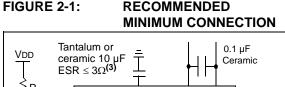


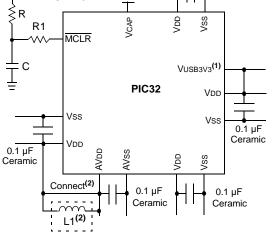
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


E·XFl

2 014110	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx534f064h-v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note 1: If the USB module is not used, this pin must be connected to VDD.

2: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 3Ω and the inductor capacity greater than 10 mA.

Where:

$$f = \frac{F_{CNV}}{2}$$
 (i.e., ADC conversion rate/2)
$$f = \frac{1}{(2\pi\sqrt{LC})}$$
$$L = \left(\frac{1}{(2\pi f\sqrt{C})}\right)^2$$

3: Aluminum or electrolytic capacitors should not be used. ESR $\leq 3\Omega$ from -40°C to 125°C @ SYSCLK frequency (i.e., MIPS).

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

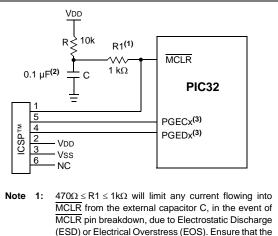
2.3 Capacitor on Internal Voltage Regulator (VCAP)

2.3.1 INTERNAL REGULATOR MODE

A low-ESR (1 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 32.0 "Electrical Characteristics"** for additional information on CEFC specifications.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:


- Device Reset
- Device Programming and Debugging

Pulling The MCLR pin low generates a device Reset. Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met without interfering with the Debug/Programmer tools.

- 2: The capacitor can be sized to prevent unintentional Resets from brief glitches or to extend the device Reset period during POR.
- **3:** No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
31:24	NVMKEY<31:24>								
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
23:16	NVMKEY<23:16>								
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
15:8	NVMKEY<15:8>								
7:0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
				NVMK	EY<7:0>				

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read.

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	NVMADDR<31:24>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	NVMADDR<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	NVMADDR<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				NVMAE	DDR<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMADDR<31:0>: Flash Address bits Bulk/Chip/PFM Erase: Address is ignored. Page Erase: Address identifies the page to erase. Row Program: Address identifies the row to program. Word Program: Address identifies the word to program.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS09	IFS08
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IFS07	IFS06	IFS05	IFS04	IFS03	IFS02	IFS01	IFS00

REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	le bit U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IFS31-IFS00: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC09	IEC08
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IEC07	IEC06	IEC05	IEC04	IEC03	IEC02	IEC01	IEC00

Legend:

· J · · ·			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IEC31-IEC00: Interrupt Enable bits

1 = Interrupt is enabled

0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24		—	—		IP03<2:0>		IS03	<1:0>
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10		—	—		IP02<2:0>			<1:0>
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0		—	—		IP01<2:0>			<1:0>
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		_			IP00<2:0>		IS00-	<1:0>

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP03<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	• 010 = Interrupt priority is 2
	010 = Interrupt priority is 2 001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 25-24	IS03<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
bit 23-21	Unimplemented: Read as '0'
bit 20-18	IP02<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1 000 = Interrupt is disabled
hit 17 16	•
DIL 17-10	IS02<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2 01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
hit 15-13	Unimplemented: Read as '0'
511 10 10	Chimpionionicu. Nodu do 0
Note:	This register represents a generic definition
1	· · · ·

definitions.

ister represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit ns.

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)

REGIST	
bit 12-10	IP01<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 9-8	IS01<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
bit 7-5	Unimplemented: Read as '0'
bit 4-2	IP00<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 1-0	IS00<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
Nete	This projection proposed to a proposite definition of the IDOs projection Defaulty T-11 T-1 () ()
Note:	This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit definitions.

TABLE 10-3: DMA CHANNELS 0-7 REGISTER MAP (CONTINUED)

ess										Bi	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
35E0	DCH7SSIZ	31:16	_			-		—	—		_				—		—	-	0000
551.0	DOINGOIZ	15:0								CHSSIZ	Z<15:0>								0000
2000		31:16	—	—	_	—	—	—	—	_	—	—	_	—	—	—	—	—	0000
3600	DCH7DSIZ	15:0								CHDSIZ	Z<15:0>								0000
2610	DCH7SPTR	31:16	Ι	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
3010	DCH/SPIK	15:0								CHSPT	R<15:0>								0000
2620	DCH7DPTR	31:16	Ι	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
3620		15:0								CHDPT	R<15:0>								0000
2620	DCH7CSIZ	31:16	_			_	_	_	-		_				—		_		0000
3630	DCH/CSIZ	15:0								CHCSIZ	Z<15:0>								0000
20.40	DOUZODTO	31:16		_	_	—	_	-	-	_	_	_	_	_	_	_	-	_	0000
3040	DCH7CPTR	15:0								CHCPT	R<15:0>								0000
2650		31:16	Ι	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
3050	DCH7DAT	15:0	_	_	_	_	_	_	_	_				CHPDA	AT<7:0>				0000

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: DMA channels 4-7 are not available on PIC32MX534/564/664/764 devices.

11.1 **Control Registers**

TABLE 11-1: USB REGISTER MAP

$ \frac{96}{96} 9$	s											Bits								
Mulber 31:6 Mulber Mulber Mulber Mulber Mulber Mulber	(5.0	e									Bits	1				r	1	I.	Ś
6040 UOTGR9 160 IDF TIMSECF LSTATEF ACTVIF SESURF SESURF VBUSURF 5050 U10TGSTAP 31:6 <th>Virtual Add (BF88_#</th> <th>Registe Name⁽¹⁾</th> <th>Bit Rang</th> <th>31/15</th> <th>30/14</th> <th>29/13</th> <th>28/12</th> <th>27/11</th> <th>26/10</th> <th>25/9</th> <th>24/8</th> <th>23/7</th> <th>22/6</th> <th>21/5</th> <th>20/4</th> <th>19/3</th> <th>18/2</th> <th>17/1</th> <th>16/0</th> <th>All Resets</th>	Virtual Add (BF88_#	Registe Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5040		31:16	-	_	_	_	_	_	_	_	-	_	-	-	-	—	_	—	0000
5050 U10TGS 150	5040	UIUIGIR	15:0		_	_	_	_	_	_	_	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EOEO		31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
5060 101 G S 1A 1.0 - LSTATE - SESV SESND - VBUSVD 5070 1010 G C A 31:6 - <	5050	UTUTGE	15:0	_	_	_	_	-	_	_	_	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	—	VBUSVDIE	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	FOGO		31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
5070 U10TGCON 15.0 - - - - - DPPULUP DMPULUP DMPULUNN VBUSCN OTGEN VBUSCH	5060	UIUIGSIAI	15:0		_	_	_	_	_	_	_	ID	_	LSTATE	_	SESVD	SESEND	_	VBUSVD	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5070		31:16	_	_	_	_					-	—	_		-		_	_	0000
508 UPWRC 15.0 - - - - - - UACTPND ⁽⁴⁾ - USLPGRD	5070	UIUIGCON	15:0	_				I				DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5090		31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5060	UIPWRC	15:0	_	_	_	_					UACTPND ⁽⁴⁾		_	USLPGRD	USBBUSY	-	USUSPEND	USBPWR	0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			31:16	_				I					—	_			_	_	_	0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5200	U1IR ⁽²⁾	15:0			_	_	-	-	_	_	STALLIF	ATTACHIE	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF		0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												-						-	DETACHIF	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			31:16	—	_	_	_		_	_	_	—	—	—	—	_	—	—	—	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5210	U1IE	15:0	_	_	_	_	_	_	_	_	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE		0000
5220 U1ER ⁽²⁾ 15.0 BTSEF BMXEF DMAEF BTOEF DFN8EF CRC16EF CRC5EF PIDEF 5230 116 -																				0000
$ \frac{15.0}{15.0}$			31:16	_	_	_	_		_	_	_	—			_	_				0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5220	U1EIR ⁽²⁾	15:0	_	_	_	_	_	_	_	_	BTSEF	BMXEF	DMAEF	BTOEF	DFN8EF	CRC16EF		PIDEF	0000
5230 U1EE 15.0 BTSEE BMXEE DMAEE BTOEE DFN8EE CRC16E CRC5EE PIDEE PIDEE 5240 U1STAT ⁽³⁾ 31:16			31.16											_		_				0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5230	LI1EIE	51.10																	0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5250	OTELE	15:0	—	—	—	—	—	—	—	—	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE		PIDEE	0000
$ \frac{5240}{5250} \begin{array}{cccccccccccccccccccccccccccccccccccc$		(2)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5240	U1STAT ⁽³⁾		_	_	_	_	_	_	_	_		ENDPT	<3:0> ⁽⁴⁾		DIR	PPBI	_	_	0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_	_	_	_	_	_	_	_	_	_	_	_			_	_	0000
Solution 5260 U1ADDR 31:16 - <td>5250</td> <td>U1CON</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10T1TC(4)</td> <td>050(4)</td> <td>PKTDIS</td> <td></td> <td></td> <td></td> <td></td> <td>USBEN</td> <td>0000</td>	5250	U1CON										10T1TC(4)	050(4)	PKTDIS					USBEN	0000
5260 U1ADDR 15:0 - - - - - LSPDEN DEVADDR<6:0> 5270 1118DTP1 31:16 - - - - - - - - - -			15:0	—	_	_	_	_	_	—	-	JSTATE(4)	SE0(*/	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN	0000
15:0 - - - - - LSPDEN DEVADDR<6:0> 5270 11:8 - - - - - - - - -	5260		31:16	—	—	_	—	_	_	—	—	_	_	—	_	_	_	_	_	0000
	5260	UIADDR	15:0	—	—	—	—	—	_	—	—	LSPDEN			DE	VADDR<6:0)>			0000
	5270		31:16	—	—	—	—	—	—	—	—	_	_	_	_	_	_	—	_	0000
10.0 BDIPIRL /1	5270	UIBUIFT	15:0	—	—	—	—	—	—	—	_			BD)TPTRL<7:1>				—	0000

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Registers" for Note 1: more information.

2:

This register does not have associated SET and INV registers. This register does not have associated CLR, SET and INV registers. 3:

4: Reset value for this bit is undefined.

13.2 Control Registers

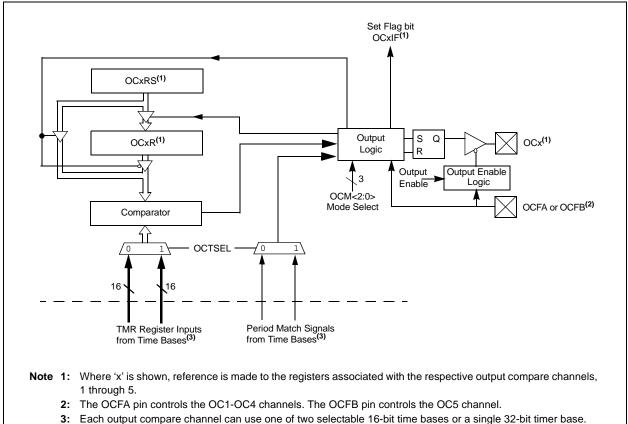
TABLE 13-1: TIMER1 REGISTER MAP

ess		â								В	its								
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	TACON	31:16	-	_	-	_	_	—	_	—	_	—	_	—	—	_	—	_	0000
0600	T1CON	15:0	ON	_	SIDL	TWDIS	TWIP	—	_	_	TGATE	_	TCKP	S<1:0>	—	TSYNC	TCS	_	0000
0610	TMR1	31:16	_	Ι	_	_	_	_	-	_	_	_	-	_	—	-	_	_	0000
0610	I IVIR I	15:0								TMR1	<15:0>								0000
0620	PR1	31:16	—	-				_	_	_	_		_	_	—	_	_	_	0000
0020	FRI	15:0								PR1<	15:0>								FFFF

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

17.0 OUTPUT COMPARE


Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 16.** "Output Compare" (DS60001111) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).

The Output Compare module is used to generate a single pulse or a series of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of the Output Compare module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Programmable selection of 16-bit or 32-bit time bases
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

19.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32). The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard. Figure 19-1 illustrates the l^2C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- Provides support for address bit masking

21.1 Control Registers

TABLE 21-1: PARALLEL MASTER PORT REGISTER MAP

15 6 15										Bi	ts								
Virtual Address (BF80_#) Register	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000 PM0	ACON	31:16	_	_	_	_	_	_	—	_		_	—	_	—	_	—	_	0000
7000 1 100		15:0	ON	—	SIDL	ADRMU	IX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	—	WRSP	RDSP	0000
7010 PMM	MODE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
7010 Pivily	INODE	15:0	BUSY	BY IRQM<1:0> INCM<1:0> MODE16 MODE<1:0> WAITB<1:0> WAITM<3:0> WAITE<1:0> 0000															
7020 PMA		31:16		_	_	_	_	_	_		_	-	_	_	_	_	_	_	0000
7020 PINA	IADDK	15:0	CS2EN/A15	CS1EN/A14							ADDR	<13:0>							0000
7000 040		31:16								DATAOU	T 04.0								0000
7030 PMD		15:0								DATAOU	1<31:0>								0000
7040 DM	MDIN -	31:16									.01.0								0000
7040 PM		15:0		DATAIN<31:0>															
7050 DM	MAEN	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	0000
7050 PM/	VIAEN	15:0		PTEN<15:0> 0000															
7000 0140	40TAT	31:16	_	_	_	_	_	_	_	_	_	_	_	—	_	—	_	_	0000
7060 PMS	ISTAL	15:0	IBF	IBF IBOV — — IB3F IB2F IB1F IB0F OBE OBUF — — OB3E OB2E OB1E OB0E 008F															

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX5XX/6XX/7XX

	-11 20 0. 71							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	_	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	—	—	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0

REGISTER 23-5: AD1CSSL: ADC INPUT SCAN SELECT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

1 = Select ANx for input scan

0 =Skip ANx for input scan

Note 1: CSSL = ANx, where 'x' = 0-15.

bit 15-0 CSSL<15:0>: ADC Input Pin Scan Selection bits⁽¹⁾

		PI	C32MX	(/5F512		PIC321	MX795F	512L D	EVICES	(CONTII	NUED)								
ess		é								Bit	s								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
C100	C2FLTCON4	31:16	FLTEN19	MSEL1	9<1:0>			FSEL19<4:0	>		FLTEN18	MSEL1	8<1:0>		F	SEL18<4:0	>		0000
0100	C2FLICON4	15:0	FLTEN17	MSEL1	7<1:0>		FSEL17<4:0> FLTEN16 MSEL16<1:0> FSEL16<4:0: 0										0000		
C110	C2FLTCON5	31:16	FLTEN23	MSEL2	3<1:0>		FSEL23<4:0> FLTEN22 MSEL22<1:0> FSEL22<4:0> 0										0000		
CIIU	CZFLICONS	15:0	FLTEN21	MSEL2	1<1:0>			FSEL21<4:0	>		FLTEN20	MSEL2	20<1:0>		F	SEL20<4:0	>		0000
C120	C2FLTCON6	31:16	FLTEN27	MSEL2	7<1:0>		FSEL27<4:0> FLTEN26 MSEL26<1:0> FSEL26<4:0> 00										0000		
0120	OZI EI CONO	15:0	FLTEN25	MSEL2	5<1:0>		FSEL25<4:0> FLTEN24 MSEL24<1:0> FSEL24<4:0> 0									0000			
C130	C2FLTCON7	31:16	FLTEN31	MSEL3	1<1:0>		FSEL31<4:0> FLTEN30 N				MSEL3	80<1:0>		F	SEL30<4:0	>		0000	
0100			FLTEN29	MSEL2	9<1:0>			FSEL29<4:0			FLTEN28	MSEL2	28<1:0>			SEL28<4:0			0000
C140	02.00.11	31:16						SID<10:0>							EXID	—	EID<	17:16>	xxxx
	(n = 0-31)	15:0								EID<1	5:0>								xxxx
C340		31:16 15:0								C2FIFOB	A<31:0>								0000
0250	C2FIFOCONn (n = 0-31)	31:16	_	—	—	—	—	—	—	_	—	_	—			FSIZE<4:0>	>		0000
0350	(n = 0-31)	15:0		FRESET	UINC	DONLY		—	—		TXEN	TXABAT	TXLARB	TXERR	TXREQ	RTREN	TXPR	l<1:0>	0000
C360	C2FIFOINTn	31:16	_	—	—	TXNFULLIE TXHALFIE TXEMPTYIE RXOVFLIE RXFULLIE RXHALFIE RXHALFIE RXH								0000					
0300	(n = 0-31)	15:0	-	—	—	—	-	TXNFULLIF	TXHALFIF	TXEMPTYIF	-	—	-	—	RXOVFLIF	RXFULLIF	RXHALFIF	RXN EMPTYIF	0000
C370	C2FIFOUAn									C2FIFOU	A<31:0>								0000
	(n = 0-31)	15:0																	0000
C380	C2FIFOCIn (n = 0-31)	31:16		—	_	_	_		_	_		_	_	_				-	0000
	(1 = 0.31)	15:0	—	—	C2FIFOCI<4:0> 0000														

TABLE 24-2: CAN2 REGISTER SUMMARY FOR PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX775F256L, PIC32MX775F512L, AND PIC32MX795F512L, DEVICES (CONTINUED)

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

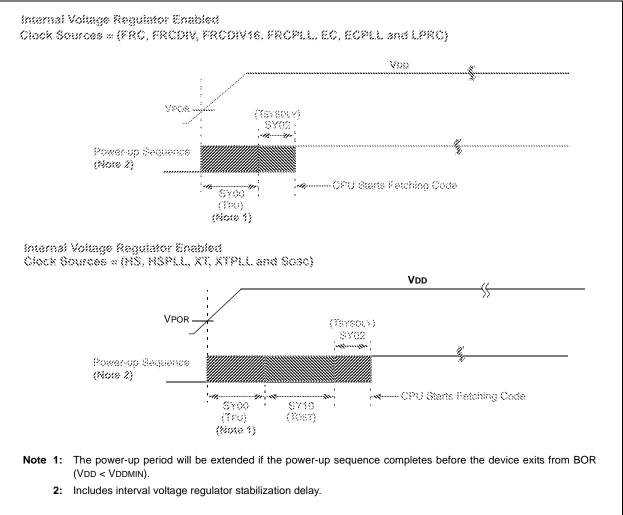
REGISTER 24-3: CIINT: CAN INTERRUPT REGISTER (CONTINUED)

- bit 14 WAKIF: CAN Bus Activity Wake-up Interrupt Flag bit 1 = A bus wake-up activity interrupt has occurred 0 = A bus wake-up activity interrupt has not occurred CERRIF: CAN Bus Error Interrupt Flag bit bit 13 1 = A CAN bus error has occurred 0 = A CAN bus error has not occurred bit 12 SERRIF: System Error Interrupt Flag bit 1 = A system error occurred (typically an illegal address was presented to the system bus) 0 = A system error has not occurred bit 11 **RBOVIF:** Receive Buffer Overflow Interrupt Flag bit 1 = A receive buffer overflow has occurred 0 = A receive buffer overflow has not occurred bit 10-4 Unimplemented: Read as '0' MODIF: CAN Mode Change Interrupt Flag bit bit 3 1 = A CAN module mode change has occurred (OPMOD<2:0> has changed to reflect REQOP) 0 = A CAN module mode change has not occurred bit 2 CTMRIF: CAN Timer Overflow Interrupt Flag bit 1 = A CAN timer (CANTMR) overflow has occurred 0 = A CAN timer (CANTMR) overflow has not occurred bit 1 **RBIF:** Receive Buffer Interrupt Flag bit 1 = A receive buffer interrupt is pending 0 = A receive buffer interrupt is not pending bit 0 TBIF: Transmit Buffer Interrupt Flag bit 1 = A transmit buffer interrupt is pending
 - 1 = A transmit buffer interrupt is pending
 0 = A transmit buffer interrupt is not pending
- **Note 1:** This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).

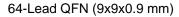
REGISTER 24-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' (n = 0 THROUGH 31)

- bit 9 TXHALFIF: FIFO Transmit FIFO Half Empty Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) 1 = FIFO is \leq half full 0 = FIFO is > half full TXEN = 0: (FIFO configured as a receive buffer) Unused, reads '0' bit 8 **TXEMPTYIF:** Transmit FIFO Empty Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) 1 = FIFO is empty 0 = FIFO is not empty, at least 1 message queued to be transmitted TXEN = 0: (FIFO configured as a receive buffer) Unused, reads '0' bit 7-4 Unimplemented: Read as '0' bit 3 **RXOVFLIF:** Receive FIFO Overflow Interrupt Flag bit TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = Overflow event has occurred 0 = No overflow event occured bit 2 **RXFULLIF:** Receive FIFO Full Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is full 0 = FIFO is not full RXHALFIF: Receive FIFO Half Full Interrupt Flag bit⁽¹⁾ bit 1 TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is \geq half full 0 = FIFO is < half full bit 0 **RXNEMPTYIF:** Receive Buffer Not Empty Interrupt Flag bit⁽¹⁾ TXEN = 1: (FIFO configured as a transmit buffer) Unused, reads '0' TXEN = 0: (FIFO configured as a receive buffer) 1 = FIFO is not empty, has at least 1 message 0 = FIFO is empty
- Note 1: This bit is read-only and reflects the status of the FIFO.

TABLE 32-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)


DC CHA	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$									
Param. No.	Typical ⁽³⁾	Max.	Units		Conditions	;						
Operatir	ng Current (I	DD) ^(1,2) for	PIC32MX53	34/564/664/764 Family Device	es							
DC20c	6	9	mA	Code executing from Flash	-40ºC, +25ºC, +85ºC	_	4 MHz					
DC20d	7	10			+105⁰C							
DC20e	2			Code executing from SRAM								
DC21b	19	32	~^^	Code executing from Flash			25 MHz					
DC21c	14	_	mA	Code executing from SRAM		_	(Note 4)					
DC22b	31	50	~^^	Code executing from Flash			60 MHz					
DC22c	29	_	mA	Code executing from SRAM		_	(Note 4)					
DC23c	39	65	mA	Code executing from Flash	-40ºC, +25ºC, +85ºC	_	80 MHz					
DC23d	49	70			+105⁰C							
DC23e	39	_	1	Code executing from SRAM	_							
DC25b	100	150	μA	—	+25°C	3.3V	LPRC (31 kHz) (Note 4)					

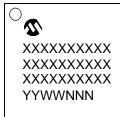
Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.


- **2:** The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
 - No peripheral modules are operating, (ON bit = 0)
 - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

PIC32MX5XX/6XX/7XX

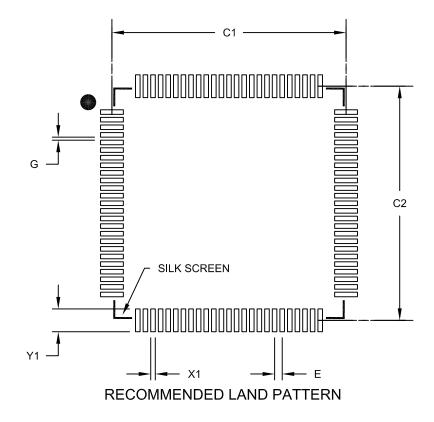
FIGURE 32-4: POWER-ON RESET TIMING CHARACTERISTICS


34.1 Package Marking Information (Continued)



121-Lead TFBGA (10x10x1.1 mm)

124-Lead VTLA (9x9x0.9 mm)


Example

Lanand	VV V	Customer eneritie information
Legena	XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	YY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
		Pb-free JEDEC designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)
		can be found on the outer packaging for this package.
Note:	In the eve	nt the full Microchip part number cannot be marked on one line, it will
		d over to the next line, thus limiting the number of available s for customer-specific information.

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	ILLIMETER	S
Dimensior	l Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

TABLE B-7: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
32.0 "Electrical Characteristics"	Note 4 in the Operating Current specification was updated (see Table 32-5).
	Note 3 in the Idle Current specification was updated (see Table 32-6).
	Note 6 references in the Power-Down Current specification were updated (see Table 32-7).
	The Program Memory parameters, D135, D136, and D137, and Note 4 were updated (see Table 32-11).
	The Voltage Reference Specifications were updated (see Table 32-14).
	Parameter DO50 (Cosco) was added to the Capacitive Loading Requirements on Output Pins (see Table 32-16).
	The EJTAG Timing Characteristics were updated (see Figure 32-28).
	The maximum value for parameters ET13 and ET14 were updated in the Ethernet Module Specifications (see Table 32-35).
	Parameter PM7 (TDHOLD) was updated (see Table 32-40).
34.0 "Packaging Information"	Packaging diagrams were updated.
Product Identification System	The Speed and Program Memory Size were updated and Note 1 was added.