 full-speed (12 Mbps) with dedicated on-chip 3.3 V regulator and transceiver; supports endpoint 0 and up to 6 additional endpoints


24 QFN Case 1982-01

- SPI One 8- or 16-bit selectable serial peripheral interface module with a receive data buffer hardware match function
- SCI One serial communications interface module with optional 13 bit break. Full duplex non-return to zero (NRZ); LIN master extended break generation; LIN slave extended break detection; wakeup on active edge
- MTIM One 8-bit modulo counter with 8-bit prescaler and overflow interrupt
- TPM One 2-channel 16-bit timer/pulse-width modulator (TPM) module; selectable input capture, output compare, and edge-aligned PWM capability on each channel; timer module may be configured for buffered, centered PWM (CPWM) on all channels
- **KBI** 8-pin keyboard interrupt module
- **RTC** Real-time counter with binary- or decimal-based prescaler
- CRC Hardware CRC generator circuit using 16-bit shift register; CRC16-CCITT compliancy with $x^{16}+x^{12}+x^{5}+1$ polynomial
- Input/Output
 - Software selectable pullups on ports when used as inputs
 - Software selectable slew rate control on ports when used as outputs
 - Software selectable drive strength on ports when used as outputs
 - Master reset pin and power-on reset (POR)
 - Internal pullup on RESET, IRQ, and BKGD/MS pins to _ reduce customer system cost
- · Package Options
 - 24-pin quad flat no-lead (QFN)
 - 20-pin small outline IC package (SOIC)

This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice.



© Freescale Semiconductor, Inc., 2008-2009. All rights reserved.

MCU Block Diagram 1

The block diagram, Figure 1, shows the structure of the MC9S08JS16 series MCU.

NOTES:

- 1. Port pins are software configurable with pullup device if input port.
- 2. Pin contains software configurable pullup/pulldown device if IRQ is enabled (IRQPE = 1). Pulldown is enabled if rising edge detect is selected (IRQEDG = 1).
- 3. IRQ does not have a clamp diode to V_{DD} . IRQ must not be driven above V_{DD} . 4. RESET contains integrated pullup device if PTB1 enabled as reset pin function (RSTPE = 1).
- 5. Pin contains integrated pullup device.
- 6. When pin functions as KBI (KBIPEn = 1) and associated pin is configured to enable the pullup device, KBEDGn can be used to reconfigure the pullup as a pulldown device.

Figure 1. MC9S08JS16 Series Block Diagram

MC9S08JS16 Series MCU Data Sheet, Rev. 4

Pin Assignments

2 Pin Assignments

This section shows the pin assignments in the packages available for the MC9S08JS16 series.

	umber (age)	< Lowest	Priority	> Highest
24 (QFN)	20 (SOIC)	Port Pin	Alt 1	Alt 2
1	4	PTB0	IRQ	TCLK
2	5	PTB1		RESET
3	6	PTB2	BKGD	MS
4	7	PTB3		BLMS
5	8	PTA0	KBIP0	TPMCH0
6		NC		
7	9	PTA1	KBIP1	MISO
8	10	PTA2	KBIP2	MOSI
9	11	PTA3	KBIP3	SPSCK
10	12	PTA4	KBIP4	SS
11	13			V _{DD}
12	_	NC		
13	14			V _{SS}
14	15			USBDN
15	16			USBDP
16	17			V _{USB33}
17	18	PTA5	KBIP5	TPMCH1
18	—	NC		
19	19	PTA6	KBIP6	RxD
20	20	PTA7	KBIP7	TxD
21	1	PTB4	XTAL	
22	2	PTB5	EXTAL	
23	3			V _{SSOSC}
24	—	NC		

Table 1. Pin Availability by Package Pin-Count

3 Electrical Characteristics

This chapter contains electrical and timing specifications.

3.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 2. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The above classifications are used in the column labeled "C" in applicable tables of this data sheet.

3.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}).

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	2.7 to 5.5	V
Input voltage	V _{In}	-0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	±25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to 150	°C
Maximum junction temperature	TJ	150	°C

Table 3. Absolute Maximum Ratings

Num	С	Parameter	Sy	mbol	Min	Typical ¹	Max	Unit
18	Ρ		, falling ⁵ rising	LVD1	3.9 4.0	4.0 4.1	4.1 4.2	v
19	Ρ		o falling Trising	LVD0	2.48 2.54	2.56 2.62	2.64 2.70	v
20	С		v_{l} falling v_{l} rising	LVW3	4.5 4.6	4.6 4.7	4.7 4.8	v
21	Ρ		$_{0} falling V_{1}$	LVW2	4.2 4.3	4.3 4.4	4.4 4.5	v
22	Ρ		v_{l} falling v_{l} rising	LVW1	2.84 2.90	2.92 2.98	3.00 3.06	v
23	С		o falling Trising	LVWO	2.66 2.72	2.74 2.80	2.82 2.88	v
24	Т	Low-voltage inhibit reset/recover hysteresis	5 V V 3 V	/ _{hys}		100 60		mV

Typical values are based on characterization data at 25 °C unless otherwise stated.
Operating voltage with USB enabled can be found in Section 3.11, "USB Electricals."

³ Measured with $V_{In} = V_{DD}$ or V_{SS} . ⁴ Measured with $V_{In} = V_{SS}$. ⁵ Measured with $V_{In} = V_{DD}$.

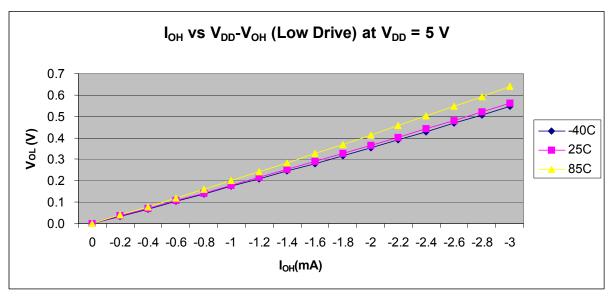


Figure 6. Typical I_{OH} (Low Drive) vs V_{DD}–V_{OH} at V_{DD} = 5 V

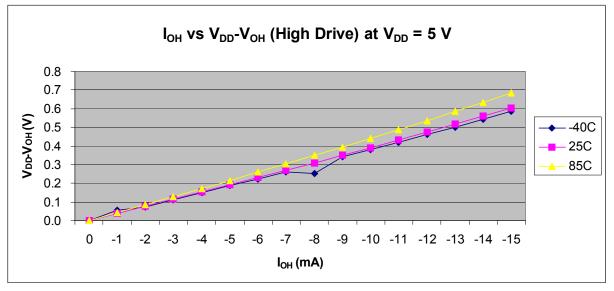


Figure 7. Typical I_{OH} (High Drive) vs V_{DD}–V_{OH} at V_{DD} = 5 V

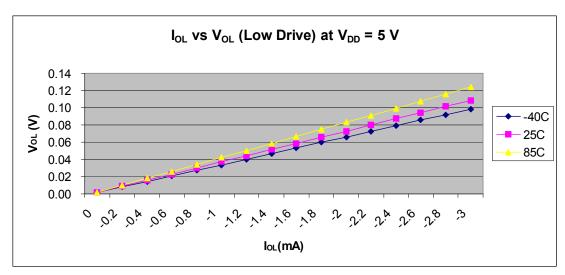


Figure 8. I_{OL} vs V_{OL} (Low Drive) at V_{DD} = 5 V

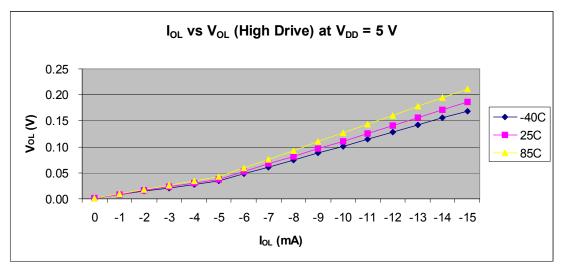


Figure 9. I_{OL} vs V_{OL} (High Drive) at V_{DD} = 5 V

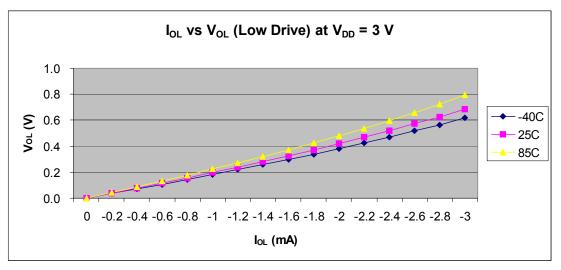


Figure 10. I_{OL} vs V_{OL} (Low Drive) at V_{DD} = 3 V

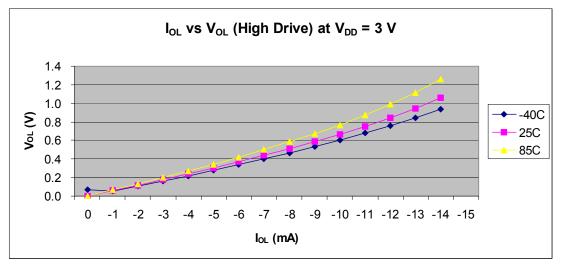



Figure 11. I_{OL} vs V_{OL} (High Drive) at V_{DD} = 3 V

3.6 Supply Current Characteristics

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
1	С	Run supply current ³ measured at (CPU clock	DI	5	1.03	—	mA
I	C	= 2 MHz, f _{Bus} = 1 MHz, BLPE mode)	RI _{DD}	3	0.83	_	IIIA
_	_	Run supply current ³ measured at (CPU		5	19.93	_	
2	P	clock = 48 MHz, f _{Bus} = 24 MHz, PEE mode, all module on)	RI _{DD}	3	18.74	_	mA
3	Р	Stop2 mode supply current	601	5	1.36	_	μA
3	F		S2I _{DD}	3	1.18	—	μA
4	Р	Stop3 mode supply current, all module off	S3I _{DD}	5	1.50	_	μA
4		Stops mode supply current, an module on	551 _{DD}	3	1.31	_	μA
5	Р	RTC adder to stop2 or stop3 ³ , 25 °C		5	300	_	nA
5			∆I _{SRTC}	3	300	_	nA
6	Р	LVD adder to stop3 (LVDE = LVDSE = 1)	A.L.	5	106.7	_	μA
0			ΔI_{SLVD}	3	95.6	_	μA
7	Р	Adder to stop3 for oscillator enabled ⁴	مام	5	5.6	_	μA
/		(ERCLKEN =1 and EREFSTEN = 1)	∆I _{SOSC}	3	5.3	_	μΑ
8	Т	USB module enable current ⁵	ΔI_{USBE}	5	1.5	_	mA
9	Т	USB suspend current ⁶	I _{SUSP}	5	273.3	—	μA

Table 7. Supply Current Characteristics

¹ Typicals are measured at 25 °C. See Figure 12 through Figure 10 for typical curves across voltage/temperature.

² Values given here are preliminary estimates prior to completing characterization.

³ Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode. Wait mode typical is 560 μ A at 5 V and 422 μ A at 3 V with f_{Bus} = 1 MHz.

⁴ Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0).

⁵ Here USB module is enabled and clocked at 48 MHz (USBEN = 1, USBVREN =1, USBPHYEN = 1 and USBPU = 1), and D+ and D- pulled down by two 15.1 k Ω resisters independently. The current consumption may be much higher when the packets are being transmitted through the attached cable.

⁶ MCU enters stop3 mode, USB bus in idle state. The USB suspend current will be dominated by the D+ pullup resister.

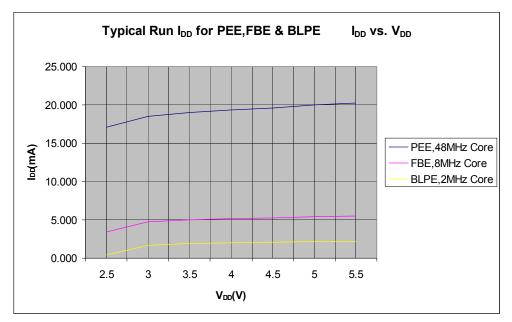
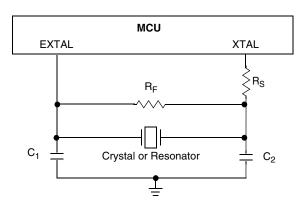



Figure 12. Typical Run I_{DD} for PEE, FBE and BLPE Modes (I_{\text{DD}} vs. V_{\text{DD}})

3.7 External Oscillator (XOSC) Characteristics

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode ² High range (RANGE = 1) PEE or PBE mode ³ High range (RANGE = 1, HGO = 1) BLPE mode High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi-fll} f _{hi-pll} f _{hi-hgo} f _{hi-lp}	32 1 1 1 1	 	38.4 5 16 16 8	kHz MHz MHz MHz MHz MHz
2		Load capacitors	C _{1,} C ₂			r resonato commend	
3	_	Feedback resistor Low range (32 kHz to 38.4 kHz) High range (1 MHz to 16 MHz)	R _F	_	10 1	_	MΩ
4	_	Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) $\geq 8 \text{ MHz}$ 4 MHz 1 MHz	R _S		0 100 0 0 0 0	 0 10 20	kΩ
5	т	Crystal start-up time ⁴ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁵ High range, high gain (RANGE = 1, HGO = 1) ⁵	t CSTL-LP CSTL-HGO CSTH-LP CSTH-HGO	 	200 400 5 15	 	ms
6	т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² PEE or PBE mode ³ BLPE mode	f _{extal}	0.03125 1 0		5 16 40	MHz


¹ Typical data was characterized at 3.0 V, 25 °C or is recommended value.

² When MCG is configured for FEE or FBE mode, input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ When MCG is configured for PEE or PBE mode, input clock source must be divided using RDIV to within the range of 1 MHz to 2 MHz.

⁴ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal.

MC9S08JS16 Series MCU Data Sheet, Rev. 4

- ³ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.
- ⁴ Jitter measurements are based upon a 48 MHz clock frequency.
- ⁵ 625 ns represents 5 time quanta for CAN applications, under worst case conditions of 8 MHz CAN bus clock, 1 Mbps CAN bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit.
- ⁶ Below D_{lock} minimum, the MCG is guaranteed to enter lock. Above D_{lock} maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock.
- ⁷ Below D_{unl} minimum, the MCG will not exit lock if already in lock. Above D_{unl} maximum, the MCG is guaranteed to exit lock.

3.9 AC Characteristics

This section describes AC timing characteristics for each peripheral system.

3.9.1 Control Timing

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC		24	MHz
2	D	Internal low-power oscillator period	t _{LPO}	700	—	1300	μs
3	D	External reset pulse width ² (t _{cyc} = 1/f _{Self_reset})	t _{extrst}	$1.5 imes t_{Self_reset}$	_	_	ns
4	D	Reset low drive	t _{rstdrv}	$66 imes t_{cyc}$	—	_	ns
5	D	Active background debug mode latch setup time	t _{MSSU}	25	_	_	ns
6	D	Active background debug mode latch hold time	t _{MSH}	25	—	_	ns
7	D	IRQ pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
8	D	KBIPx pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
9	с	Port rise and fall time (load = 50 pF) ⁴ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		3 30	_	ns

Figure 13. Control Timing

¹ Typical values are based on characterization data at $V_{DD} = 5.0$ V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 85°C.

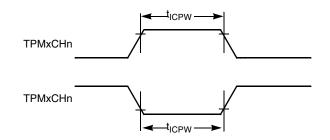


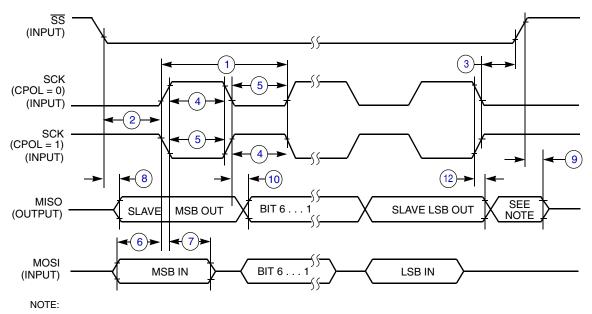
Figure 17. Timer Input Capture Pulse

3.10 SPI Characteristics

Table 11 and Figure 18 through Figure 21 describe the timing requirements for the SPI system.

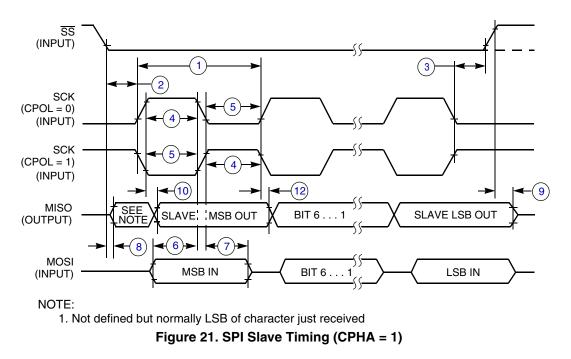
Num ¹	С	Characteristic ²		Symbol	Min	Typical	Мах	Unit
1	D	Operating frequency ³	Master Slave	f _{op} f _{op}	f _{Bus} /2048DC		f _{Bus} /2 f _{Bus} /4	Hz
2	D	Cycle time	Master Slave	t _{SCK} t _{SCK}	2 4	_	2048 —	t _{cyc}
3	D	Enable lead time	Master Slave	t _{Lead} t _{Lead}		1/2 1/2		t _{SCK}
4	D	Enable lag time	Master Slave	t _{Lag} t _{Lag}	—	1/2 1/2		t _{SCK}
5	D	Clock (SPSCK) high time	Master Slave	t _{SCKH}	— 1/2 t _{SCK} – 25	1/2 t _{SCK} 1/2 t _{SCK}	_ _	ns
6	D	Clock (SPSCK) low time	Master Slave	t _{SCKL}	 1/2 t _{SCK} – 25	1/2 t _{SCK} 1/2 t _{SCK}	—	ns
7	D	Data setup time (inputs)	Master Slave	t _{SI(M)} t _{SI(S)}	30 30	_		ns
8	D	Data hold time (inputs)	Master Slave	t _{HI(M)} t _{HI(S)}	30 30	_		ns
9	D	Access time, slave ⁴		t _A	—	_	40	ns
10	D	Disable time, slave ⁵		t _{dis}	—	_	40	ns
11	D	Data setup time (outputs)	Master Slave	t _{SO} t _{SO}			25 25	ns
12	D	Data hold time (outputs)	Master Slave	t _{НО} t _{НО}	-10 -10		_	ns

Table 11. SPI Electrical Characteristic


¹ Refer to Figure 18 through Figure 21.
² All timing is shown with respect to 20% V_{DD} and 80% V_{DD}, unless noted; 50 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins.

³ The maximum frequency is 8 MHz when input filter on SPI pins is disabled.

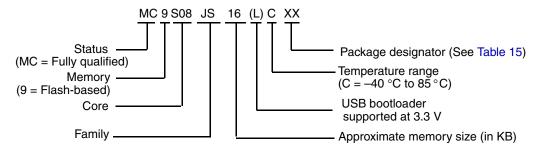
⁴ Time to data active from high-impedance state.


⁵ Hold time to high-impedance state.

1. Not defined but normally MSB of character just received

3.11 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory. Program and erase operations do not require any special power sources other than the normal V_{DD} supply.


Ordering Information

	Symbol	Min	Typical	Max	Unit
External 3.3 V regulator output current		39		_	mA

Table 14. External 3.3 V Voltage Regulator Supply for V_{usb33} Pin

4 Ordering Information

This section contains ordering information for Device Numbering System. See below for an example of the device numbering system.

4.1 Package Information

Table 15. Package Descriptions

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
24	Quad Flat No-Leads	QFN	FK	1982-01	98ARL10608D
20	Wide Body Small Outline Integrated Circuit	W-SOIC	WJ	751D	98ASB42343B

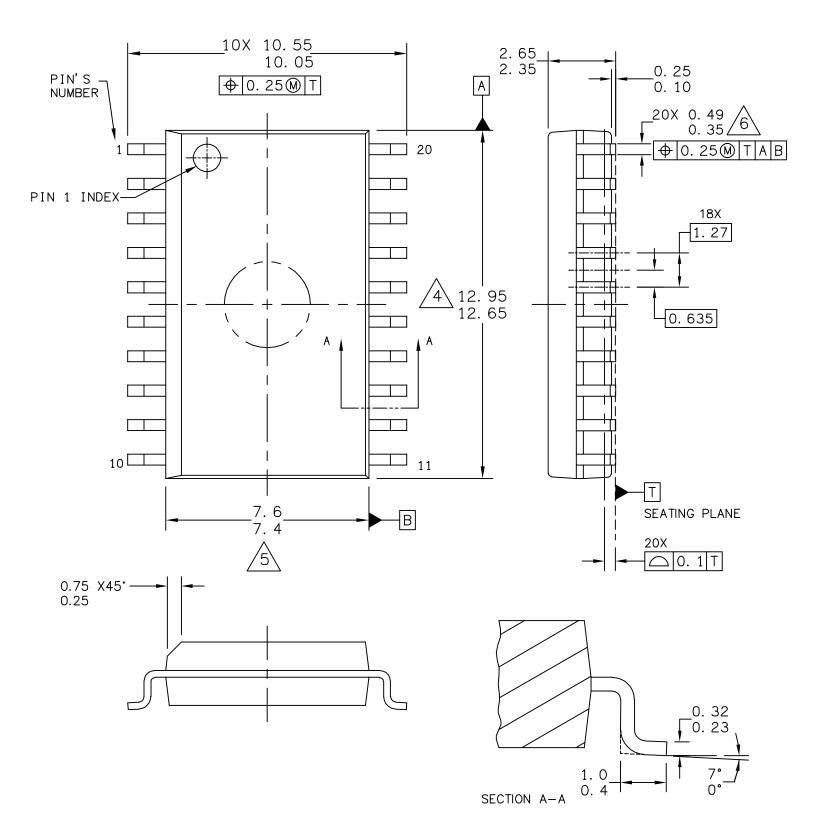
4.2 Mechanical Drawings

This following pages contain mechanical specifications for MC9S08JS16 series package options.

- 24-pin QFN (quad flat no-lead)
- 20-pin W-SOIC (wide body small outline integrated circuit)

NP							
	MECHANICAL OUTLINES	DOCUMENT NO: 98ARL10608D					
FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DICTIONARY	PAGE:	1982				
	DO NOT SCALE THIS DRAWING	REV:	0				

NOTES:


- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. THE COMPLETE JEDEC DESIGNATOR FOR THIS PACKAGE IS: HF-PQFN.

4. COPLANARITY APPLIES TO LEADS, CORNER LEADS, AND DIE ATTACH PAD.

5. MIN METAL GAP SHOULD BE 0.2MM.

TITLE: THERMALLY ENHANCED QUAD	CASE NUMBER: 1982-01			
FLAT NON-LEADED PACKAGE (QFN)	STANDARD: JEDEC-MO-220 VHHC-1			
24 TERMINAL, 0.65 PITCH (5 X 5 X 1)	PACKAGE CODE: 6238 SHEET: 3 OF 4			

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:	DOCUMENT NO): 98ASB42343B	REV: J	
20LD SOIC W/B, 1.27 PITCH CASE-OUTLINE		CASE NUMBER	R: 751D-07	23 MAR 2005
		STANDARD: JE	DEC MS-013AC	