

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx534f064h-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2.

Register Number	Register Name	Function
0-6	Reserved	Reserved.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers.
8	BadVAddr ⁽¹⁾	Reports the address for the most recent address-related exception.
9	Count ⁽¹⁾	Processor cycle count.
10	Reserved	Reserved.
11	Compare ⁽¹⁾	Timer interrupt control.
12	Status ⁽¹⁾	Processor status and control.
12	IntCtl ⁽¹⁾	Interrupt system status and control.
12	SRSCtl ⁽¹⁾	Shadow register set status and control.
12	SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set.
13	Cause ⁽¹⁾	Cause of last general exception.
14	EPC ⁽¹⁾	Program counter at last exception.
15	PRId	Processor identification and revision.
15	Ebase	Exception vector base register.
16	Config	Configuration register.
16	Config1	Configuration Register 1.
16	Config2	Configuration Register 2.
16	Config3	Configuration Register 3.
17-22	Reserved	Reserved.
23	Debug ⁽²⁾	Debug control and exception status.
24	DEPC ⁽²⁾	Program counter at last debug exception.
25-29	Reserved	Reserved.
30	ErrorEPC ⁽¹⁾	Program counter at last error.
31	DESAVE ⁽²⁾	Debug handler scratchpad register.
	I	

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used during debug.

TABLE 7-4: INTERRUPT REGISTER MAP FOR PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES (CONTINUED)

ess										В	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
10D0	IPC4	31:16	_	-	—		INT4IP<2:0>		INT4IS	S<1:0>	_	—	—		OC4IP<2:0>		OC4IS	S<1:0>	0000
1000	IFC4	15:0	_	_	_		IC4IP<2:0>		IC4IS	<1:0>		_	_		T4IP<2:0>		T4IS	<1:0>	0000
10E0	IPC5	31:16	_				-		-	_	_		—		OC5IP<2:0>		OC5IS	S<1:0>	0000
IUEU	IFC5	15:0	_	_			IC5IP<2:0>		IC5IS	<1:0>	-		_		T5IP<2:0>		T5IS	<1:0>	0000
		31:16	_	_	_		AD1IP<2:0>		AD1IS	6<1:0>		_	_		CNIP<2:0>		CNIS	<1:0>	0000
10F0	IPC6														U1IP<2:0>		U1IS	<1:0>	
TUFU	IPC6	15:0	—	_	_		I2C1IP<2:0>		I2C118	S<1:0>	_	_	-		SPI3IP<2:0>		SPI3IS<1:0>		0000
												12C3IP<2:0>		I2C3IP<2:0>			12C31	6<1:0>	1
							U3IP<2:0>		U3IS	<1:0>									
1100	IPC7	31:16	—	—	_	SPI2IP<2:0>		SPI2IS	S<1:0>	—	_	—	(CMP2IP<2:0:	>	CMP2I	S<1:0>	0000	
1100	IFC7						I2C4IP<2:0>		12C418	S<1:0>									
		15:0	_			(CMP1IP<2:0	>	CMP1I	S<1:0>	_		—		PMPIP<2:0>	•	PMPIS	S<1:0>	0000
		31:16	_	_		F	RTCCIP<2:0	>	RTCCI	S<1:0>	-		_	F	SCMIP<2:0	>	FSCMI	S<1:0>	0000
1110	IPC8														U2IP<2:0>		U2IS	<1:0>	
1110	IFCo	15:0	—	—	_	_	_	—	—	—	_	_	—		SPI4IP<2:0>		SPI4IS	6<1:0>	0000
															I2C5IP<2:0>		12C518	6<1:0>	1
1120	IPC9	31:16		—	-	[DMA3IP<2:0	>	DMA3I	S<1:0>		-	_	[DMA2IP<2:0	>	DMA2I	S<1:0>	0000
1120	IFC9	15:0	_				DMA1IP<2:0		DMA1I	S<1:0>	_		—	[DMA0IP<2:0	>	DMA0I	S<1:0>	0000
1130	IPC10	31:16	_	_	_	DI	MA7IP<2:0>	(2)	DMA7IS	S<1:0> ⁽²⁾		_	_	D	MA6IP<2:0>	(2)	DMA6IS	i<1:0> ⁽²⁾	0000
1130	IFC10	15:0	_	_	_	DI	MA5IP<2:0>	(2)	DMA5IS	S<1:0> ⁽²⁾	_	_	—	D	MA4IP<2:0>	(2)	DMA4IS	i<1:0> ⁽²⁾	0000
11.10	IPC11	31:16	_	_		C	AN2IP<2:0>	(2)	CAN2IS	5<1:0> (2)	_		—	(CAN1IP<2:0:	>	CAN1I	S<1:0>	0000
1140	IPUTI	15:0	_	_	_		USBIP<2:0>		USBIS	S<1:0>	_	_	—		FCEIP<2:0>		FCEIS	S<1:0>	0000
1150	IPC12	31:16	_	_	_		U5IP<2:0>		U5IS	<1:0>	_	_	_		U6IP<2:0>		U6IS	<1:0>	0000
1150	IPU12	15:0	_	_			U4IP<2:0>		U4IS	<1:0>	_		—		ETHIP<2:0>		ETHIS	6<1:0>	0000

Legend: x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information. This bit is unimplemented on PIC32MX764F128H device. This register does not have associated CLR, SET, and INV registers.

2:

3:

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24		—	—		IP03<2:0>	IS03	<1:0>	
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10		—	—		IP02<2:0>	IS02<1:0>		
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0		—	—		IP01<2:0>		IS01-	<1:0>
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		_			IP00<2:0>		IS00-	<1:0>

Legend:

3					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP03<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	• 010 = Interrupt priority is 2
	010 = Interrupt priority is 2 001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 25-24	IS03<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
bit 23-21	Unimplemented: Read as '0'
bit 20-18	IP02<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1 000 = Interrupt is disabled
hit 17 16	•
DIL 17-10	IS02<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2 01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
hit 15-13	Unimplemented: Read as '0'
511 10 10	Chimpionionicu. Nodu do 0
Note:	This register represents a generic definition
1	· · · ·

definitions.

ister represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit ns.

8.1 Control Registers

TABLE 8-1: OSCILLATOR REGISTER MAP

ess		e	Bits												(2)				
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E000	OSCCON	31:16	—	_	PLLODIV<2:0>			FRCDIV<2:0>			—	SOSCRDY	_	PBDIV	<1:0>	Р	LLMULT<2:0	>	0000
FUUU	USCCON	15:0	_		COSC<2:0>		_		NOSC<2:0>		CLKLOCK	ULOCK	SLOCK	SLPEN	CF	UFRCEN	SOSCEN	OSWEN	0000
E010	F010 OSCTUN	31:16	—	_	_	—	_	_		-	_	—	_	—	—	_	_	—	0000
FUIU	USCIUN	15:0	_		_	_	_				_	—			TUN	<5:0>			0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess		a								Bi	ts								6
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	DCH4SSIZ	31:16	—		—	—	_	_	-	—	_	_	_	_	—	—	—	_	000
0000	DONIOOIZ	15:0													000				
300	DCH4DSIZ	31:16	—	_	—	_	_	—	—	—	_	—	—	—	—	_	_	—	00
	DOITIDOIL	15:0								CHDSIZ	2<15:0>								00
3D0	DCH4SPTR	31:16	—	_	—	_	_	—	_	—	_	—	—	—	—	—	—	—	00
000		15:0								CHSPTI	R<15:0>								00
3E0	DCH4DPTR	31:16	—	—		—	_	—	—	—	_	—	—	—	—			—	00
020		15:0								CHDPTI									00
3F0	DCH4CSIZ	31:16	—	_	—	—	—	—	—	—	—	—	—	—			—	—	00
01 0		15:0								CHCSIZ	2<15:0>								00
400	DCH4CPTR	31:16	-	—	—	—	—	-	—	—	—	—	—	—	—	_	_	—	00
-00	5011101 111	15:0								CHCPT	R<15:0>					1	1		00
8410	DCH4DAT	31:16	—	—	—	_	-	—	_	—	-	—	—	—	—	_	—	—	00
-10	5011157.	15:0	—		—	—	—	—	—	—				CHPDA	AT<7:0>				00
3420	DCH5CON	31:16	—	_	—	_	_	_	_	—	_	_	_	_	—	_	_	—	00
	Donocon	15:0	CHBUSY		—	—	—	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	l<1:0>	00
120	DCH5ECON	31:16													00				
430	DONOLOON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—	—	FF
3440	DCH5INT	31:16	—	_		—	_	—	_	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	00
440	Donointi	15:0	—	_	_	—	_	—	_	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	00
450	DCH5SSA	31:16 15:0								CHSSA	<31:0>								00
3460	DCH5DSA	31:16								CHDSA	<31:0>								00
100		15:0			1	1										1	1		00
470	DCH5SSIZ	31:16	—	—		—	_	—	—	—	_	—	—	—	—			—	00
		15:0								CHSSIZ	<15:0>					1	1		00
8480	DCH5DSIZ	31:16	—	—	_	_	—	—	—	—	—	—	—	—	—	-		—	00
400	501105012	15:0								CHDSIZ	.<15:0>							-	00
100	DCH5SPTR	31:16	—		—	—	—	—	—	—	—	—	—	—	—	—	—	—	00
, 100	- 51.00. 110	15:0								CHSPTI	R<15:0>								00
110	DCH5DPTR	31:16	—	_	_	—	_	—	_	—	_	—	_	_	—	_		—	00
4 AU		15:0								CHDPTI	R<15:0>								00
400	DCH5CSIZ	31:16	_	_	_	_	_	—	_	_	_	_	—	1	-	_	_	—	00
4BU	DCH3C3IZ	15:0								CHCSIZ	<15:0>								00
400	DCH5CPTR	31:16	_	_	_	_	_	_	_	_	_	_	-		—	_	_	—	00
34C0	IDCHOCKIK	15:0								CHCPTI									00

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices. 2:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—				—		—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		_				_		_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		_				_		_
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
7.0	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE		VBUSVDIE

REGISTER 11-2: U10TGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 IDIE: ID Interrupt Enable bit
 - 1 = ID interrupt enabled
 - 0 = ID interrupt disabled
- bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
 - 1 = 1 millisecond timer interrupt enabled
 - 0 = 1 millisecond timer interrupt disabled
- bit 5 LSTATEIE: Line State Interrupt Enable bit
 - 1 = Line state interrupt enabled
 - 0 = Line state interrupt disabled
- bit 4 ACTVIE: Bus ACTIVITY Interrupt Enable bit
 - 1 = ACTIVITY interrupt enabled
 - 0 = ACTIVITY interrupt disabled
- bit 3 SESVDIE: Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt enabled
 - 0 = Session valid interrupt disabled
- bit 2 SESENDIE: B-Session End Interrupt Enable bit
 - 1 = B-session end interrupt enabled
 - 0 = B-session end interrupt disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 **VBUSVDIE:** A-VBUS Valid Interrupt Enable bit
 - 1 = A-VBUS valid interrupt enabled
 - 0 = A-VBUS valid interrupt disabled

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24				_			_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10				_			-	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0				_			-	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 11-4: U10TGCON: USB OTG CONTROL REGISTER

Legend:

bit 7

•					
R = Readable bit	W = Writable bit	Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-8 Unimplemented: Read as '0'

DPPULUP: D+ Pull-Up Enable bit 1 = D+ data line pull-up resistor is enabled 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- 1 = D- data line pull-up resistor is enabled
 0 = D- data line pull-up resistor is disabled
- bit 5 **DPPULDWN:** D+ Pull-Down Enable bit
 - 1 = D + data line pull-down resistor is enabled
 - 0 = D+ data line pull-down resistor is disabled

bit 4 DMPULDWN: D- Pull-Down Enable bit

- 1 = D- data line pull-down resistor is enabled
- 0 = D- data line pull-down resistor is disabled

bit 3 VBUSON: VBUS Power-on bit

- 1 = VBUS line is powered
- 0 = VBUS line is not powered
- bit 2 **OTGEN:** OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control

bit 1 VBUSCHG: VBUS Charge Enable bit

- 1 = VBUS line is charged through a pull-up resistor
- 0 = VBUS line is not charged through a resistor

bit 0 VBUSDIS: VBUS Discharge Enable bit

- 1 = VBUS line is discharged through a pull-down resistor
- 0 = VBUS line is not discharged through a resistor

Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_		—	—	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_		—	—	—	—
R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R-0	R/WC-0, HS
STALLE					SOFIE		URSTIF ⁽⁵⁾
STALLIF		RESUMEIR	IULEIF		30717		DETACHIF ⁽⁶⁾
	31/23/15/7 U-0 U-0 U-0 U-0 U-0	31/23/15/7 30/22/14/6 U-0 U-0 — — R/WC-0, HS R/WC-0, HS	31/23/15/7 30/22/14/6 29/21/13/5 U-0 U-0 U-0 — — — R/WC-0, HS R/WC-0, HS R/WC-0, HS	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 U-0 U-0 U-0 U-0 — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — U-0 U-0 U-0 U-0 — — — — U-0 U-0 U-0 U-0 — — — — R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS R/WC-0, HS	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 U-0 U-0

REGISTER 11-6: U1IR: USB INTERRUPT REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **STALLIF:** STALL Handshake Interrupt bit
 - 1 = In Host mode a STALL handshake was received during the handshake phase of the transaction. In Device mode, a STALL handshake was transmitted during the handshake phase of the transaction.
 - 0 = STALL handshake has not been sent
- bit 6 ATTACHIF: Peripheral Attach Interrupt bit⁽¹⁾
 - 1 = Peripheral attachment was detected by the USB module
 - 0 = Peripheral attachment was not detected
- bit 5 **RESUMEIF:** Resume Interrupt bit⁽²⁾
 - 1 =K-State is observed on the D+ or D- pin for 2.5 μ s
 - 0 =K-State is not observed
- bit 4 **IDLEIF:** Idle Detect Interrupt bit
 - 1 = Idle condition detected (constant Idle state of 3 ms or more)
 - 0 = No Idle condition detected
- bit 3 **TRNIF:** Token Processing Complete Interrupt bit⁽³⁾
 - 1 = Processing of current token is complete; a read of the U1STAT register will provide endpoint information
 - 0 = Processing of current token not complete
- bit 2 SOFIF: SOF Token Interrupt bit
 - 1 = SOF token received by the peripheral or the SOF threshold reached by the host
 - 0 = SOF token was not received nor threshold reached
- bit 1 UERRIF: USB Error Condition Interrupt bit⁽⁴⁾
 - 1 = Unmasked error condition has occurred
 - 0 = Unmasked error condition has not occurred
- bit 0 URSTIF: USB Reset Interrupt bit (Device mode)⁽⁵⁾
 - 1 = Valid USB Reset has occurred
 - 0 = No USB Reset has occurred
 - DETACHIF: USB Detach Interrupt bit (Host mode)⁽⁶⁾
 - 1 = Peripheral detachment was detected by the USB module
 - 0 = Peripheral detachment was not detected
- **Note 1:** This bit is only valid if the HOSTEN bit is set (see Register 11-11), there is no activity on the USB for 2.5 μs, and the current bus state is not SE0.
 - **2:** When not in Suspend mode, this interrupt should be disabled.
 - 3: Clearing this bit will cause the STAT FIFO to advance.
 - 4: Only error conditions enabled through the U1EIE register will set this bit.
 - 5: Device mode.
 - 6: Host mode.

18.1 Control Registers

TABLE 18-1: SPI1 THROUGH SPI4 REGISTER MAP

SS										Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	SPI1CON ⁽²⁾	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>	_	_	—	_	_		SPIFE	ENHBUF	0000
5E00	SPITCON-	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	—	STXISE	L<1:0>	SRXISE	L<1:0>	0000
5E10	SPI1STAT ⁽²⁾	31:16	—	_	_		RX	BUFELM<4	:0>		—	—	—		TX	BUFELM<4	:0>		0000
5E 10	SPIISIAL	15:0	—	_	_	_	SPIBUSY		-	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	-	SPITBF	SPIRBF	0008
5E20	SPI1BUF ⁽²⁾	31:16 15:0								DATA<	:31:0>								0000
5E30	SPI1BRG ⁽²⁾	31:16	—	_	-	_	_			_	—	—	_	_	_		_	_	0000
3E30	SFIIDKG	15:0	—	—	_	_	_							BRG<8:0>					0000
5800	SPI3CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>	_	—	-	-	_	_	SPIFE	ENHBUF	0000
5000 SPI3CON		15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	—	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5810	SPI3STAT	31:16	—	_	_		RX	BUFELM<4	:0>		—	—	_		TX	BUFELM<4	:0>		0000
5810	SFISSIAI	15:0	—	_	_	_	SPIBUSY			SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE		SPITBF	SPIRBF	0008
5820	SPI3BUF	31:16 15:0								DATA<	:31:0>								0000
	SPI3BRG	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		0000
5830	SPI3BRG	15:0	_	_	_	_	_		-					BRG<8:0>					0000
5400	SPI2CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>	_	_	_	—	_	_	SPIFE	ENHBUF	0000
5A00	SPIZCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	_	STXISE	L<1:0>	SRXISE	L<1:0>	0000
5440	SPI2STAT	31:16	_	_	-		RX	BUFELM<4	:0>		_	_	-		TX	BUFELM<4	:0>		0000
5A10	SFIZSTAT	15:0	_	—	—	—	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	-	SPITBF	SPIRBF	0008
5A20	SPI2BUF	31:16 15:0								DATA<	:31:0>								0000
5A30	SPI2BRG	31:16	_	—	—	—	—	_	_	—	—	—	—	—	—	-	—	_	0000
5A30	SFIZERG	15:0	—	_	-	_	_							BRG<8:0>					0000
5C00	SPI4CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0)>	—	—	_	—	-		SPIFE	ENHBUF	0000
5000	51 140010	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	_	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5C10	SPI4STAT	31:16	_	—				BUFELM<4	:0>	-	_					BUFELM<4	:0>	-	0000
<u>30-10 JI HOTRI 15:0 SPIBUSY SPITUR SRMT SPIROV SPIRBE - SPITBE - SPITBF SPIRBI</u>							SPIRBF	0008											
5C20	SPI4BUF	31:16 15:0								DATA<	:31:0>								0000
5C30	SPI4BRG	31:16		_	_	—	—	_	_	_	_	_	—	_	_	_	_	_	0000
5030		15:0	_	_	_	—	_	—	—					BRG<8:0>					0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This register is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT<2:0>			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
23:16	_	—	_	_	—		SPIFE	ENHBUF ⁽²⁾	
15.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	0N ⁽¹⁾	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE ⁽³⁾	
7.0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	SSEN	CKP	MSTEN	_	STXISE	L<1:0>	SRXIS	EL<1:0>	

REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER

Legend:

F	R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-1	n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FRMEN: Framed SPI Support	bit
		Dir

- 1 = Framed SPI support is enabled (SSx pin used as FSYNC input/output)
- 0 = Framed SPI support is disabled
- bit 30 **FRMSYNC:** Frame Sync Pulse Direction Control on SSx pin bit (only Framed SPI mode) 1 = Frame sync pulse input (Slave mode)
 - 0 = Frame sync pulse output (Master mode)
- bit 29 **FRMPOL:** Frame Sync Polarity bit (only Framed SPI mode)
 - 1 = Frame pulse is active-high
 - 0 = Frame pulse is active-low
- bit 28 MSSEN: Master Mode Slave Select Enable bit
 - 1 = Slave select SPI support enabled. The SS pin is automatically driven during transmission in Master mode. Polarity is determined by the FRMPOL bit.
 - 0 = Slave select SPI support is disabled.
- bit 27 FRMSYPW: Frame Sync Pulse Width bit
 - 1 = Frame sync pulse is one character wide
 - 0 = Frame sync pulse is one clock wide
- bit 26-24 **FRMCNT<2:0>:** Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in Framed Sync mode.
 - 111 = Reserved
 - 110 = Reserved
 - 101 = Generate a frame sync pulse on every 32 data characters
 - 100 = Generate a frame sync pulse on every 16 data characters
 - 011 = Generate a frame sync pulse on every 8 data characters
 - 010 = Generate a frame sync pulse on every 4 data characters
 - 001 = Generate a frame sync pulse on every 2 data characters
 - 000 = Generate a frame sync pulse on every data character
- bit 23-18 Unimplemented: Read as '0'
- bit 17 SPIFE: Frame Sync Pulse Edge Select bit (only Framed SPI mode)
 - 1 = Frame synchronization pulse coincides with the first bit clock
 - 0 = Frame synchronization pulse precedes the first bit clock
- bit 16 ENHBUF: Enhanced Buffer Enable bit⁽²⁾
 - 1 = Enhanced Buffer mode is enabled
 - 0 = Enhanced Buffer mode is disabled
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)

- bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits⁽²⁾
 11111111 = Alarm will trigger 256 times
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 <li
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is only reset on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN15	MSEL1	L15<1:0> FSEL15<4:0>					
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN14	MSEL1	4<1:0>		F	SEL14<4:0>		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	FLTEN13	MSEL1	3<1:0>		F	SEL13<4:0>	25/17/9/1 R/W-0 R/W-0 R/W-0 R/W-0	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN12	MSEL1	2<1:0>	FSEL12<4:0>				

REGISTER 24-13: CIFLTCON3: CAN FILTER CONTROL REGISTER 3

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31	FLTEN15: Filter 15 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL15<1:0>: Filter 15 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	<pre>FSEL15<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
bit 23	FLTEN14: Filter 14 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL14<1:0>: Filter 14 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	<pre>FSEL14<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
Note:	The hits in this register can only be modified if the correspondir

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				PTV<	15:8>			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				PTV<	:7:0>			
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	ON	—	SIDL	_	_	_	TXRTS	RXEN ⁽¹⁾
7:0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
7:0	AUTOFC		_	MANFC	_			BUFCDEC

REGISTER 25-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 PTV<15:0>: PAUSE Timer Value bits PAUSE Timer Value used for Flow Control. This register should only be written when RXEN (ETHCON1<8>) is not set. These bits are only used for Flow Control operations. bit 15 **ON:** Ethernet ON bit 1 = Ethernet module is enabled 0 = Ethernet module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Ethernet Stop in Idle Mode bit 1 = Ethernet module transfers are paused during Idle mode 0 = Ethernet module transfers continue during Idle mode bit 12-10 Unimplemented: Read as '0' bit 9 TXRTS: Transmit Request to Send bit 1 = Activate the TX logic and send the packet(s) defined in the TX EDT 0 = Stop transmit (when cleared by software) or transmit done (when cleared by hardware)

After the bit is written with a '1', it will clear to a '0' whenever the transmit logic has finished transmitting the requested packets in the Ethernet Descriptor Table (EDT). If a '0' is written by the CPU, the transmit logic finishes the current packet's transmission and then stops any further.

This bit only affects TX operations.

bit 8 **RXEN:** Receive Enable bit⁽¹⁾

- 1 = Enable RX logic, packets are received and stored in the RX buffer as controlled by the filter configuration
- 0 = Disable RX logic, no packets are received in the RX buffer

This bit only affects RX operations.

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to '0'), and then the RX changes applied.

REGISTER 25-20: ETHFRMRXOK: ETHERNET CONTROLLER FRAMES RECEIVED OK STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				FRMRXOK	CNT<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				FRMRXOK	(CNT<7:0>			

Legend:

3							
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

bit 15-0 FRMRXOKCNT<15:0>: Frames Received OK Count bits

Increment count for frames received successfully by the RX Filter. This count will not be incremented if there is a Frame Check Sequence (FCS) or Alignment error.

Note 1: This register is only used for RX operations.

- 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
 - **3:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 25-25: EMAC1IPGT: ETHERNET CONTROLLER MAC BACK-TO-BACK INTERPACKET GAP REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	_	_	—	—	_
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	_	—	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		_	_	_	_	—	_	_
7.0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
7:0	_			B2	BIPKTGP<6:()>		

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-7 Unimplemented: Read as '0'

bit 6-0 B2BIPKTGP<6:0>: Back-to-Back Interpacket Gap bits

This is a programmable field representing the nibble time offset of the minimum possible period between the end of any transmitted packet, to the beginning of the next. In Full-Duplex mode, the register value should be the desired period in nibble times minus 3. In Half-Duplex mode, the register value should be the desired period in nibble times minus 6. In Full-Duplex the recommended setting is 0x15 (21d), which represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 10 Mbps). In Half-Duplex mode, the recommended setting is 0x12 (18d), which also represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 25-28: EMAC1MAXF: ETHERNET CONTROLLER MAC MAXIMUM FRAME LENGTH REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	_	_	—	—	_	_
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
15:8				MACMAXF<	<15:8> ⁽¹⁾			
7.0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0
7:0				MACMAXF	<7:0> ⁽¹⁾			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 MACMAXF<15:0>: Maximum Frame Length bits⁽¹⁾

These bits reset to 0x05EE, which represents a maximum receive frame of 1518 octets. An untagged maximum size Ethernet frame is 1518 octets. A tagged frame adds four octets for a total of 1522 octets. If a shorter/longer maximum length restriction is desired, program this 16-bit field.

Note 1: If a proprietary header is allowed, this bit should be adjusted accordingly. For example, if 4-byte headers are prepended to frames, MACMAXF could be set to 1527 octets. This would allow the maximum VLAN tagged frame plus the 4-byte header.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 25-32: EMAC1MCMD: ETHERNET CONTROLLER MAC MII MANAGEMENT COMMAND REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	_		—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7:0		_				_	SCAN	READ

Legend:

5			
R = Readable bit	le bit W = Writable bit		read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-2 Unimplemented: Read as '0'

- bit 1 SCAN: MII Management Scan Mode bit
 - 1 = The MII Management module will perform read cycles continuously (for example, useful for monitoring the Link Fail)
 - 0 = Normal Operation

bit 0 READ: MII Management Read Command bit

- 1 = The MII Management module will perform a single read cycle. The read data is returned in the EMAC1MRDD register
- 0 = The MII Management module will perform a write cycle. The write data is taken from the EMAC1MWTD register

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

NOTES:

31.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

31.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

31.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

31.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

31.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

TABLE 32-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$					
Param. No. Symbol		Characteristics		Min. ⁽¹⁾	Max.	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Трв * (BRG + 2)	—	μS	_	
			400 kHz mode	Трв * (BRG + 2)	_	μS	_	
			1 MHz mode ⁽²⁾	Tpb * (BRG + 2)	—	μS	_	
IM11	THI:SCL	Clock High Time	100 kHz mode	Трв * (BRG + 2)	—	μS	_	
			400 kHz mode	Tpb * (BRG + 2)	—	μS	_	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	μS	_	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	_	
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode ⁽²⁾	100	_	ns		
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μS	_	
			400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0	0.3	μS		
IM30	TSU:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	ns	Only relevant for	
		Setup Time	400 kHz mode	Трв * (BRG + 2)	_	ns	Repeated Start	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	ns	After this period, the	
		Hold Time	400 kHz mode	Трв * (BRG + 2)	_	ns	first clock pulse is	
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Трв * (BRG + 2)	_	ns	_	
		Setup Time	400 kHz mode	Трв * (BRG + 2)	_	ns		
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns		
IM34	THD:STO	Stop Condition	100 kHz mode	Трв * (BRG + 2)	_	ns	_	
		Hold Time	400 kHz mode	Трв * (BRG + 2)	_	ns		
			1 MHz mode ⁽²⁾	Трв * (BRG + 2)	_	ns		
IM40	TAA:SCL	Output Valid from	100 kHz mode	_	3500	ns	_	
		Clock	400 kHz mode	_	1000	ns	_	
			1 MHz mode ⁽²⁾	_	350	ns	_	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	The amount of time the	
			400 kHz mode	1.3	<u> </u>	μS	bus must be free before	
			1 MHz mode ⁽²⁾	0.5	<u> </u>	μS	a new	
IMEO	CD	Rue Consolitive La	ading		400		transmission can start	
IM50	Св	Bus Capacitive Lo	-	-	400	pF	—	
IM51	Tpgd	Pulse Gobbler Del	-	52	312	ns	_	

Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (only for 1 MHz mode).

3: The typical value for this parameter is 104 ns.