
Digi - 20-101-1094 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microcontroller,
Microprocessor, FPGA Modules

Embedded - Microcontroller, Microprocessor, and FPGA
Modules are fundamental components in modern
electronic systems, offering a wide range of functionalities
and capabilities. Microcontrollers are compact integrated
circuits designed to execute specific control tasks within
an embedded system. They typically include a processor,
memory, and input/output peripherals on a single chip.
Microprocessors, on the other hand, are more powerful
processing units used in complex computing tasks, often
requiring external memory and peripherals. FPGAs (Field
Programmable Gate Arrays) are highly flexible devices that
can be configured by the user to perform specific logic
functions, making them invaluable in applications requiring
customization and adaptability.

Applications of Embedded - Microcontroller,
Microprocessor, FPGA Modules

These modules are integral to numerous applications
across various industries. Microcontrollers are commonly
used in consumer electronics, automotive systems,
industrial automation, and home appliances, providing
efficient control and processing capabilities.
Microprocessors power more complex systems such as
personal computers, servers, and advanced
communication devices. FPGAs find their applications in
fields requiring high-performance computation and real-
time processing, including telecommunications, medical
devices, aerospace, and defense systems. Their versatility
allows for rapid prototyping and the implementation of
custom hardware solutions, making them ideal for
innovative and cutting-edge applications.

Common Subcategories of Embedded -
Microcontroller, Microprocessor, FPGA Modules

Embedded modules can be categorized based on their
functionalities and intended applications. Microcontrollers
are often classified by their bit-width (8-bit, 16-bit, 32-bit)
and their integrated features, such as ADCs (Analog-to-
Digital Converters) and communication interfaces.
Microprocessors are categorized by their architecture (x86,
ARM, RISC-V) and performance metrics like clock speed
and core count. FPGAs are classified based on their logic
element count, speed grade, and the presence of
integrated features like DSP (Digital Signal Processing)
blocks and high-speed transceivers. These subcategories
help designers choose the right module for their specific
application requirements.

Types of Embedded - Microcontroller,
Microprocessor, FPGA Modules

There are various types of modules available, each tailored
to different application needs. Basic microcontrollers, such
as the 8-bit AVR series from Microchip, are ideal for simple
control tasks. More advanced 32-bit microcontrollers, like
the STM32 series from STMicroelectronics, offer higher
performance and greater peripheral integration. In the
realm of microprocessors, the ARM Cortex-A series is
popular for its balance of power efficiency and

Details

Product Status Obsolete

Module/Board Type MPU Core

Core Processor Rabbit 4000

Co-Processor -

Speed 58.98MHz

Flash Size 512KB (Internal), 32MB (External)

RAM Size 512KB

Connector Type IDC Header 2x25, 2x5

Size / Dimension 1.84" x 2.42" (47mm x 61mm)

Operating Temperature 0°C ~ 70°C

Purchase URL https://www.e-xfl.com/product-detail/digi-international/20-101-1094

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/20-101-1094-4509964
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules

4.5 Other Hardware .. 43
4.5.1 Clock Doubler .. 43
4.5.2 Spectrum Spreader.. 43

4.6 Memory .. 44
4.6.1 SRAM... 44
4.6.2 Flash EPROM... 44
4.6.3 NAND Flash... 44

Chapter 5. Software Reference 45
5.1 More About Dynamic C... 45
5.2 Dynamic C Function Calls .. 47

5.2.1 Digital I/O... 47
5.2.2 Serial Communication Drivers ... 47
5.2.3 SRAM Use.. 47
5.2.4 Prototyping Board Function Calls .. 49

5.2.4.1 Board Initialization .. 49
5.2.4.2 Alerts.. 50

5.2.5 Analog Inputs (RCM4000 only)... 51
5.3 Upgrading Dynamic C ... 68

5.3.1 Add-On Modules .. 68

Chapter 6. Using the TCP/IP Features 69
6.1 TCP/IP Connections... 69
6.2 TCP/IP Primer on IP Addresses ... 71

6.2.1 IP Addresses Explained.. 73
6.2.2 How IP Addresses are Used ... 74
6.2.3 Dynamically Assigned Internet Addresses... 75

6.3 Placing Your Device on the Network .. 76
6.4 Running TCP/IP Sample Programs.. 77

6.4.1 How to Set IP Addresses in the Sample Programs... 78
6.4.2 How to Set Up your Computer for Direct Connect .. 79

6.5 Run the PINGME.C Sample Program.. 80
6.6 Running Additional Sample Programs With Direct Connect .. 80
6.7 Where Do I Go From Here?... 81

Appendix A. RCM4000 Specifications 83
A.1 Electrical and Mechanical Characteristics .. 84

A.1.1 A/D Converter ... 88
A.1.2 Headers .. 89

A.2 Rabbit 4000 DC Characteristics .. 90
A.3 I/O Buffer Sourcing and Sinking Limit... 91
A.4 Bus Loading .. 91
A.5 Conformal Coating .. 94
A.6 Jumper Configurations .. 95

Appendix B. Prototyping Board 97
B.1 Introduction ... 98

B.1.1 Prototyping Board Features ... 99
B.2 Mechanical Dimensions and Layout ... 101
B.3 Power Supply... 102
B.4 Using the Prototyping Board ... 103

B.4.1 Adding Other Components .. 105
B.4.2 Measuring Current Draw ... 105
B.4.3 Analog Features (RCM4000 only) .. 106

B.4.3.1 A/D Converter Inputs.. 106
B.4.3.2 Thermistor Input ... 109
B.4.3.3 A/D Converter Calibration.. 109
RabbitCore RCM4000

• LOW_POWER.C—demonstrates how to implement a function in RAM to reduce power
consumption by the Rabbit microprocessor. There are four features that lead to the low-
est possible power draw by the microprocessor.

1. Run the CPU from the 32 kHz crystal.

2. Turn off the high-frequency crystal oscillator.

3. Run from RAM.

4. Ensure that internal I/O instructions do not use CS0.

Once you are ready to compile and run this sample program, use <Alt-F9> instead of
just F9. This will disable polling, which will allow Dynamic C to continue debugging
once the target starts running off the 32 kHz oscillator.

This sample program will toggle LEDs DS2 and DS3 on the Prototyping Board. You
may use an oscilloscope. DS2 will blink the fastest. After switching to low power, both
LEDs will blink together.

• TAMPERDETECTION.C—demonstrates how to detect an attempt to enter the bootstrap
mode. When an attempt is detected, the battery-backed onchip-encryption RAM on the
Rabbit 4000 is erased. This battery-backed onchip-encryption RAM can be useful to
store data such as an AES encryption key from a remote location.

This sample program shows how to load and read the battery-backed onchip-encryption
RAM and how to enable a visual indicator.

Once this sample is compiled running (you have pressed the F9 key while the sample
program is open), remove the programming cable and press the reset button on the
Prototyping Board to reset the module. LEDs DS2 and DS3 will be flashing on and off.

Now press switch S2 to load the battery-backed RAM with the encryption key. The
LEDs are now on continuously. Notice that the LEDs will stay on even when you press
the reset button on the Prototyping Board.

Reconnect the programming cable briefly and unplug it again. The LEDs will be flash-
ing because the battery-backed onchip-encryption RAM has been erased. Notice that
the LEDs will continue flashing even when you press the reset button on the Prototyp-
ing Board.

You may press switch S2 again and repeat the last steps to watch the LEDs.

• TOGGLESWITCH.C—demonstrates the use of costatements to detect switch presses
using the press-and-release method of debouncing. LEDs DS2 and DS3 on the Proto-
typing Board are turned on and off when you press switches S2 and S3. S2 and S3 are
controlled by PB4 and PB5 respectively.

Once you have loaded and executed these five programs and have an understanding of
how Dynamic C and the RCM4000 modules interact, you can move on and try the other
sample programs, or begin building your own.
User’s Manual 17

• SIMPLE3WIRE.C—This program demonstrates basic RS-232 serial
communication. Lower case characters are sent by TxC, and are
received by RxD. The characters are converted to upper case and are
sent out by TxD, are received by RxC, and are displayed in the
Dynamic C STDIO window.

To set up the Prototyping Board, you will need to tie TxD and RxC together on the
RS-232 header at J4, and you will also tie RxD and TxC together using the jumpers
supplied in the Development Kit as shown in the diagram.

• SIMPLE5WIRE.C—This program demonstrates 5-wire RS-232 serial communication
with flow control on Serial Port D and data flow on Serial Port C.

To set up the Prototyping Board, you will need to tie TxD and RxD
together on the RS-232 header at J4, and you will also tie TxC and
RxC together using the jumpers supplied in the Development Kit as
shown in the diagram.

Once you have compiled and run this program, you can test flow con-
trol by disconnecting TxD from RxD while the program is running. Characters will no
longer appear in the STDIO window, and will display again once TxD is connected
back to RxD.

If you have two Prototyping Boards with modules, run this sample program on the
sending board, then disconnect the programming cable and reset the sending board so
that the module is operating in the Run mode. Connect TxC, TxD, and GND on the
sending board to RxC, RxD, and GND on the other board, then, with the programming
cable attached to the other module, run the sample program. Once you have compiled
and run this program, you can test flow control by disconnecting TxD from RxD as
before while the program is running.

• SWITCHCHAR.C—This program demonstrates transmitting and then receiving an
ASCII string on Serial Ports C and D. It also displays the serial data received from both
ports in the STDIO window.

To set up the Prototyping Board, you will need to tie TxD and RxC
together on the RS-232 header at J4, and you will also tie RxD and
TxC together using the jumpers supplied in the Development Kit as
shown in the diagram.

Once you have compiled and run this program, press and release
switches S2 and S3 on the Prototyping Board. The data sent between the serial ports
will be displayed in the STDIO window.

)"
�8
���8

���8����8�

)"
�8
���8

���8����8�

)"
�8
���8

���8����8�
User’s Manual 21

• IOCONFIG_SWITCHECHO.C—This program demonstrates how to set up Serial Port F,
which then transmits or receives an ASCII string to/from Serial Port D when switch S2
or S3 is pressed. The echoed serial data are displayed in the Dynamic C STDIO window.

Note that the I/O lines that carry the Serial Port F signals are not the Rabbit 4000
defaults. The Serial Port F I/O lines are configured by calling the library function ser-
Fconfig() that was generated by the Rabbit 4000 IOCONFIG.EXE utility program.

Serial Port F is configured to use Parallel Port C bits PC2 and PC3. These signals are
available on the Prototyping Board's RS-232 connector (header J4).

Serial Port D is left in its default configuration, using Parallel Port C bits PC0 and PC1.
These signals are available on the Prototyping Board's RS-232 connector (header J4).

Also note that there is one library generated by IOCONFIG.EXE in the Dynamic C
SAMPLES\RCM4000\SERIAL folder for the 58 MHz RCM4100 and RCM4010.

To set up the Prototyping Board, you will need to tie TxD and RxC
together and tie TxC and RxD together on the RS-232 header at J4
using the jumpers supplied in the Development Kit. (Remember that
RxC and TxC now are actually RxF and TxF.)

Once you have compiled and run this program, press and release
switches S2 or S3 on the Prototyping Board. The data echoed between the serial ports
will be displayed in the STDIO window.

)"
�8
���8

���8����8�
22 RabbitCore RCM4000

Follow the remaining steps carefully in Tera Term to avoid overwriting previously
saved calibration data when using same the file name.

Tera Term is now ready to log all data received on the serial port to the file you specified.

You are now ready to compile and run this sample program. A message will be displayed
in the Tera Term display window once the sample program is running.

Enter the serial number of your RabbitCore module in the Tera Term display window,
then press the ENTER key. The Tera Term display window will now display the
calibration data.

Now select CLOSE from within the Tera Term LOG window, which will likely be a
separate pop-up window minimized at the bottom of your PC screen. This finishes the
logging and closes the file.

Open your data file and verify that the calibration data have been written properly. A
sample is shown below.

• Baud rate 19,200 bps, 8 bits, no parity, 1 stop bit

• Enable Local Echo option

• Feed options — Receive = CR, Transmit = CR + LF

• Enable the File APPEND option at the bottom of the dialog box

• Select the OPEN option at the right-hand side of the dialog box

Serial port transmission
========================

Uploading calibration table . . .

Enter the serial number of your controller = 9MN234

SN9MN234

ADSE

0
float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,
float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,
1
float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,
float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,
 |
 |

ADDF

0
float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,
float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,
2
float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,
float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,float_gain,float_offset,
 |
 |

ADMA

3
float_gain,float_offset,
4
float_gain,float_offset,
 |
 |

END
User’s Manual 25

4.1 RCM4000 Digital Inputs and Outputs

Figure 6 shows the RCM4000 pinouts for header J3.

Figure 6. RCM4000 Pinout

Headers J3 is a standard 2 × 25 IDC header with a nominal 1.27 mm pitch.

-��
. ��	�	������
���
	�����		����

�	�����������
����
�	������	�

�
�
���!�
������� 	�

�! "�
��#�����

�#�
�#

�#�
�#�
���
��

���
���
�
�
�

�
�
�
�
���
��

������ ���
������#�	�

$��
$�

$��
$��

)�6�����%

���
�! ��
�������!�
�#�
�#�
�#�
�#�
���
���
���
���
�
�
�
�
�
�
�
�
���
���
)�6�
������ ���
$��
$��
$��
$��

 �����
���

 !

)�6��9�)1-�61))+6-+7
28 RabbitCore RCM4000

Figure 7 shows the use of the Rabbit 4000 microprocessor ports in the RCM4000 modules.

Figure 7. Use of Rabbit 4000 Ports

The ports on the Rabbit 4000 microprocessor used in the RCM4000 are configurable, and
so the factory defaults can be reconfigured. Table 2 lists the Rabbit 4000 factory defaults
and the alternate configurations.

 ����(*
"###

����
. ����
� ����
0

����
-

�#�:�#� ���:���

���

;�1,-���0*�4*+7�<1,
0)-+,).2���=/0-
7.-.�/4*�

4��%����
��
5�
	��

���%"
0����	�
&��,	
����

�	��'5�
	
���%"

�.� ��%"��
����	��
&������ 1����

���%�
�/6

�
�;

�
�;

����
�
7&	����
�����
�
8
09

������

���
����

7&	����
����
.9

./0
���,	��	�
7&	����
����
�9

���>��
�>���#�	�

�
�>��
�

�
�>��

&	����
�����
-
8
1

��)
���
��+
��	
���
�,������	
��
���):::

����	�

;

������� 	�
�! ��
�! "�

�����!�

�
�>�����>
�� ���>��� ���
User’s Manual 29

4.1.1 Memory I/O Interface

The Rabbit 4000 address lines (A0–A19) and all the data lines (D0–D7) are routed inter-
nally to the onboard flash memory and SRAM chips. I/0 write (/IOWR) and I/0 read
(/IORD) are available for interfacing to external devices. Parallel Port D is used for the
upper byte of the 16-bit memories.

Parallel Port A can also be used as an external I/O data bus to isolate external I/O from the
main data bus. Parallel Port B pins PB2–PB7 can also be used as an auxiliary address bus.

When using the auxiliary I/O bus for any reason, you must add the following line at the
beginning of your program.

#define PORTA_AUX_IO // required to enable auxiliary I/O bus

Selected pins on Parallel Port E as specified in Table 2 may be used for input capture,
quadrature decoder, DMA, and pulse-width modulator purposes.

4.1.2 Other Inputs and Outputs

The status and the two SMODE pins, SMODE0 and SMODE1, can be brought out to
header J3 instead of PE5–PE7 as explained in Appendix A.6.

/RESET_IN is normally associated with the programming port, but may be used as an
external input to reset the Rabbit 4000 microprocessor and the RCM4000 memory.
/RESET_OUT is an output from the reset circuitry that can be used to reset other
peripheral devices.

49 VREF
Analog reference
voltage

1.15 V/2.048 V/2.500 V
on-chip ref. voltage
(RCM4000 only)

50 GND Ground Ground

* PE5, PE6, and PE7 are used for the Ethernet clock and I/O signals, which ordinarily would not
be routed to a general-purpose I/O header to minimize noise. Therefore, the RCM4000
RabbitCore modules present the SMODE and STATUS lines to header J3.

Table 2. RCM4000 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use Notes
User’s Manual 33

5. SOFTWARE REFERENCE

Dynamic C is an integrated development system for writing
embedded software. It runs on an IBM-compatible PC and is
designed for use with single-board computers and other devices
based on the Rabbit microprocessor. Chapter 5 describes the
libraries and function calls related to the RCM4000.

5.1 More About Dynamic C

Dynamic C has been in use worldwide since 1989. It is specially designed for program-
ming embedded systems, and features quick compile and interactive debugging. A com-
plete reference guide to Dynamic C is contained in the Dynamic C User’s Manual.

You have a choice of doing your software development in the flash memory or in the static
SRAM included on the RCM4000. The flash memory and SRAM options are selected with
the Options > Program Options > Compiler menu.

The advantage of working in RAM is to save wear on the flash memory, which is limited
to about 100,000 write cycles. The disadvantage is that the code and data might not both
fit in RAM.

NOTE: An application can be compiled in RAM, but cannot run standalone from RAM
after the programming cable is disconnected. All standalone applications can only run
from flash memory.

NOTE: Do not depend on the flash memory sector size or type in your program logic.
The RCM4000 and Dynamic C were designed to accommodate flash devices with
various sector sizes in response to the volatility of the flash-memory market.

Developing software with Dynamic C is simple. Users can write, compile, and test C and
assembly code without leaving the Dynamic C development environment. Debugging
occurs while the application runs on the target. Alternatively, users can compile a program
to an image file for later loading. Dynamic C runs on PCs under Windows 95 and later.
Programs can be downloaded at baud rates of up to 460,800 bps after the program compiles.
User’s Manual 45

5.2 Dynamic C Function Calls

5.2.1 Digital I/O

The RCM4000 was designed to interface with other systems, and so there are no drivers
written specifically for the I/O. The general Dynamic C read and write functions allow
you to customize the parallel I/O to meet your specific needs. For example, use

WrPortI(PEDDR, &PEDDRShadow, 0x00);

to set all the Port E bits as inputs, or use

WrPortI(PEDDR, &PEDDRShadow, 0xFF);

to set all the Port E bits as outputs.

When using the auxiliary I/O bus on the Rabbit 4000 chip, add the line

#define PORTA_AUX_IO // required to enable auxiliary I/O bus

to the beginning of any programs using the auxiliary I/O bus.

The sample programs in the Dynamic C SAMPLES/RCM4000 folder provide further
examples.

5.2.2 Serial Communication Drivers

Library files included with Dynamic C provide a full range of serial communications sup-
port. The RS232.LIB library provides a set of circular-buffer-based serial functions. The
PACKET.LIB library provides packet-based serial functions where packets can be delimited
by the 9th bit, by transmission gaps, or with user-defined special characters. Both libraries
provide blocking functions, which do not return until they are finished transmitting or
receiving, and nonblocking functions, which must be called repeatedly until they are fin-
ished, allowing other functions to be performed between calls. For more information, see
the Dynamic C Function Reference Manual and Rabbit’s Technical Note TN213, Rabbit
Serial Port Software.

5.2.3 SRAM Use

The RCM4000 module has a battery-backed data SRAM. Dynamic C provides the
protected keyword to identify variables that are to be placed into the battery-backed
SRAM. Such a variable is protected against loss in case of a power failure or other system
reset because the compiler generates code that creates a backup copy of a protected variable
before the variable is modified. If the system resets while the protected variable is being
modified, the variable's value can be restored when the system restarts. This operation
requires battery-backed RAM and the main system clock. If you are using the 32 kHz
clock you must switch back to the main system clock to use protected variables because
the atomicity of the write cannot be ensured when the 32 kHz clock is being used.
User’s Manual 47

The sample code below shows how a protected variable is defined and how its value can
be restored.

main() {
 protected int state1, state2, state3;
 ...

 _sysIsSoftReset(); // restore any protected variables

Additional information on protected variables is available in the Dynamic C User’s
Manual.
48 RabbitCore RCM4000

anaInConfig (continued)

PARAMETERS

instructionbyte the instruction byte that will initiate a read or write operation
at 8 or 16 bits on the designated register address. For example,

 checkid = anaInConfig(0x5F, 0, 9600);
 // read ID and set baud rate

cmd the command data that configure the registers addressed by the in-
struction byte. Enter 0 if you are performing a read operation. For
example,

 i = anaInConfig(0x07, 0x3b, 0);
 // write ref/osc reg and enable

brate the serial clock transfer rate of 9600 to 115,200 bytes per second.
brate must be set the first time this function is called. Enter 0 for
this parameter thereafter, for example,

 anaInConfig(0x00, 0x00, 9600);
 // resets device and sets byte rate

RETURN VALUE

0 on write operations

data value on read operations

SEE ALSO

anaInDriver, anaIn, brdInit
52 RabbitCore RCM4000

anaInDiff (continued)

RETURN VALUE

A voltage value corresponding to the voltage differential on the analog input channel.

ADTIMEOUT (-4095) if the conversion is incomplete or busy bit timeout.

ADOVERFLOW (-4096) for overflow or out of range.

SEE ALSO

anaInCalib, anaIn, anaInmAmps, brdInit
62 RabbitCore RCM4000

anaInEERd

root int anaInEERd(unsigned int channel, unsigned int opmode,
unsigned int gaincode);

DESCRIPTION

Reads the calibration constants, gain, and offset for an input based on their designated
position in the flash memory, and places them into global tables _adcCalibS,
_adcCalibD, and _adcCalibM for analog inputs. Depending on the flash size, the
following macros can be used to identify the starting address for these locations.

ADC_CALIB_ADDRS, address start of single-ended analog input channels

ADC_CALIB_ADDRD, address start of differential analog input channels

ADC_CALIB_ADDRM, address start of milliamp analog input channels

NOTE: This function cannot be run in RAM.

PARAMETER

channel the channel number (0 to 7) corresponding to LN0 to LN7.

opmode the mode of operation:

SINGLE—single-ended input
DIFF—differential input
mAMP—4–20 mA input

channel SINGLE DIFF mAMP

0 +AIN0 +AIN0 -AIN1 +AIN0*

* Not accessible on Prototyping Board.

1 +AIN1 +AIN1 -AIN0* +AIN1*

2 +AIN2 +AIN2 -AIN3 +AIN2*

3 +AIN3 +AIN3 -AIN2* +AIN3

4 +AIN4 +AIN4 -AIN5 +AIN4

5 +AIN5 +AIN5 -AIN4* +AIN5

6 +AIN6 +AIN6 -AIN7* +AIN6

7 +AIN7 +AIN7 -AIN6* +AIN7*

ALLCHAN read all channels for selected opmode
64 RabbitCore RCM4000

6.5 Run the PINGME.C Sample Program

Connect the crossover cable from your computer’s Ethernet port to the RCM4000 mod-
ule’s RJ-45 Ethernet connector. Open this sample program from the SAMPLES\TCPIP\
ICMP folder, compile the program, and start it running under Dynamic C. The crossover
cable is connected from your computer’s Ethernet adapter to the RCM4000 module’s
RJ-45 Ethernet connector. When the program starts running, the green LINK light on the
RCM4000 module should be on to indicate an Ethernet connection is made. (Note: If the
LNK light does not light, you may not be using a crossover cable, or if you are using a hub
with straight-through cables perhaps the power is off on the hub.)

The next step is to ping the module from your PC. This can be done by bringing up the
MS-DOS window and running the pingme program:

ping 10.10.6.101

or by Start > Run

and typing the entry

ping 10.10.6.101

Notice that the yellow ACT light flashes on the RCM4000 module while the ping is taking
place, and indicates the transfer of data. The ping routine will ping the module four times
and write a summary message on the screen describing the operation.

6.6 Running Additional Sample Programs With Direct Connect

The following sample programs are in the Dynamic C SAMPLES\RCM4000\TCPIP\
folder.

• BROWSELED.C—This program demonstrates a basic controller running a Web page.
Two “device LEDs” are created along with two buttons to toggle them. Users can use
their Web browser to change the status of the lights. The DS2 and DS3 LEDs on the
Prototyping Board will match those on the Web page. As long as you have not modified
the TCPCONFIG 1 macro in the sample program, enter the following server address in
your Web browser to bring up the Web page served by the sample program.

http://10.10.6.100.

Otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library.

• PINGLED.C—This program demonstrates ICMP by pinging a remote host. It will flash
LEDs DS2 and DS3 on the Prototyping Board when a ping is sent and received.

• SMTP.C—This program demonstrates using the SMTP library to send an e-mail when
the S2 and S3 switches on the Prototyping Board are pressed. LEDs DS2 and DS3 on
the Prototyping Board will light up when e-mail is being sent.
80 RabbitCore RCM4000

82 RabbitCore RCM4000

A.6 Jumper Configurations

Figure A-6 shows the header locations used to configure the various RCM4000 options
via jumpers.

Figure A-6. Location of RCM4000 Configurable Positions

Table A-9 lists the configuration options.

NOTE: The jumper connections are made using 0  surface-mounted resistors.

Table A-9. RCM4000 Jumper Configurations

Header Description Pins Connected
Factory
Default

JP1 PE6 or SMODE1 Output on J3*

* PE5–PE7 are used for the Ethernet clock and I/O signals, which ordinarily would not be
routed to a general-purpose I/O header to minimize noise. Therefore, the RCM4000
RabbitCore modules present the SMODE and STATUS lines to header J3.

1–2 SMODE1 ×
2–3 PE6

JP2 PE5 or SMODE0 Output on J3
1–2 SMODE0 ×
2–3 PE5

JP3 PE7 or STATUS Output on J3
1–2 STATUS ×
2–3 PE7

JP4
Battery Backup for Real-Time
Clock

1–2 Battery Backup ×
2–3 No Battery Backup

���

���
���
��

��-'�::A

(������

���
��

���
���

�>��-25

(������

!"###
User’s Manual 95

B.1 Introduction

The Prototyping Board included in the Development Kit makes it easy to connect an
RCM4000 module to a power supply and a PC workstation for development. It also pro-
vides some basic I/O peripherals (RS-232, LEDs, and switches), as well as a prototyping
area for more advanced hardware development.

For the most basic level of evaluation and development, the Prototyping Board can be
used without modification.

As you progress to more sophisticated experimentation and hardware development,
modifications and additions can be made to the board without modifying the RCM4000
module.

The Prototyping Board is shown below in Figure B-1, with its main features identified.

Figure B-1. Prototyping Board

�
�

�
�

���

���

���

��

	�

�

���

�

��
�

�
�

��
�

�

�

�

��

��

�
�

���

�

��
�����

�
�
�
��
�
�

�
�

���
�

�
�
�

��
	
�
��

����

�
�
��

�
��

���

����

�

�

	�
�

	���

	���

	���

	���

����

�
��

�
������

	
�
��

�
�
��

���

���

���

�

���������
��

��
 ����

�

�
��
�
��

����

���

����
���

���

��

�
��

���

�

	��� 	��	���

����

���

�
�
��
�
��

	
�

����� 	�

�! "�

��#�
���

�#�

�#

�#�

�#�

���

��

���

���

�
�

�

�
�

�
�

���

��

���

���

���
$��

��

$�

���
$��

���
$��

���%

���

�!���

����	
�

�#�

�#�

�#�

�#�

���

���

���

���

�
�

�
�

�
�

�
�

���

���

���

���

���
$��

���
$��
���
$��

���
$��

��

�
��

��
��

��
�

��

��

��

�

�

�

��

�

���

�
�

�
�

�
�

�

�
�

�
�

���

�
��

�
��

�
��

�
�

�
��

�
��

���

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�

���

��

��������
����

����

	
�

	
�

�

�
�
��

	�

	
�

�

	
�
��

	
�
��

�
�
�

�
�
��

�
�
��

����

�
��

���

&�

��

��

��

	

��

��

����
���
���
����
���
��

����
���
���
����
���
����

��

$�

�

�

#�
�
�

�
�

$�
�!
�

$�
�!
�

$�
�!
�

$�
�!
�

�
�
�
%

$�
�!
�

$�
�!
�

$�

!
�

$�
�!
�

#
�
�
�

#
�
�
�

�
��

�
��

�
�
��

���

�1G+,
$��

�+*+-
�G0-6H

	*+,
$��*

����>�
�
��>�.)7
�����4*+*

�
�����
�1742+

�8-+)*01)�I+.7+,
	*+,

�G0-6H+*

�����,1-1-K30)5
#,+.

4,,+)-=
�+.*4,+@+)-
I+.7+,*

�H,145H=I12+
�,1-1-K30)5�#,+.

�

#).215
!�

�1G+,
!)34-

�.6L43
�.--+,K

��=�
�
I+.7+,

�
�����
�1742+

1))+6-1,

�����,1-1-K30)5
#,+.

�
�����
�-.)71<<
�14)-0)5
98 RabbitCore RCM4000

INDEX

A

A/D converter
access via Prototyping Board

106
function calls

anaIn 55
anaInCalib 57
anaInConfig 51
anaInDiff 61
anaInDriver 53
anaInEERd 64
anaInEEWr 66
anaInmAmps 63
anaInVolts 59

inputs
differential measurements .

107
negative voltages 107
single-ended measurements

106
additional information

online documentation 5
analog inputs See A/D converter
auxiliary I/O bus 33

B

battery backup
battery life 116
circuit 116
external battery connections .

115
real-time clock 116
reset generator 117
use of battery-backed SRAM

47
board initialization

function calls 49
brdInit 49

bus loading 91

C

clock doubler 43

conformal coating 94

D

Development Kits 4
RCM4000 Analog Develop-

ment Kit 5
RCM4010 Development Kit 4

AC adapter 4
Getting Started instructions

4
programming cable 4

digital I/O 28
function calls 47

digInAlert 50
timedAlert 50

I/O buffer sourcing and sink-
ing limits 91

memory interface 33
SMODE0 33, 37
SMODE1 33, 37

dimensions
Prototyping Board 101
RCM4000 84

Dynamic C 5, 7, 12, 45
add-on modules 7, 68

installation 7
battery-backed SRAM 47
libraries

RCM40xx.LIB 49
protected variables 47
sample programs 16
standard features

debugging 46
telephone-based technical sup-

port 5, 68
upgrades and patches 68
USB port settings 12

E

Ethernet cables 69
how to tell them apart 69

Ethernet connections 69, 71
10/100Base-T 71

10Base-T Ethernet card 69
additional resources 81
direct connection 71
Ethernet cables 71
Ethernet hub 69
IP addresses 71, 73
MAC addresses 74
steps 70

Ethernet port 36
pinout 36

exclusion zone 85

F

features 2
Prototyping Boards 98, 99

flash memory addresses
user blocks 44

H

hardware connections
install RCM4000 on Prototyp-

ing Board 9
power supply 11
programming cable 10

I

I/O buffer sourcing and sinking
limits 91

IP addresses 73
how to set in sample programs

78
how to set PC IP address .. 79

J

jumper configurations
Prototyping Board 112

JP1 (+5 V current measure-
ment) 112

JP1 (LN0 buffer/filter to
RCM4000) 113

JP12 (PB2/LED DS2) . 113
JP13 (LN1 buffer/filter to
User’s Manual 119

libraries
ADC_ADS7870.LIB 51
RCM40XX.LIB 49

serial communication drivers
47

specifications 83
A/D converter chip 88
bus loading 91
digital I/O buffer sourcing and

sinking limits 91
dimensions 84
electrical, mechanical, and en-

vironmental 86
exclusion zone 85
header footprint 89
Prototyping Board 102
Rabbit 4000 DC characteris-

tics 90
Rabbit 4000 timing diagram .

92
relative pin 1 locations 89

spectrum spreader 93
settings 43

subsystems
digital inputs and outputs .. 28

switching modes 38

T

TCP/IP primer 71
technical support 13

U

USB/serial port converter
Dynamic C settings 12

user block
function calls

readUserBlock 44
writeUserBlock 44
User’s Manual 121

